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Statement of Scope and PurposeThe Traveling Salesman Problem involves �nding the shortest route between a number of cities. This routemust visit each of the cities exactly once and end in the same city as it started. As easy as it is to describe,this problem is notoriously di�cult to solve. It is widely believed that there is no e�cient algorithm thatcan solve it accurately. On the other hand, this problem is very important since it has many applicationsin such areas as routing robots through automatic warehouses and drilling holes in printed circuit boards.We present a new method, the Nested Partitions method, for solving the traveling salesman problem. Themethod is very exible in that it is capable of �nding good solutions rapidly and given enough time willidentify the optimal solution. This new method is also very important because it is naturally compatiblewith parallel processing capabilities.
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AbstractWe recently developed a new randomized optimization framework, the Nested Partitions (NP) method.This approach uses partitioning, random sampling, promising index, and backtracking to create a Markovchain that has global optima as its absorbing states. This new method combines global search and local search(heuristic) procedures in a nature way and it is highly matched to emerging massively parallel processingcapabilities. In this paper, we apply the NP method to the Traveling Salesman Problem. Preliminarynumerical results show that our method generates high quality solutions compared to well known heuristicmethods and it can identify a set of near optimal solutions very rapidly.Key Words: Optimization, Randomized Algorithm, Parallel Algorithm, Traveling Salesman Problem.



1 IntroductionThe Traveling Salesman Problem (TSP) is well known to be the most prominent member of the rich set ofcombinatorial optimization problems [7, 12]. Originally formulated as the problem of �nding the shortestroute for a traveling salesman to visit all of his customers, the problem has found many important applicationssuch as routing robots through automatic warehouses, sending couriers to automatic teller machines, anddrilling holes through printed circuit boards. The list of applications continues, making the TSP one of themost important combinatorial optimization problems.As easy as the TSP is to describe, it is notoriously hard to solve. In fact it belongs to the class ofNP-complete problems, for which there is no known deterministic optimal search algorithm that runs inpolynomial time. Some progress has been made in solving speci�c problems to optimality and much researche�ort in continuously applied to that task. As an example Applegate et.al. [2] recently solve twenty previouslyunsolved problems from the TSPLIB problem library [11] to optimality. However, in practice the TSP isusually solved by using heuristics that converge to a locally optimal solution [12].A popular and e�ective approach for escaping such local optima is to use randomized algorithms. Thishas given rise to many randomized optimization methods for optimizing deterministic problems. Amongthese methods are simulated annealing [5], evolutionary strategies and genetic algorithms [9, 19], tabu search[6, 8], and neural networks [15]. All of these methods make use of randomness to perturb the current solutionand hence escape from a local optima. Many of these methods give high quality solutions, although from therunning time point of view, it is hard for these methods to compete with the deterministic heuristics [12].We recently developed a new randomized optimization framework, the Nested Partitions (NP) method [16,17]. This method can be applied to both deterministic and stochastic discrete optimization problems. TheNP method systematically partitions the feasible region into smaller subregions until some of the subregionscontain only one point. It then moves between regions based on information obtained by random sampling.This procedure is shown to generate a Markov chain [16]. The method keeps track of which part of thefeasible region is the most promising in each iteration and the sampling is always concentrated in this region.This makes the NP method very e�cient for problems that are well structured. By this we mean that goodsolutions to these problems tend to be clustered together. In [16], we have shown that the NP methodconverges to an optimal solution with probability one. One remarkable feature of the NP method is that itcan combine global search and local search (heuristic) procedures in a natural way. The NP method is easyto implement and can be applied without prior knowledge of a starting point. In particular, the NP methodis parallel in nature and is therefore highly compatible with parallel computer edgehitectures. Preliminaryresults show that the NP algorithms are very e�cient compared with other known heuristics.In this paper we discuss how the NP method can be applied to the TSP and show the e�ciency of the NPmethod through a few examples. In particular, we