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a b s t r a c t

This paper applies two well-known structural dynamics computational algorithms to the problem of
disproportionate collapse of steel moment frames applying the alternate load path method. Any problem
of structural dynamics strongly depends on the accuracy and the reliability of the analysis method since
the parameters involved in the selection of the appropriate algorithm are affected by the nature of the
problem. Disproportionate collapse is herein simulated via a time history analysis used to ‘‘turn off’’
the effectiveness of an element to the structure. For this kind of problem the time step size of the
computational algorithm is of major importance for the accuracy of the method and thus, remains a
variable throughout the present analyses. Two plane steel moment frames are used for the numerical
examples, while all the analyses are performed independently. Firstly the β-Newmark method is applied
and secondly the linear Hilbert–Hughes–Taylor a-method is applied and the respective results are
compared and discussed in the last part of the paper.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Since the first report of the Institution of Structural Engineers
about the collapse of flats at Ronan Point in 1968 due to a
gas explosion [1], a lot of progress has been made towards the
analysis of the problem of disproportionate collapse resistance of
structures. Additionally, the upward trend of appearance of related
events has attracted the interest of many researchers trying to
quantify the problem [2–12].

Among many approaches, the report of Ellingwood et al. [13]
provides a very detailed review of the available methods used
to mitigate disproportionate collapse while it proposes practical
design methods to prevent the phenomenon. Additionally, the
report presents in a thorough manner the loading patterns
associated with the event of disproportionate collapse, relatively
to the appearance of abnormal loading on structures. The report
also emphasizes on the factors that contribute to structural
vulnerability such as the lack of continuity within the structural
system or lack of ductility in materials, members or connections.

In this framework, the property of disproportionate collapse
resistance, called by many researchers as robustness, is not simply
defined as the inherent hyperstatic level of the structure, but is
instead directly related to much more complicated internal load
paths which are activated in case of a damaged structural system.
Nevertheless, Leyendecker and Burnett [14] have estimated that
around 15%–20% of building collapses develop in this manner.

∗ Corresponding author.
E-mail address: sgerasim@civil.auth.gr (S. Gerasimidis).

To this day, the outcome of the research efforts towards the
quantification of disproportionate collapse has been acknowl-
edged and depicted in relevant guidelines such as the General Ser-
vices Administration guidelines [15] and the Department of De-
fense Criteria [16]. These documents so far include several different
designmethods; the indirect methods such as the tie forcemethod
and the directmethods such as the specific local resistancemethod
and the alternate load path method.

For building structures ([17–27]), the alternate path method
incorporates the event of a vertical element failure tuning the
structure such that it can bridge over the failed element through
the redistribution of the load to the remaining structure. Therefore,
the critical elements of such structures mainly include columns or
load bearing wall elements. The method employs three analysis
procedures: linear static, nonlinear static and nonlinear dynamic.

In this framework, Izzuddin et al. [28] have studied the
phenomenon of disproportionate collapse of a multi-storey
building due to a sudden column loss, simulating the event with
the sudden application of the gravity loads to the remaining
structure after the removal of the column. This technique is used to
determine themaximum dynamic response of the structure which
is of the highest interest regarding the collapse resistance of the
structure in such an event. Additionally, Kim and Park [29] applied
a plastic design method for the design of steel moment-resisting
structures against disproportionate collapse using a dynamic
method of analysis.

This paper applies two structural dynamics computational algo-
rithms, the β-Newmark method and the linear Hilbert–Hughes–
Taylor a-method to two different plane steel moment frames for
the event of column loss. The intention of this study is to apply a
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Fig. 1. Time history analysis functions.

linear dynamic method of analysis based on the fact that practi-
tioners performing progressive collapse studies are more likely to
use linear static analysis or linear dynamic analysis regardless of
the inaccuracy of the procedure. The event is simulated herein via
a linear static and a linear time history analysis ‘‘turning off’’ the
effectiveness of the column. The accuracy of these problems, re-
searched in this study, is mainly dependent on the time step size
of the algorithm and that is why it is the key variable of the analy-
ses.

