San Jose State University

From the SelectedWorks of Sogol Jahanbekam

July 30, 2014

Antimagic-type labelings

Sogol Jahanbekam, University of Colorado, Denver

Antimagic-type Labelings

Sogol Jahanbekam

University of Colorado Denver

Rocky Mountain-Great Plains Graduate Research Workshop in Combinatorics Summer 2014

Definition

A graph with m edges is called antimagic if its edges can be labeled with $1, \ldots, m$ such that the sums of the labels of the edges incident to each vertex are distinct.

Observation

- (Hartsfield and Ringel [1990]) Cycles are antimagic.
- (Hartsfield and Ringel [1990]) Paths of length at least 2 are antimagic.
- (Hartsfield and Ringel [1990]) Complete graphs are antimagic.
- (Hartsfield and Ringel [1990]) Wheels are antimagic.

Some non-antimagic graphs

- Any graph having a K_{2}-component is not antimagic.
- Any graph having at least two isolated vertices is not antimagic.
- Theorem (Wang, Liu, and Li [2012]) $m P_{3}$ with $m \geq 2$ is not antimagic.

Conjectures

- Conjecture (Hartsfield and Ringel [1990]) Every tree except K_{2} is antimagic.
- Conjecture (Hartsfield and Ringel [1990]) Every connected graph of order at least 3 is antimagic.

Results

- Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004]) There exists an absolute constant C such that every graph with n vertices and minimum degree at least $C \log n$ is antimagic.
- Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004]) If G has n vertices, $n \geq 4$, and $\Delta(G) \geq n-2$, then G is antimagic.
- Theorem (Alon, Kaplan, Lev, Roditty, and Yuster [2004]) All complete partite graphs, but K_{2}, are antimagic.

Results

- Theorem (Yilma [2011]) n-vertex graphs of order at least 9 with maximum degree at least $n-3$ are antimagic.
- Theorem (Cranston [2009]) Every regular bipartite graph with degree at least 2 is anitmagic.
- Theorem (Cranston, Liang, and Zhu [2013]) Regular graphs of odd degree, but K_{2}, are antimagic.
- Theorem (Eccles [2014+]) If a graph has no isolated edges or vertices and has average degree at least 4468, then it is antimagic.
- Conjecture (Eccles [2014+]) If a graph has no isolated edges or vertices and has average degree at least $\sqrt{2}$, then it is antimagic.

Let k be a positive integer and G be a graph.
Definition
We say that G is k-antimagic if there is an injection $f: E \rightarrow\{1, \ldots,|E|+k\}$ such that for any two distinct vertices u and $v, \sum_{e \in \Gamma(v)} f(e) \neq \sum_{e \in \Gamma(u)} f(e)$.

Definition

We say G is weighted-k-antimagic if for any vertex weight function $g: E \rightarrow \mathbb{N}$ there is an injection $f: E \rightarrow\{1, \ldots,|E|+k\}$ such that for any two distinct vertices u and v, $g(v)+\sum_{e \in \Gamma(v)} f(e) \neq g(u)+\sum_{e \in \Gamma(u)} f(e)$.

facts

- (Wong and Zhu) Not all graphs are weighted-0-antimagic.
- (Wong and Zhu) Not all graphs are weighted-1-antimagic.

Open Problems

- Question (Wong and Zhu [2011]) Is there a constant k such that every connected graph $G \neq K_{2}$ is weighted- k-antimagic?
- Question (Wong and Zhu [2011]) Is it true that every connected graph $G \neq K_{2}$ is weighted-2-antimagic?
- Question (Wong and Zhu [2011]) Is there a connected graph G with an odd number of vertices which is not weighted-1-antimagic?

Theorem (Combinatorial Nullstellensatz) (Alon [1999])
Let f be a polynomial of degree t in m variables over a field \mathbb{F}. If there is a monomial $\Pi x_{i}^{t_{i}}$ in f with $\sum t_{i}=t$ whose coefficient is nonzero in \mathbb{F}, then f is nonzero at some point of ΠS_{i}, where each S_{i} is a set of $t_{i}+1$ distinct values in \mathbb{F}.

- It is an easy exercise using the Combinatorial Nullstellensatz to prove that every n-vertex connected graph with $n \geq 3$ is weighted-($2 n-3$)-antimagic.
- Theorem (Wong and Zhu [2011]) every n-vertex connected graph with $n \geq 3$ is weighted- $\left\lfloor\frac{3 n}{2}\right\rfloor$-antimagic.
- Theorem (Wong and Zhu [2011]) If G has a universal vertex and G - new K_{2}, then G is weighted-2-antimagic.
- Theorem (Wong and Zhu [2011]) If G has a prime number of vertices and has a Hamilton path, then G is weighted-1-antimagic.

Antimagic labeling of directed graphs

- Definition

In an edge-labeling of a digraph D, the oriented vertex sum of a vertex v is the sum of labels of all edges entering v minus the sum of labels of all edges leaving it.

- Definition

An antimagic labeling of a directed graph D with n vertices and m edges is a bijection from the set of edges of D to the integers $\{1, \ldots, m\}$ such that all n oriented vertex sums are pairwise distinct.

Example

Question (Hefetz, Mütze, and Schwartz [2009]) Is every connected digraph on at least four vertices antimagic?