present some new �ndings about the NP method for thetraveling salesman problem. In Section 2, we briey review the TSP and some well-known heuristics whichwill be used in the paper. In Section 3, we review the general procedure of the NP method. In Section 4, weprovide a detailed procedure for the implementation of the NP method for the traveling salesman problem.We show how di�erent methods of partitioning and sampling can a�ect the e�ciency of the method and howwe can incorporate e�cient heuristics in calculating the promising index of each region. We also present aconstruction heuristic for the TSP which, as far as we know has not been previously reported in the literature.In Section 5, computational experiences with the NP method is reported. Concluding remarks and futureresearch are given in the �nal section. We expect that all of these result can be readily transferred to othercombinatorial problems.2 The Traveling Salesman ProblemThe TSP is the task of �nding a route with the shortest possible length through a given set of cities. Theproblem consists of a number of cities, represented by vertices in a graph, and a number of connections, oredges, between the cities. Each edge is associated with a cost which represents the cost of traveling betweenthe two cities connected by the edge. The objective is to �nd the tour that passes through each city exactlyonce and returns to the starting point such that the overall cost of traveling is minimized. Therefore, givena cost matrix C = (cij)i;j=1;2;:::;n, where cij is the cost of going from city i to city j, the TSP problem canbe stated as follows 1



min�2� f(�) � min�2�(ci1i2 + ci2i3 + :::+ cini1): (1)where � = (i1; i2; :::; in) is a permutation of f1; 2; :::; ng and � is the set of all such permutations.A TSP is symmetric, and is simply called TSP, if cij = cji; that is, the cost of traveling from city ito city j is exactly the same as that from city j to city i. On the other hand, if cij 6= cji, it becomes anAsymmetric Traveling Salesman Problem (ATSP). If the vertices are set of points in the plane the TSP iscalled an Euclidean TSP. For a detailed discussion of this problem see [7] and for practical solution methodssee [12].Many heuristic methods have been developed to solve the TSP [7, 12]. Most of these methods use a localsearch algorithm where the local search depends on a neighborhood structure. A local search algorithm startswith an initial feasible solution and successively moves to neighboring solutions until no further improvementis possible. In the following, we provide a brief review of a few well-known local search heuristics. Acompletely review can be found in [12].Nearest Neighbor HeuristicWe divide heuristics for the TSP can into two groups, construction heuristics and improvement heuristics.Construction heuristics take as an input only the graph representing the TSP and construct a feasible tourthat is believed to have low cost. The simplest method of constructing such a feasible tour is to start with anarbitrary city and pick the next edge with uniform probability from the set of feasible edges. This methodcreates a feasible tour that is uniformly sampled from the set of all feasible tours. However, many heuristicshave been devised that can construct tours with much lower cost. Perhaps the simplest one is the nearestneighbor heuristic. Using this scheme, the next edge is always selected as the feasible edge that has thelowest cost. This is hence a purely greedy search. Several variants exist and we refer the reader to [12] for adiscussion.k-Opt ExchangeGiven an initial tour heuristic methods can be used to make improvements to this tour. The 2-Opt exchangeis motivated by the fact that in the Euclidean TSP, if two edges cross the tour can be improved by removingthe edges that cross and replace them with edges that do not cross. Although not as obvious improvementscan also be made using this move if edges are not crossed and for non-Euclidean problems. This improvementmove gives rise to the following algorithm.Given a tour �while improvements can be made dofor every node i in � doConsider i and its successor in the tour.If possible, make a 2-opt move involving these two nodes to decrease the cost.Update the tour �.endendClearly we can generalize this method to a k-opt exchange algorithm, where k is any integer [12].Lin-Kernighan HeuristicSimple heuristics such as the 2-opt and 3-opt exchange methods quickly get stuck at a local optima thatmay be quite far from the true global optima. A more powerful method is the Lin-Kernighan heuristic thatis based on allowing the search procedure to sometimes increase the tour length slightly and hence escapefrom a local optima. This method builds on simpler heuristics such as 2-opt exchanges by using them asa building block for a more complicated scheme. The iterated Lin-Kernighan heuristics improves upon thiseven more by using the original Lin-Kernighan heuristic and making a random 4-opt exchange and restartingwhenever the algorithm gets stuck [12]. 2