2. Method of analysis

2.1. General

The attempt to quantify the resistance of a structure to
disproportionate collapse using the alternate load path method
initially includes the computational simulation of the elimination
of selected key elements of the structure. During this effort,
several different analysis approaches have been investigated so
far by the researchers, such as the complete or partial removal
of elements and the static analysis of the remaining structure or
the dynamically gradual removal of the element until its complete
ineffectiveness.

A simple but rather conservative way of analyzing a structure
under the scenario of a failed element is using a linear static
method. This method is described today in all the relevant
guidelines [15,16] as an acceptable way of analyzing the problem.
However, it involves the application of the so-called load increase
factors or dynamic amplification factorswhich are used to simulate
the dynamic effect of the phenomenon. Since a static analysis
cannot include thisway of failure, the load increase factors are used
in order to compensate this behavior.

However, it can be easily proven that in the case of dispropor-
tionate collapse, the triggering event which could be the failure of
an element, happens in a rather dynamicmanner rather than being
simply removed from the structure. Evidently, the loading patterns
associated with disproportionate collapse scenarios usually initi-
ated by gas explosions, blast or terrorist attacks or other similar
conditions are mainly short lived loads but with very high values,
requiring thereby the application of dynamic analysis methods.

Therefore, when dynamic tools are applied to the event of
disproportionate collapse, load increase factors are not needed
for the analysis. The failure of an element can be simulated in a
more detailed way such that the response of the structure can
be correctly assessed without them. In this framework, the most
appropriatemethod of analysis is the time history analysis through
which the loads of the structure can be described, relatively to the
event of the triggering failure of the key element.

2.2. Time history analysis

Theprocess bywhich an element is ‘‘turned off ’’ froma structure
can be simulated by a time history analysis. The calculation steps

of using time history functions initially require the removal of the
critical element from the structural model and the application of
the element’s forces in the opposite direction to the remaining
structure. These forces (ac(t)) follow the time history function
shown in Fig. 1(b) while all the rest of the loads applied on the
structure (av(t)) follow the timehistory function shown in Fig. 1(a).

Fig. 1 presents the time history analysis recommended by
most relevant documents so far. The structure is loaded from 0
to 0.5 s until it reaches a point of equilibrium. The time frame
between 0.5 and 1.0 s is used in order to let the structure
balance after any possible dynamic response which could affect
its later response due to the element removal. Then, at t =

1.0 s the element gradually starts to become ineffective until it
is completely removed at t = 1.0 + ∆toff. Therefore, the critical
duration of the element death is represented by ∆toff.

Nevertheless, the correct estimation of the duration of the
element death still remains under research while several studies
on the issue can be found in recent literature (see [30,31]).

2.3. Computational algorithms

For the analytical solution of the semi-discrete equation of
motion, numerical time-stepping methods for the integration of
differential equations are applied. Among the plethora of available
methods, the careful selection of the appropriate algorithm
remains a critical point in the solution of the problem. For the
purposes of this paper, two methods are briefly presented and
applied in the numerical examples, the β-Newmark method and
the Hilbert–Hughes–Taylor a-method ([32–36]).

2.3.1. β-Newmark method
Let us say that M is the mass matrix of a structure, C is

the viscous damping matrix, K is the stiffness matrix, Φ is the
external load matrix and u, u̇, ü are the displacement, velocity
and acceleration vectors respectively. The equation of motion is
defined as follows:
Mü + Cu̇ + Ku = Φ.

Newmark equations in their standard form are the following:

ut = u∆t−t + ∆tu̇∆t−t +


1
2

− β


∆t2ü∆t−t + β∆t2üt

u̇t = u̇t−∆t + (1 − γ ) ∆tüt−∆t + γ∆tüt .

The stability of the Newmark method depends on the integration
parameters while for zero damping, the method is considered
unconditionally stable if:

2β ≥ γ ≥
1
2
.

2.3.2. Hilbert–Hughes–Taylor (HHT) a-method
On the other hand, the a-method is a generalization of the

Newmark method and uses the following modified equation of
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Fig. 2. Geometry of the two frames.

Table 1
Frame sections of the 4-storey frame.

Corner columns Middle columns Beams

Floor 4 W18 × 40 W18 × 55 W24 × 55
Floor 3 W18 × 40 W18 × 55 W24 × 68
Floor 2 W18 × 86 W18 × 86 W24 × 68
Floor 1 W18 × 86 W18 × 86 W24 × 68

motion:
Müt + (1 + a) Cu̇t + (1 + a) Kut

= (1 + a) Φt − aΦt + aCu̇t−∆t + aKut−∆t .