- Theorem (Hefetz, Mütze, and Schwartz [2009]) There exists a constant C such that for every undirected graph on n vertices with minimum degree at least $C \log n$ every orientation is antimagic.
- Theorem (Hefetz, Mütze, and Schwartz [2009]) Every orientation of W_{n} is antimagic.
- Question (Hefetz, Mütze, and Schwartz [2009]) Given any undirected graph G, does there exist an orientation of G which is antimagic?
- Conjecture (Hefetz, Mütze, and Schwartz [2009]) Every connected undirected graph admits an antimagic orientation.
- Theorem (Hefetz, Mütze, and Schwartz [2009]) Almost every undirected d-regular graph admits an orientation which is antimagic
- Theorem (Hefetz, Mütze, and Schwartz [2009]) Every regular graph of odd degree has an antimagic orientation.
- Theorem (Hefetz, Mütze, and Schwartz [2009]) Every n-vertex regular connected graph of even degree having a matching of size $\left\lfloor\frac{n}{2}\right\rfloor$ has an antimagic orientation.
- Theorem (Hefetz, Mütze, and Schwartz [2009]) For every orientation of complete graphs, wheels, and stars with at least 4 vertices, there exists an antimagic labeling.
- Theorem (Hefetz, Mütze, and Schwartz [2009]) There exists an absolute constant C such that any n-vertex undirected graph G with minimum degree at least $C \log n$ has an orientation which is antimagic.

Neighbor sum Distinguishing Index

Definitions

- A proper [k]-edge colorings of a graph G is called neighbor sum distinguishing if for any pair of adjacent vertices x and y the sum of colors taken on the edges incident to x is different from the sum of colors taken on the edges incident to y.
- The smallest value k for which G has a neighbor sum distinguishing coloring is called Neighbor sum distinguishing index of G and is denoted by $\operatorname{nsdi}(G)$.

Example

We have $n s d i\left(C_{5}\right)=5$.

- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) nsdi $\left(P_{k}\right)=3$ for all $k \geq 3$.
- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) nsdi $\left(C_{m}\right)=3$ when 3|m.
- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) nsdi $\left(C_{m}\right)=4$ when $3 \not \backslash m$ and $m \neq 5$.
- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) $n s d i\left(K_{n, n}\right)=n+2$ when $n \geq 2$.
- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) $n s d i\left(K_{n, p}\right)=n$ when $n \geq 2$ and $n>p$.
- Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) Let T be a tree of order at least 3 and maximum degree Δ. We have $\operatorname{nsdi}(T)=\Delta$, when vertices of degree Δ in T form an independent set. $n s d i(T)=\Delta+1$, otherwise.

Conjecture (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) nsdi $(G) \leq \Delta(G)+2$, where G is a connected graph of order at least 3 and $G \neq C_{5}$.

Conjecture (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) $n s d i(G) \leq \Delta(G)+2$, where G is a connected graph of order at least 3 and $G \neq C_{5}$.

Theorem (Flandrin, Marczyk, PrzybyĹo, Saclé, Woźniak [2013]) $n s d i(G) \leq \frac{7 \Delta(G)}{2}$ for any graph G with $\Delta(G) \geq 2$.

Theorem (Wang and Yan [2014]) nsdi($G) \leq \frac{5(\Delta(G)+2)}{2}$ for all graphs having no pendant edges.

Theorem (Dong and Wang [2012]) $\operatorname{nsdi}(G) \leq \max \{2 \Delta(G)+1,25\}$ for all planar graphs having no pendant edges.

Theorem (Dong and Wang [2012]) nsdi($G) \leq \max \{2 \Delta(G), 19\}$ for all planar graphs G with $\operatorname{mad}(G) \leq 5$.

Theorem (Wang, Chen, and Wang [2014]) $n s d i(G) \leq \max \{\Delta(G)+10,25\}$ for all planar graphs having no pendant edges.

Neighbor Sum Distinguishing Index

Definitions

- A proper [k]-edge colorings of a graph G is called neighbor distinguishing if for any pair of adjacent vertices x and y the set of colors taken on the edges incident to x is different from the set of colors taken on the edges incident to y.
- The smallest value k for which G has a neighbor distinguishing coloring is called neighbor distinguishing index of G and is denoted by $\operatorname{ndi}(G)$.

Neighbor Sum Distinguishing Index

Definitions

- A proper [k]-edge colorings of a graph G is called neighbor distinguishing if for any pair of adjacent vertices x and y the set of colors taken on the edges incident to x is different from the set of colors taken on the edges incident to y.
- The smallest value k for which G has a neighbor distinguishing coloring is called neighbor distinguishing index of G and is denoted by $\operatorname{ndi}(G)$.
$\Delta(G) \leq \chi^{\prime}(G) \leq \operatorname{ndi}(G) \leq \operatorname{nsdi}(G)$

Conjecture (Zhang and Wang [2002]) ndi($G) \leq \Delta(G)+2$, where G is a graph of order at least 6 having no pendant edges.

Conjecture (Zhang and Wang [2002]) ndi($G) \leq \Delta(G)+2$, where G is a graph of order at least 6 having no pendant edges.

Theorem (Hatami [2005]) ndi $(G) \leq \Delta(G)+300$ for for any graph G with $\Delta(G)>10^{20}$ having no pendant edges.

Theorem (Hatami [2005]) $\operatorname{ndi}(G) \leq \max \{14, \Delta(G)+2\}$ for any planar graph G having no pendant edges.

So the Conjecture is valid for all planar graphs having maximum degree at least 12 .

Thank you very much!