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σ σ σ σ σ σ σ7 8 9 10 11 12 13 σ14Figure 1: Example of a partitioning generated by the NP method. The feasible region is � = �0. In each iterationthe current most promising region is partitioned into two subregions.It is clear that each of the more elaborate heuristics is capable of producing higher quality solutions, butat the same time the search time increases.3 The Nested Partitions MethodThe Nested Partitions (NP) method has been described in [16] for deterministic problems and in [17] forstochastic problems. For completeness, we provide a general framework for the Nested Partition (NP)algorithm for combinatorial optimization. In each iteration of the algorithm we assume that we have aregion (subset) of � that is considered the most promising. We then partition this most promising regionintoM subregions and aggregate the entire surrounding region into one region. At each iteration, we thereforelook at M + 1 disjoint subsets of the feasible region �. Each of these M + 1 regions is sampled using somerandom sampling scheme, and for each region a promising index is calculated. These promising indices arecompared to determine which region is the most promising in the next iteration. If one of the subregions isfound to be best, this subregion becomes the most promising region. If the surrounding region is found to bebest, a region of less depth than the current region becomes the most promising. This new most promisingregion is partitioned and sampled in a similar fashion.In the �rst iteration we use the entire feasible region � as the most promising region. Since the sur-rounding region is empty, we sample only from M regions in the �rst iteration, or in any iteration where �is considered the most promising region. It is also clear that since � is �nite, sooner or later we will haveregions that contain only a single point in �. We will call such regions, regions of maximum depth, andmore generally, talk about the depth of any region. This is de�ned iteratively in the obvious manner, with� having depth 0 and so forth. For example, consider a feasible region �0 = �, and assume that in eachiteration we partition the current most promising region into two disjoint sets. In this case Figure 1 showssuch a partitioning. Here �1 and �2 are disjoint subsets of �0 such that �0 = �1 [�2, �5 and �6 are similarlydisjoint subsets of �2 such that �2 = �5 [ �5 and so forth.It should be noted that the partitioning scheme should be �xed during implementation of the method.This means that if a region � has been selected repeatedly as the most promising region, then the samepartitioning rule should be applied to the region. Therefore, we call a region, that is constructed using thepartitioning scheme described above, a valid region given the �xed partition. If a valid region � is formedby partitioning a valid region �, then � is called a subregion of the region �, and the region � is called asuperregion of the region �.We now introduce some notation that is used throughout the paper.� = The feasible region:� = f� � �j� is a valid region given a �xed partitioningg:�(k) = The most promising � 2 � in the k-th iteration.I(�) = The promising index for � 2 �: This is a real valued function de�ned on �:3



Using this notation, the general procedure of the NP algorithm is given as follows.The Nested Partitions Algorithm1. Partitioning.Partition the most promising region �(k), intoM�(k) subregions �1(k); :::; �M�(k) (k), and aggregate thesurrounding region � n �(k) into one region �M�(k)+1(k).Referring back to the example in Figure 1, we could for example have �(k) = �4, so �1(k) = �9,�2(k) = �10 and �3(k) = �0 n �4 = �3 [ �2:2. Random Sampling.Randomly pick Nj points from each of the regions �j(k); j = 1; 2; :::;M�(k) + 1,�j1; �j2; :::; �jNj ; j = 1; 2; :::;M�(k) + 1;and calculate the corresponding performance values:f(�j1); f(�j2); :::; f(�jNj ); j = 1; 2; :::;M�(k) + 1:The only requirement on the random sampling procedure is that each point in the region has a positiveprobability of being selected.3. Calculation of the Promising Index.Assume that a promising index function I(�j) has been selected. For each region �j ; j = 1; 2; :::;M�(k)+1 calculate an estimate of the promising index. For example, we can de�ne I(�j) to be the bestperformance value in the region (other promising index functions will be discussed later).I(�j) = min�2�j f(�); j = 1; 2; :::;M�(k) + 1: (2)Let Î(�j) be an estimate of I(�j). We can for example useÎ(�j) = mini=1;2;:::;Nj f(�ji ); j = 1; 2; :::;M�(k) + 1: (3)We require that I(�) = f(�) if � = f�g is a region of maximum depth. Otherwise, no restrictions areimposed on the promising index.4. Backtracking.Determine the most promising region �jk .