Skip to main content
Photoelectron spectroscopic study of the oxyallyl diradical
Faculty of Science - Papers (Archive)
  • Stephen J Blanksby, University of Wollongong
  • W C Lineberger, University of Colorado at Boulder
  • Stephanie M Villano, University of Colorado
  • Takatoshi Ichino, University of Colorado
  • Daniel J Goebbert, University of Colorado
  • Xin Zhou, University of North Texas
  • Adam J Gianola, University of Colorado
  • Weston T Borden, University of North Texas
  • Andrei Sanov, University of Arizona
  • Luis Velarde Velarde, University of Arizona
  • David A Hrovat, University of North Texas
Publication Date
Publication Details

Ichino, T., Villano, S. M., Gianola, A. J., Goebbert, D. J., Velarde, L., Sanov, A., Blanksby, S. J., Zhou, X., Hrovat, D. A., Borden, W. Thatcher. & Lineberger, W. Carl. (2011). Photoelectron spectroscopic study of the oxyallyl diradical. Journal of Physical Chemistry A, 115 (9), 1634-1649.


The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O¿-) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states ( 3B 2 and 3B 1) of OXA and the ground doublet state ( 2A 2) of the radical anion using density functional theory (DFT). Spectral simulations have been carried out for the triplet states based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the 3B 2 state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the 3B 2 feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the 3B 2 state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ( 1A 1) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the 1A 1 state and its vibrational progression of the CO stretching mode. The 1A 1 state is the lowest electronic state of OXA, and the electron affinity (EA) of OXA is 1.940 + 0.010 eV. The 3B 2 state is the first excited state with an electronic term energy of 55 + 2 meV. The widths of the vibronic peaks of the X¿ 1A 1 state are much broader than those of the 3B 2 state, implying that the 1A 1 state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the 1A 1 state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cyclopropanone. The simulation of b¿ 3B 1 OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the 3B 1 state is 0.883 + 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O¿- reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the X¿ 3A¿ state of AC. The ground ( 2A¿) and first excited ( 2A¿) states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed. C 2011 American Chemical Society.

Grant Number
Citation Information
Stephen J Blanksby, W C Lineberger, Stephanie M Villano, Takatoshi Ichino, et al.. "Photoelectron spectroscopic study of the oxyallyl diradical" (2011) p. 1634 - 1649
Available at: