Skip to main content
Article
Performance-Based Design Procedure of a Novel Friction-Based Cladding Connection for Blast Mitigation
International Journal of Impact Engineering
  • Liang Cao, Iowa State University
  • Sijia Lu, Iowa State University
  • Simon Laflamme, Iowa State University
  • Spencer Quiel, Lehigh University
  • James Ricles, Lehigh University
  • Taylor Devices, Taylor Devices
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
1-1-2018
DOI
10.1016/j.ijimpeng.2018.03.003
Abstract

Cladding systems are conventionally designed to provide buildings with environmental protection against wind, temperature, humidity, moisture, etc. Recently, researchers have proposed to leverage these systems to provide additional protection against manmade (e.g., blast) and natural (e.g., earthquakes, hurricanes) hazards. This can be achieved, for example, by redesigning the connection between the cladding and the structural system to provide energy dissipation via friction. While promising, the use of flexible cladding connection has only been considered for singular hazards. In this study, the authors propose a novel semi-active damping system to connect the cladding to the structure via a variable friction mechanism. By varying the normal force applied on friction plates through a system of adjustable toggles, it is possible to mitigate vibrations over a wide frequency range, therefore enabling mitigation of different types of hazards (i.e. to achieve multi-hazard resistance). In its passive in-situ mode, the device is designed to provide very high stiffness and friction resistance to mitigate the effects of blast.

The objective of this paper is to enable a holistic integration of said device within the structural design process by developing a performance-based design procedure. The study will focus on the passive in-situ mode of the device, which will provide a stepping stone for the development of performance-based design procedures for its semi-active (i.e. actuated) capabilities. The proposed performance-based design procedure consists of the following: 1) determine the design performance criteria, including the blast properties and allowable connection gap between the cladding and structure; 2) select design properties for the cladding connection, including stiffness and damping; and 3) design a rubber impact bumper located between the structure and the cladding in order to mitigate slamming of the cladding into the structure for very high blast loads.

Comments

This is a manuscript of the article Cao, Liang, Sijia Lu, Simon Laflamme, Spencer Quiel, James Ricles, and Douglas Taylor. "Performance-Based Design Procedure of a Novel Friction-Based Cladding Connection for Blast Mitigation." International Journal of Impact Engineering (2018). DOI: 10.1016/j.ijimpeng.2018.03.003. Posted with permission.

Creative Commons License
Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International
Copyright Owner
Elsevier Ltd.
Language
en
File Format
application/pdf
Citation Information
Liang Cao, Sijia Lu, Simon Laflamme, Spencer Quiel, et al.. "Performance-Based Design Procedure of a Novel Friction-Based Cladding Connection for Blast Mitigation" International Journal of Impact Engineering (2018)
Available at: http://works.bepress.com/simon_laflamme/86/