�k 2 arg minj=1;:::;M+1 Î(�j); j = 1; 2; :::;M�(k) + 1 (4)If more than one region is equally promising, the tie can be broken arbitrarily. If the index correspondsto a subregion of �(k), then let this subregion be the most promising region in the next iteration.Otherwise, if the index corresponds to the surrounding region, backtrack to a region which is determinedby a pre-speci�ed backtracking rule. For example, we could backtrack to the superregion of the currentmost promising region.As we can see, the basic idea of the algorithm is to shift the focus from the feasible region � to a sequenceof subsets of �. Eventually this procedure picks a region containing only a global optimum and at that pointno further transitions are made. It is also clear from Figure 1 why the algorithm is termed a Nested Partitionsalgorithm.The method described so far can be considered a generic algorithm capable of supporting di�erentpartitioning techniques, sampling schemes, index functions, and backtracking rules. For example, insteadof retreating only to the superregion, we can always make the entire feasible region the most promisingregion if the promising indices indicate that a backtracking is the appropriate move. This makes it easier4



for the algorithm to move from one region to another far apart, and may be appropriate for some problemstructures. Notice further that this backtracking rule has slightly less overhead than the one we presentedin the algorithm above, since it does not keep track of more than one most promising region. On the otherhand, since each single solution consists of a region in maximum depth, we can therefore backtrack to anysuperregion of a maximum depth region which contains the best solution found in the current iteration.Thus, the backtracking step of the NP algorithm can be modi�ed according to backtracking rules. The NPmethod has a number of important features worth highlighting here.As stated in the introduction, it has been shown that this method generates a Markov chain with statespace � and global optima as absorbing states. The Markov property of the NP method provides us witha powerful approach to study the convergence rate of the method. This research topic is closely connectedto an exciting area of modern mathematical research, the study of quantitative convergence rates of Markovchains [13]. In [18], we have started to establish connections between the NP method and the minorizationconditions method for establishing convergence rate [14].One remarkable feature of the NP method is that it can combine global search and local search proceduresin a natural way. Recall that the NP method shifts the focus from the single point in � to a sequence ofsubsets of �, and the promising index is de�ned on these sets. Hence we can incorporate any e�ectiveheuristic methods into the algorithm by using them to calculate the promising index function. This ispossible because the only requirement for selecting an appropriate promising index is that such an indexfunction should agree with the objective function on regions at maximum depth, that is the regions whichcontain only one point. Therefore, �nding the optimal solution for the original optimization problem will beequivalent to �nding the best solution of the promising index.The NP algorithm can also take maximum advantage of parallel computer edgehitectures. In everyiteration, the algorithm looks at M +1 regions, each of which can be handled independently in parallel. Thealgorithm always spends the most computational e�ort in the region that is considered the most promisingat any given iteration. Therefore, the NP algorithm favors regions that have many good solutions and nobad solutions, rather than a region that has one very good solution and many bad ones. The algorithmmight therefore, in �nite time, miss the optimal solution, but usually because it is surrounded by many badsolutions. This behavior is a direct consequence of the focus being shifted from individual solutions to setsof solutions.The NP algorithm is generic and can be applied both to deterministic or stochastic optimization problems[17], and it is easy to implement and highly compatible with other optimization algorithms such as branch-and-bound algorithm [10, 7] and Genetic Algorithm [4].Last, but not least, we could provide stopping criteria based on a probability statement (con�denceinterval) for the algorithm, since the algorithm essentially is a random search algorithm [16]. We now discussthe NP algorithm in detail for the TSP.4 The Nested Partitions Algorithm for the TSPIn this section, four issues involved in implementing the NP algorithm e�ciently for the TSP are discussed.They are: (i) How to partition the solution space. (ii) How to obtain the sampling points. (iii) How to selecta promising index function. (iv) How to select the backtracking rule? These four problems constitute thecore of our discussion on implementing the NP method.4.1 PartitioningTo apply the NP algorithm to the TSP problem, �rst we need to consider how to partition the solution spaceinto subregions. This must be done in such a way that they can be partitioned further until each subregioncontains only a single solution. Although the NP method does not limit the way we do partitioning, thee�ciency of the algorithm depends on the partitioning strategies. If the partitioning is such that goodsolutions are clustered together, the NP algorithm quickly identi�es a set of near optimal solutions. In thispaper, we present two partitioning techniques.
