San Jose State University

From the SelectedWorks of Sogol Jahanbekam

July 30,2014

Antimagic-type labelings

Sogol Jahanbekam, University of Colorado, Denver

Available at: https://works.bepress.com/sogol-jahanbekam/21/

B bepress®


http://www.sjsu.edu
https://works.bepress.com/sogol-jahanbekam/
https://works.bepress.com/sogol-jahanbekam/21/

Antimagic-type Labelings

Sogol Jahanbekam

University of Colorado Denver

Rocky Mountain-Great Plains Graduate
Research Workshop in Combinatorics
Summer 2014



Definition

A graph with m edges is called antimagic if its edges can be
labeled with 1,..., m such that the sums of the labels of the edges
incident to each vertex are distinct.







Observation

e (Hartsfield and Ringel [1990]) Cycles are antimagic.

o (Hartsfield and Ringel [1990]) Paths of length at least 2 are
antimagic.

o (Hartsfield and Ringel [1990]) Complete graphs are antimagic.

o (Hartsfield and Ringel [1990]) Wheels are antimagic.



Some non-antimagic graphs

@ Any graph having a Ky-component is not antimagic.

@ Any graph having at least two isolated vertices is not
antimagic.

@ Theorem (Wang, Liu, and Li [2012]) mP3 with m > 2 is not
antimagic.



Conjectures

e Conjecture (Hartsfield and Ringel [1990]) Every tree except
K> is antimagic.

@ Conjecture (Hartsfield and Ringel [1990]) Every connected
graph of order at least 3 is antimagic.



Results

@ Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004])
There exists an absolute constant C such that every graph
with n vertices and minimum degree at least C log n is
antimagic.

@ Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004])
If G has n vertices, n > 4, and A(G) > n—2, then G is
antimagic.

@ Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004])
All complete partite graphs, but Kj, are antimagic.



Results

@ Theorem (Yilma [2011]) n-vertex graphs of order at least 9
with maximum degree at least n — 3 are antimagic.

@ Theorem (Cranston [2009]) Every regular bipartite graph with
degree at least 2 is anitmagic.

@ Theorem (Cranston, Liang, and Zhu [2013]) Regular graphs of
odd degree, but Kj, are antimagic.



@ Theorem (Eccles [2014+]) If a graph has no isolated edges or
vertices and has average degree at least 4468, then it is
antimagic.

e Conjecture (Eccles [2014+]) If a graph has no isolated edges
or vertices and has average degree at least v/2, then it is
antimagic.



Let k be a positive integer and G be a graph.
Definition

We say that G is k-antimagic if there is an injection
f:E—{1,...,|E| + k} such that for any two distinct vertices u

and v, Eeer(v) f(e) # Zeer(u) f(e).

Definition

We say G is weighted-k-antimagic if for any vertex weight function
g : E — N there is an injection f : E — {1,...,|E| + k} such that
for any two distinct vertices u and v,

8(v) + Xeer(v) Fe) # 8(u) + Xeer(u) ().



facts

e (Wong and Zhu) Not all graphs are weighted-0-antimagic.

e (Wong and Zhu) Not all graphs are weighted-1-antimagic.



Open Problems

@ Question (Wong and Zhu [2011]) Is there a constant k such
that every connected graph G # Kj is weighted-k-antimagic?

@ Question (Wong and Zhu [2011]) Is it true that every
connected graph G # K is weighted-2-antimagic?

@ Question (Wong and Zhu [2011]) Is there a connected graph
G with an odd number of vertices which is not
weighted-1-antimagic?



Theorem (Combinatorial Nullstellensatz) (Alon [1999])

Let f be a polynomial of degree t in m variables over a field F. If
there is a monomial I'Ix,-t" in f with ) t; = t whose coefficient is
nonzero in IF, then f is nonzero at some point of 1S;, where each
S; is a set of t; + 1 distinct values in F.



@ It is an easy exercise using the Combinatorial Nullstellensatz
to prove that every n-vertex connected graph with n > 3 is
weighted-(2n — 3)-antimagic.

@ Theorem (Wong and Zhu [2011]) every n-vertex connected
graph with n > 3 is weighted- {%J—antimagic.



@ Theorem (Wong and Zhu [2011]) If G has a universal vertex
and G — newKj, then G is weighted-2-antimagic.

@ Theorem (Wong and Zhu [2011]) If G has a prime number of
vertices and has a Hamilton path, then G is
weighted-1-antimagic.



Antimagic labeling of directed graphs

@ Definition

In an edge-labeling of a digraph D, the oriented vertex sum of
a vertex v is the sum of labels of all edges entering v minus
the sum of labels of all edges leaving it.

@ Definition

An antimagic labeling of a directed graph D with n vertices
and m edges is a bijection from the set of edges of D to the
integers {1,..., m} such that all n oriented vertex sums are
pairwise distinct.



Example




Question (Hefetz, Miitze, and Schwartz [2009]) Is every connected
digraph on at least four vertices antimagic?

@ Theorem (Hefetz, Miitze, and Schwartz [2009]) There exists a
constant C such that for every undirected graph on n vertices
with minimum degree at least C log n every orientation is
antimagic.

