Skip to main content
Article
Modeling the collagen fibril network of biological tissues as a nonlinearly elastic material using a continuous volume fraction distribution function
Mathematics and Mechanics of Solids
  • Reza Shirazi, University of California - San Diego
  • Pasquale Vena, Politechno di Milano
  • Robert L. Sah, University of California - San Diego
  • Stephen M. Klisch, California Polytechnic State University - San Luis Obispo
Publication Date
9-1-2011
Abstract
Despite distinct mechanical functions, biological soft tissues have a common microstructure in which a ground matrix is reinforced by a collagen fibril network. The microstructural properties of the collagen network contribute to continuum mechanical tissue properties that are strongly anisotropic with tensile-compressive asymmetry. In this study, a novel approach based on a continuous distribution of collagen fibril volume fractions is developed to model fibril reinforced soft tissues as nonlinearly elastic and anisotropic material. Compared with other approaches that use a normalized number of fibrils for the definition of the distribution function, this representation is based on a distribution parameter (i.e. volume fraction) that is commonly measured experimentally while also incorporating pre-stress of the collagen fibril network in a tissue natural configuration. After motivating the form of the collagen strain energy function, examples are provided for two volume fraction distribution functions. Consequently, collagen second-Piola Kirchhoff stress and elasticity tensors are derived, first in general form and then specifically for a model that may be used for immature bovine articular cartilage. It is shown that the proposed strain energy is a convex function of the deformation gradient tensor and, thus, is suitable for the formation of a polyconvex tissue strain energy function.
Citation Information
Reza Shirazi, Pasquale Vena, Robert L. Sah and Stephen M. Klisch. "Modeling the collagen fibril network of biological tissues as a nonlinearly elastic material using a continuous volume fraction distribution function" Mathematics and Mechanics of Solids Vol. 16 Iss. 7 (2011) p. 706 - 715
Available at: http://works.bepress.com/sklisch/24/