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(b)(a) Figure 2: Two generic partitions.4.1.1 Generic PartitioningWe �rst consider a generic way to partition the solution space. By this we mean a partitioning of the solutionspace that does not consider the objective function.Given n+1 cities, suppose we choose city 0 as the starting point and other cities are labeled as 1; 2; 3; ::::; n.The whole solution space becomes all permutations of f1; 2; 3; :::; ng. First, we can divide this solution spaceinto n equal parts by �xing the �rst city on the tour to be one of 1; 2; :::; or n (note that M�0 = n). We canfurther partition each such subregion into n� 1 parts by �xing the second city as any of the remaining n� 1cities on the tour. This procedure can be repeated until the maximum depth is reached, when all the citieson the tour are �xed. In this way, the subregions at maximum depth contain only single solutions. Figure2a illustrates this approach.It should be noted that there exist many such partitions. For example, when we choose city 0 as thestarting point, instead of �xing the �rst city on the tour, we could �x any i-th city on the tour to be one ofcities 1; 2; :::; n (see Figure 2b). This partition provides a completely di�erent set of subregions.The advantage of the generic partitioning is that the search tree is completely predictable in generaland is highly regular in terms of branching degrees and searching depths. Therefore, this type of partitionsis ideal for parallel algorithms. On the other hand, the generic partitioning focuses on the solution spaceonly. Intuitively, more e�cient partitions could be constructed if the objective function was considered. Thismotivates our second partitioning technique.4.1.2 Knowledge-Based Clustered PartitioningThe generic partitioning does not consider the objective function when partitioning the feasible region. Thismay lead to di�culties in distinguishing between regions and consequently the algorithm may not �nd anyparticular region to concentrate the computational e�ort. This has been our experience with some largeproblems. If the NP method is applied using the above partitioning, it may retreat frequently and not settledown in a particular region. On the other hand, the NP method is likely to perform much better if goodsolutions tend to be clustered together for a given partitioning. To impose such structure, we consider thefollowing partitioning scheme through a simple example.Example: Assume we have n = 5 cities de�ned by the undirected graph in Figure 3. As an initializa-tion procedure we store the edges in an adjacency list and sort each of the linked lists that are connectedto the cities (see the following table). For example, in the following adjacency list, the �rst row provides alinked list for city A, that is E is the city closest to A, C is the city second closest to A, B is the city nextclosest to A, and D is the city least close to A.