@ Theorem (Hefetz, Miitze, and Schwartz [2009]) Every
orientation of W, is antimagic.



@ Question (Hefetz, Miitze, and Schwartz [2009]) Given any
undirected graph G, does there exist an orientation of G which
is antimagic?

e Conjecture (Hefetz, Miitze, and Schwartz [2009]) Every
connected undirected graph admits an antimagic orientation.



@ Theorem (Hefetz, Miitze, and Schwartz [2009]) Almost every
undirected d-regular graph admits an orientation which is
antimagic

@ Theorem (Hefetz, Miitze, and Schwartz [2009]) Every regular
graph of odd degree has an antimagic orientation.

@ Theorem (Hefetz, Miitze, and Schwartz [2009]) Every
n-vertex regular connected graph of even degree having a
matching of size | 7] has an antimagic orientation.



@ Theorem (Hefetz, Miitze, and Schwartz [2009]) For every
orientation of complete graphs, wheels, and stars with at least
4 vertices, there exists an antimagic labeling.

@ Theorem (Hefetz, Miitze, and Schwartz [2009]) There exists
an absolute constant C such that any n-vertex undirected
graph G with minimum degree at least C log n has an
orientation which is antimagic.



Neighbor sum Distinguishing Index

Definitions

@ A proper [k]-edge colorings of a graph G is called neighbor
sum distinguishing if for any pair of adjacent vertices x and y
the sum of colors taken on the edges incident to x is different
from the sum of colors taken on the edges incident to y.

@ The smallest value k for which G has a neighbor sum
distinguishing coloring is called Neighbor sum distinguishing
index of G and is denoted by nsdi(G).



Example

We have nsdi(Cs) = 5.



@ Theorem (Flandrin, Marczyk, Przybylio, Saclé, Wozniak
[2013]) nsdi(Px) = 3 for all k > 3.

@ Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak
[2013]) nsdi(Cpn) = 3 when 3|m.

@ Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak
[2013]) nsdi(Cpn) = 4 when 3 fm and m # 5.



@ Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak
[2013]) nsdi(Kn,n) = n+ 2 when n > 2.

@ Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak
[2013]) nsdi(Kn,p) = n when n > 2 and n > p.

@ Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak
[2013]) Let T be a tree of order at least 3 and maximum
degree A. We have nsdi(T) = A, when vertices of degree A
in T form an independent set. nsdi(T) = A + 1, otherwise.



Conjecture (Flandrin, Marczyk, Przybylo, Saclé, Wozniak [2013])
nsdi(G) < A(G) + 2, where G is a connected graph of order at
least 3 and G # Gs.



Conjecture (Flandrin, Marczyk, Przybylo, Saclé, Wozniak [2013])
nsdi(G) < A(G) + 2, where G is a connected graph of order at
least 3 and G # Gs.

Theorem (Flandrin, Marczyk, Przyby[o, Saclé, Wozniak [2013])
nsdi(G) < %(G) for any graph G with A(G) > 2.

Theorem (Wang and Yan [2014]) nsdi(G) < w for all
graphs having no pendant edges.



Theorem (Dong and Wang [2012])
nsdi(G) < max{2A(G) + 1,25} for all planar graphs having no
pendant edges.

Theorem (Dong and Wang [2012]) nsdi(G) < max{2A(G), 19} for
all planar graphs G with mad(G) < 5.

Theorem (Wang, Chen, and Wang [2014])
nsdi(G) < max{A(G) + 10,25} for all planar graphs having no
pendant edges.



Neighbor Sum Distinguishing Index

Definitions

@ A proper [k]-edge colorings of a graph G is called neighbor
distinguishing if for any pair of adjacent vertices x and y the
set of colors taken on the edges incident to x is different from
the set of colors taken on the edges incident to y.

@ The smallest value k for which G has a neighbor
distinguishing coloring is called neighbor distinguishing index
of G and is denoted by ndi(G).



Neighbor Sum Distinguishing Index

Definitions

@ A proper [k]-edge colorings of a graph G is called neighbor
distinguishing if for any pair of adjacent vertices x and y the
set of colors taken on the edges incident to x is different from
the set of colors taken on the edges incident to y.

@ The smallest value k for which G has a neighbor
distinguishing coloring is called neighbor distinguishing index
of G and is denoted by ndi(G).

A(G) < Y'(G) < ndi(G) < nsdi(G)



Conjecture (Zhang and Wang [2002]) ndi(G) < A(G) + 2, where
G is a graph of order at least 6 having no pendant edges.



Conjecture (Zhang and Wang [2002]) ndi(G) < A(G) + 2, where
G is a graph of order at least 6 having no pendant edges.

Theorem (Hatami [2005]) ndi(G) < A(G) + 300 for for any graph
G with A(G) > 10% having no pendant edges.

Theorem (Hatami [2005]) ndi(G) < max{14, A(G) + 2} for any
planar graph G having no pendant edges.

So the Conjecture is valid for all planar graphs having maximum
degree at least 12.



Thank you very much!
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