In case a = 0, the method is clearly reduced to the β-Newmark.

3. Numerical applications

3.1. Description of the structures

For the purposes of the present research, two simple plane steel
moment frames were selected as the numerical examples of the
method. The first one is taken from [16] and consists of a 4-storey
frame as shown in Fig. 2(a). Standard AISC steel sections were
selected for the frame members. Both beam and column sections
for all the floors are summarized in Table 1:

The respective section data can be found in [37]; all the steel
shapes are ASTM A992. The orientation of the beam sections is

Table 2
Frame sections of the 8-storey frame.

Corner columns Middle columns Beams

Floor 8 W18 × 40 W18 × 55 W24 × 55
Floor 7 W18 × 86 W18 × 55 W24 × 68
Floor 6 W18 × 86 W18 × 86 W24 × 68
Floor 5 W18 × 86 W18 × 86 W24 × 68
Floor 4 W18 × 86 W18 × 55 W24 × 68
Floor 3 W18 × 86 W18 × 55 W24 × 68
Floor 2 W18 × 86 W18 × 86 W24 × 68
Floor 1 W18 × 86 W18 × 86 W24 × 68

the standard one (flanges horizontal) and the orientation of the
columns is shown in Fig. 2(a).

The second numerical example is produced by the first and
consists of an 8-storey frame as shown in Fig. 2(b). The beam and
column sections for all the floors are summarized in Table 2:

3.2. Loading

The initial design of the structure was performed under gravity
and lateral loading. Earthquake load, snow loads and rain loads are
not included in the analysis and are assumed not to control the
design of the structure.

The dead load includes the self weight of the members plus
a weight of 75 psf for the slab, a 3 psf allowance for deck and
a roof metal deck of 5 psf. The live loads are 80 psf + 20 psf
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Fig. 3. Cantilever mode of deformation of frames associated with the column removal.

Table 3
Load combination used in the analyses.

Dead Live Snow Lateral load

Loadcase 1.2 0.5 0 0.002ΣP

allowance for partitions for floors 1, 2, 3 for the 4-storey building,
1–7 for the 8-storey building and 20 psf for the roof. The wind
loads are according to IBC 2006 using 110 mph, exposure = B
and importance factor 1.15 (further description of the loads can be
found in Appendices E 2.1 and E 2.2 of [16]).

The critical load case was assumed to be the one described in
Table 3. This assumption is compatible with the recommendations
of [16].

The lateral load is applied to every floor, while ΣP is the sum of
gravity loads (dead and live) acting on only that floor [16].

3.3. Corner column loss—estimation for ∆toff

For the sake of simplicity, the key element chosen to be
removed for both frameswas the corner columnof floor 1. Relevant
research [29] has shown that the corner column of the frame
structure would produce more indicative results than any other
column of the structure.

Regarding the correct estimation of the time interval during
which the column becomes ineffective for the structure, already

Table 4
The periods of the two frames for the corner column removal of the first floor.

4-storey 8-storey

Period (s) 0.15246 0.15154

published guidelines were followed. The recommendation of [16],
is to fix ∆toff to 1/10 of the period of the structure associated
with the structural response mode for the element removal. For
that reason a modal analysis was performed for both examples
and the periods of the frames for the corner column removal were
found as shown in Table 4. It must be noted here that the vertical
(cantilever) mode of deformation of the frames, shown in Fig. 3,
due to the corner column removal is responsible for the same
periods of the two frames.

Thus, ∆toff was fixed at 0.015 s.

3.4. Time step size

In order to study the influence of the time step size to the
response of the structure, the selection of several different values of
time step sizeswere adopted. The valueswere defined relatively to
the element death duration∆toff and range from∆toff to∆toff/300,
as shown in Table 5. It must be noted here that small values of time
step size quickly escalate the computational time as is shown in
Table 5.
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Fig. 4. Response of the B1 column as a function of time.

Table 5
The boundary values of the time step size and the corresponding computational
times.