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Figure 3: TSP ExampleCity Closest two Next twoA ! E ! C ! B ! DB ! C ! A ! D ! EC ! A ! B ! D ! ED ! C ! E ! A ! BE ! A ! C ! B ! DThis adjacency list becomes the basis of the partitioning. The entire region is all paths that start withthe city A (chosen arbitrarily). If in each iteration we partition the solution space into M = 2 subregionthen the �rst subregion consists of all the paths that start with either (A,E) or (A,C) as the �rst edge. Thesecond subregion consists of all the paths that start with (A,B) or (A,D) as the �rst edge.Now assume that the �rst subregion is chosen as the most promising region. Then the �rst subregion ofthat region is the region that consists of all paths that start with (A,E,A),(A,E,C),(A,C,A) or (A,C,B). Thesecond region can be read from the adjacency list in a similar manner. Notice that one of these conditionscreates an infeasible solution so there is no guarantee that all paths in a subregion will be feasible. It is,however, easy to check for feasibility during the sampling stage, and in fact this must always be done.This partitioning is illustrated in the Figure 4 below. We notice that maximum depth regions don'trestrict the feasible region to a single solution, but only to a smaller subset of solutions. For example, if weconsider the �rst maximum depth region illustrated in Figure 4 then this region reduces the possible toursto feasible tours in the digraph shown in Figure 5. Clearly the choice of feasible tours in this graph is notlarge. In fact there are only three feasible tours in this graph.4.2 Random SamplingThe method used to obtain random samples from each region in each iteration is not �xed by the NPalgorithm. However, sampling schemes will greatly a�ect the e�ciency of the NP algorithm. We will discussvarious sampling schemes based on the abovementioned partitioning techniques.4.2.1 Random Sampling with Generic PartitioningAssume that the generic partitioning (Figure 1a) is used and the current most promising region is of depthk. This means that the �rst k edges in the tour have been determined. Obtaining a sample from this regionentails �nding the n�k remaining edges. One approach would be simply to pick the edges consecutively, suchthat each feasible edge has equal probability of being picked (uniform sampling). However, this approachmay not always give good results in practice. The reason is the same as in the partitioning problem: uniformsampling considers only the solution space itself. To incorporate the objective function into the sampling,we present the following sampling schemes.
7
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Weighted Sampling IAssume that the generic partitioning shown in Figure 3a is used and the current sampling region is � =(j1; j2; :::; jk; x; x; :::; x) with the �rst k cities �xed. A random sampling point (a tour) can be generated asfollows.for i = k + 1 : n dogenerate a random number u uniformly distributed on (0,1).for l = i : n dolet wji�1;jl = 1cji�1;jlPnh=i 1cji�1;jh ,if Pi�m=i wji�1 ;jm � u <Pi�+1m=i wji�1 ;jmlet the next city ji be ji�else,let the next city ji be a randomly selected according to a uniform distribution.endendAt each iteration, weights (wji�1 ;jl) are calculated and assigned to each of the remaining cities whichneed to be determined. Each weight wji�1;jl is inversely proportional to the cost of the edge from city jl tothe city ji�1. Therefore, this sampling scheme will pick shorter edges with higher probability than longerones and pick the lowest cost edge with the maximum probability. This procedure mimics a greedy searchfor the TSP but still has a positive probability of selecting any feasible edge.One particular concern in this type of sampling scheme is that obtaining a weighted sample can bequite expensive (we need to calculate the weights wji�1;jl). Therefore, we present a modi�ed version of theweighted sampling scheme, that combines uniform sampling and nearest neighbor search as special cases.Weighted Sampling IIAssume a region de�ned by the �rst k cities �xed and a predetermined constant p 2 (0; 1).for i = k + 1 : n dogenerate a random number u uniformly distributed on (0; 1).if u < p,let the next edge (vi�1; vi) be the lowest cost edge.else,let (vi�1; vi) be a random edge according to a uniform distribution.endendThis sampling scheme is less expensive than the �rst weighted sampling scheme since we can use theadjacency list and select the �rst feasible edge if u < p. This implies that we assign a weight p only to thelowest cost edge while the rest of edges have the same weight 1�pk�1 .It should be noted that the case p = 1 corresponds to a nearest neighbor search and the case p = 0corresponds to uniform sampling. For 0 < p < 1 we have a non-uniform sampling scheme that picks eachfeasible tour with a positive probability. Therefore the NP algorithm is guaranteed to converge to a globaloptimum with probability one.As we pointed out earlier, obtaining a weighted sample can be quite expensive. Even for a uniformsampling scheme, obtaining a sampling point in a subregion with k �xed edges has complexity O(n�k). Wehence propose another sampling scheme.Two-Step Sampling SchemeAssume that we need to generate Nj random sampling points.1. Obtain one random sample using either uniform or weighted sampling.9
