Skip to main content
Fluorescent Si Nanoparticle-Based Electrode for Sensing Biomedical Substances
Optics Communications
  • Gang Wang, Cleveland State University
  • Siu-Tung Yau, Cleveland State University
  • Kevin Mantey, University of Illinois at Urbana-Champaign
  • Munir H. Nayfeh, University of Illinois at Urbana-Champaign
Document Type
Publication Date
We have been studying the miniaturization of silicon crystals and the transition from the solid state to the atomistic state. We demonstrated the existence of “sweet spots” in cluster size in the range 1–3nm that have enhanced chemical, structural, and photo stability. The particles are produced by an electrochemical etching process as dispersion in liquid, and they are reconstituted in films, patterns, alloys, or spread on chips to produce super chips. Unlike bulk, these Si nanoparticle configurations have a spectacular ability to glow in distinct RGB colors. In this paper we describe an electrode sensor built by decorating metal or heavily doped silicon electrode with nanoparticles. We demonstrated amperometric response of the electrode to glucose and compared the response to that of heavily doped silicon wafer decorated with GOx. The all silicon electrode shows improved sensitivity, selectivity and stability. Light induced modulation of the response allows phase sensitive detection. The device is suitable for miniaturization, which may enable in vivo use.
Citation Information
Wang, G., Yau, S., Mantey, K., , & Nayfeh, M. H. (2008). Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Optics Communications, 281(7), 1765-1770. doi:10.1016/j.optcom.2007.07.070