Time step
(s)

# of steps Computational
time (s)

Maximum value = ∆toff 0.015 80 12
∆t2 0.014 90 14
∆t3 0.013 95 15
∆t4 0.012 100 15
∆t5 0.011 110 16.5
∆t6 0.010 120 18
∆t7 0.009 135 21
∆t8 0.008 150 23
∆t9 0.007 175 26.5
∆t10 0.006 200 30
∆t11 0.005 240 36
∆t12 0.004 300 45
∆t13 0.003 400 60
∆t14 0.002 600 90
∆t15 0.001 1200 180
∆t16 0.0005 2400 360
∆t17 0.0002 6000 900
∆t18 0.0001 12000 1800
Minimum value = ∆toff/300 0.00005 24000 3600

3.5. Selection of the algorithms’ parameters

During the analysis with both algorithms, it was decided not
to introduce numerical damping because it is under the scope of
this research to always use the instantaneous maximum values of
forces and displacements which appear shortly after the complete
removal of an element, so the effect of damping was going to be
very small.

For the β-Newmark method, both examples were analyzed
fixing parameter γ = 0.6 and β = 0.3025 while the Hilbert–
Hughes–Taylor a-methodwas utilized fixing parameter α = −0.3.
This way, only the algorithmic damping is applied to the method,
in order to eliminate the effect of the highest order eigenmodes
which cannot be taken into consideration during the numerical
integration due to the nature of the method.

Table 6
Maximum instantaneous axial force values of column B1 (kips).

Dynamic analysis

TSS (s) β-Newmark HHT a-method
4-storey 8-storey 4-storey 8-storey

0.015 658 1456 613 1369
0.005 (DoD) 665 1500 643 1443
0.00005 675 1522 674 1521

4. Results

The application of time history analysis for the event of
disproportionate collapse mainly aims at the extraction of the
maximum instantaneous response of the structure which occurs
shortly after the removal of the column. To achieve the same
result, a linear static procedure would use load increase factors to
compensate the dynamic effect of the column loss.

Fig. 4 presents the axial force of the column just next to
the removed one, on line B, as a function of time. Fig. 4(a) and
(b) show the response of the column for the 4-storey building
while Fig. 4(c) and (d) show the response of the column for the
8-storey building for the Hilbert–Hughes–Taylor a-method and
the β-Newmark method respectively. All the figures include the
results for three different time step sizes used in the algorithms,
0.015, 0.005, 0.00005 s. It can be noticed that the response of
the column depends on the solution algorithm as well as on the
selected time step size.

Table 6 shows the instantaneous maximum values that are
represented in Fig. 3, in kips. It can be easily shown that
the differences between the analyses of the two computational
algorithms produce significant divergences. The results of the
instantaneous maximum axial force values for all the time step
sizes are depicted in Fig. 5(a) for the 4-storey building and in
Fig. 5(b) for the 8-storey building. Surprisingly, only for very low
values of the time step size the two methods converge. It must be
noted here that the DoD recommends the application of time step
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Fig. 5. Maximum instantaneous axial force values of column B1 for all TSS ranging from 0.015 to 0.00005 s, (a) for the 4-storey frame and (b) for the 8-storey frame.

a b

c d

Fig. 6. The displacement above the removed column as a function of time.

Table 7
Axial force values of column B1 from linear static analysis (kips).

Static analysis

Load increase factor 4-storey 8-storey

No factor 507 1135
2 852 1903

size of 0.005 s and that is why this value is chosen to be shown in
the tables. However, as it is shown in Fig. 5, a smaller value would
bemore accurate for both algorithms, since 0.005 s of time step size
produce different results for the two algorithms while the value
0.00005 s produces identical results. Evidently, it is important to
use low values in the time step size of the solution algorithm, no
matter which is the solution algorithm.

Table 7 shows the results of the linear static analysis for two
different cases. The first one regards the static analysis without any
load increase factors (LIFs) and the secondwith the factors set to 2,
as described in [16]. It is worth to note that when the LIFs are set to
2, the results seem to be very conservative compared to the results
from the linear dynamic analysis.

Table 8
Maximum instantaneous displacements of the node above the removed column
(in.)