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Figure 6: The second step in the Two-Step Sampling Scheme.2. Obtain Nj � 1 more samples by making small perturbations of the sample generated in the �rst step.In this paper, the second step involves randomly selecting two edges and connecting the �rst vertex ofthe �rst edge to the �rst vertex of the second edge, and connecting the second vertex of the virst edge tothe second vertex of the second edge. This technique is similar to a 2-opt exchange, but does not consider ifthe performance is improved by this exchange. Other more complicated variant, with more than two edgesselected at random, are easily obtained in a similar fashion.To further illustrate the perturbation step (step 2), consider the example in Figure 6. A sample obtainedin step 1 is illustrated with the combination of solid and dotted lines. Then in step 2, we select the edges(C,E) and (D,A) at random, and replace them with the edges (C,D) and (E,A). The new edges are shownas dashed lines in Figure 6. Clearly this procedure provides us with a new sample point. Finally notice thatsince we consider only the symmetric TSP, the edges (E,D) and (D,E) are considered to be the same edge.We call readers' attention to the fact that the weighted sampling schemes and the two-step samplingscheme provide a new construction heuristic for the TSP, which as far as we know has not been previouslyreported in the literature.4.2.2 Random Sampling with Knowledge-Based Clustered PartitioningWe now describe how sampling is implemented if we use the clustered partitioning scheme. We illustratethe technique by showing how to obtain a nearest neighbor sample for the example illustrated in Figure 3.Assume that the current promising region is the region indicated in Figure 4 and we want to �nd the purenearest neighbor sample. This is a two step procedure. First we consider the edges that lead to a path inthe promising region, and then we consider the remaining edges needed to make up a tour.1. First compare the edges (A,B) and (A,E) which have cost 4 and 1 respectively. Hence we pick edge(A,E) as the cheaper edge. We now compare the two edges (E,B) and (E,D) which have cost 5 and 3respectively. Hence we pick (E,D). This leads us to the path (A,E,D) which is an item in the promisingregion.2. We now start with (A,E,D) and add the nearest neighbor edge until we have a feasible tour. In thiscase there is only one step left. We compare the edges (D,B) and (D,C) with cost 4 and 2 respectively,so we pick edge (D,C). Now since we have to visit all the cities this means that we visit B last and wehave the tour (A,E,D,C,B,A) which has total cost of 12.Some comments need to be made. It is clear that this procedure is easily generalized and it is verye�cient since we have already sorted the adjacency list and we only have to look for the �rst feasible edge.This procedure shows how a pure nearest neighbor tour can be obtained from any given region. It is clearthat a similar procedure can be used to obtain either a uniformly distributed sample or a weighted randomsample. 10



4.3 Calculating the Promising IndexAfter selecting Nj points from each subregion, by using the abovementioned sampling schemes, we need tode�ne the promising index, I(�j), that will be used to determine the most promising region. However, thereexist many potential candidates for the function. For example, we may de�neI(�j) = min�2�j f(�); j = 1; 2; :::;M + 1; (5)and let Î(�j) be an estimate of I(�j)Î(�j) = mini=1;2;:::;Nj f(�ji ); j = 1; 2; :::;M + 1; (6)then Î(�j) is the best performance within the Nj points. We may also de�neI(�j) = 1j�j j X�2�j f(�); j = 1; 2; :::;M + 1; (7)and let Î(�j) be an estimate of I(�j)Î(�j) = 1Nj NjXi=1 f(�ji ); j = 1; 2; :::;M + 1; (8)then Î(�j) is the average performance of the Nj points.Both promising index functions agree with f(�) on regions at maximum depth. They are, in general,di�erent on other regions of less maximum depth. The promising index function is de�ned on the set �which is a collection of subsets. This enables us to incorporate many e�ective heuristic methods into the NPalgorithm when the current