Dynamic analysis

TSS (s) β-Newmark HHT a-method
4-storey 8-storey 4-storey 8-storey

0.015 9.62 10.3 8.4 9.1
0.005 (DoD) 9.9 10.7 9.24 10
0.00005 10.1 10.8 10 10.8

It is noteworthy that the forces shown in the graphs are
produced by the linear elastic dynamic analysis of the structure
without including any plastic redistribution of the forces.

Figs. 6 and 7, represent the results regarding the displacement
of the top joint of the removed column. It is clear that the trend is
the same as in the case of the axial force of the column, although
the results seem to be less different in this case.

Table 8 shows the instantaneous maximum values that are
represented in Fig. 3, in inches. Similarly, Table 9 shows the results
from the linear static analysis. Contrary to the results of the axial
force, the deflection produced by the linear static analysis is lower
than the one by the dynamic analysis.
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Fig. 7. Maximum instantaneous displacement values of the node above the removed column for all TSS ranging from 0.015 to 0.00005 s, (a) for the 4-storey frame and (b)
for the 8-storey frame.

Table 9
Axial force values of column B1 from linear static analysis (kips).

Static analysis

Load increase factor 4-storey 8-storey

No factor 5.47 6.14
2 9.13 10.28

5. Conclusions

This study focused on the problem of disproportionate collapse
of steel moment frames, under the event of a column loss. It
should be noted that the collapse of a single column in a frame
structure, as described in [16], is highly unlikely to happen since
the surrounding elements will also be affected by the triggering
event. Nevertheless, already undertaken futureworkwill allow the
authors to examine the effect of a column collapse with the partial
damage of surrounding elements.

The objective of this study is to examine the influence of
the time step size of the solution algorithm to the linear elastic
response of the structure: the nonlinear effects were deliberately
not accounted in the study in order to highlight the results.
Nevertheless, the nonlinearity of the phenomenon, which plays a
major role in the response of the structure, is included in upcoming
publications by the authors.

It is common practice for engineers to apply linear static
or dynamic methods of analysis when doing this type of study
unaware of the parameters involved in the accuracy of the
methods. Throughout the analyses of the numerical examples,
many of the recommendations of the DoD guidelines have been
incorporated, regarding the loading parameters of the structures,
the simulation of the process by which the column is ‘‘turned off’’
from the structure and the time interval during which the column
becomes gradually inactive.

Although this work does not examine the broad range of
structures covered by the DoD guidelines, the study tried to
highlight the importance of the solution algorithm regarding
the dynamic problem of time history disproportionate collapse
analysis of steel moment frames and also the influence of the
selection of the appropriate time step size relevant to the solution
algorithm using a linear elastic dynamic method of analysis. For
the better comparison of the results, one of the frames studied is
identical with the example included in [16].

In any case the time step size is of major importance and should
be treated by the codes recommending the associated method
of analyses. Additionally, depending on the properties of every
structural system or failure, the time step size should be calculated
independently and applied appropriately. This process requires
a detailed investigation of the structural system and its modal
analysis so that the algorithmand its’ parameters are appropriately

applied in order not to introduce any numerical errors in the
solution.

Two numerical exampleswere analyzed for the purposes of this
paper, a 4-storey and an 8-storey steel moment frame. For both
frames two solution algorithms were applied for the solution of
the column loss: the β-Newmark and the Hilbert–Hughes–Taylor
a-method. The analysis showed that the response of the structure
differs when the solution algorithm changes. This divergence is
higher when the time step size of the methods is also high
especially when it is close to the time interval of the column
removal. Additionally, the results show that the response of the
structure is underestimated when the time step sizes are not low
enough to produce safe results. This underestimation could lead to
false conclusions such as the identification of an incorrect collapse
mechanism or the wrong assessment of the mitigation actions.

However, as the time step size approached values close to zero
(0.00005 s) both algorithms produced almost identical results,
showing that low time step size values are crucial for the reliability
of any algorithm method. As a general conclusion from the
analyses, for any solution algorithm, the time step size must be
selected significantly lower than the time interval of the column
removal. For the present examples, the results showed that better
results are achieved when the time step size is close to ∆toff/300.

Nevertheless, the selection of the appropriate solution algo-
rithm is an issue than needs further examination, as it is of ma-
jor importance for the reliability of the analyses. In addition, the
nature of every problem and structural system requires detailed
treatment in order to achieve safe results.
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