subregion is not in the maximum depth. That is, we can take the Nj samplingpoints as initial points and for each of these sampling points, perform a �xed number of improvements basedon a given heuristic method. For example, we can use the k-opt exchange heuristic to select the promisingindex function for the TSP. In the numerical experiments that follow, we use the following procedure todetermine the promising index function.Assume that we want to make m improvements for each sampling point.1. Make m improvements for each point (tour) �ji 2 �j by using a 2-opt heuristic method.2. Calculate the performance of each improved path.3. Let the promising index be the best such performance.Note that m = 0 implies that no heuristic improvements are made and m ! 1 implies an exhaustedheuristic search. Again, this approach guarantees the convergence property of the NP method.4.4 BacktrackingThe NP method provides great exibility in selecting a backtracking rule. Perhaps the simplest rule wouldbe to always move to the immediate superregion of the current most promising region. However many otheralternatives exist. For example, we could backtrack all the way to the entire feasible region, or to any regionthat is in between the superregion and the entire feasible region. We can also consider the superregion ofthe best tour found in this iteration in the surrounding region.To provide a systematic way for backtracking, in this paper we adopt the following approach. If thedepth of current region is less than the maximum depth, then the algorithm backtracks to a superregionof the best solution found during this iteration. This superregion is determined such that it has less depththan the current region. For example, if the current most promising region is (i�1; i�2; :::; i�k; x; x; :::; x) andthe best solution, (j�1 ; j�2 ; :::; j�n), is found in the surrounding region, then the next most promising region isdetermined to be (j�1 ; j�2 ; :::; j�k�h; x; x; :::; x). If the current region is at maximum depth, then the algorithm11



backtracks to a superregion of the best solution found in the current iteration. The superregion is determinedby a predetermined depth h > 0 as before. For example, if the current region is at the maximum depth andthe best solution, (j�1 ; j�2 ; :::; j�n), is found in the surrounding region, then the next most promising region isdetermined to be (j�1 ; j�2 ; :::; j�n�h; x; x; :::; x).The advantage of the abovementioned backtracking rule is that if the ancestor of a better solution hasa higher probability of containing the optimal tour than the current promising region, the algorithm willquickly identify the subregion which contains the optimal solution.When describing the generic NP method, we assumed that the most promising region in iteration zerois the entire feasible region. This reects the fact that at iteration zero there is no knowledge availableabout where good solutions might be found. However, if such knowledge is available, the NP method canuse any other valid region �(0) 2 � as the initial most promising region. The information leading to aspeci�c initial region may for example come from previous numerical experience, but we can also go throughan initialization phase to �nd such a region. In particular, for the TSP, we can use the nearest neighborheuristic to quickly get a moderatly good tour. This tour can then be truncated to any speci�c length k, andthe valid region de�ned by these �rst k edges being �xed can be used as an initial most promising region.The advantage of this is that the since a region of this depth only has n�k subregions, the �rst iterationsrequire much less computational e�ort than if we start at the entire feasible region and have to look at nsubregions.5 Numerical ResultsIn this paper, we report our numerical results based on generic partitioning. Two sampling schemes areconsidered: weighted sampling II and the two-step sampling. We choose to use one of the simplest heuristics,the 2-opt exchanges, to incorporate into the promising index function, since this heuristic will be calledrepeatedly during the execution of the NP algorithm and it is desirable to have an overhead as low aspossible.5.1 Euclidean Problem with 51 citiesOur �rst example is the problem eil51 from the TSPLIB library [11]. This is an Euclidean problem with 51cities and a known optimal tour with cost 426. Due to the relative small size of this problem, we are able totry the NP algorithm for a variety of con�gurations.For this experiment we use a SUN SPARCstation 20 for most of the settings.The initial experiments focus on the quality of the solution as measured in percentage above the knownminimum cost. The results are shown in Table 2 - Table 6.Table 1 shows the results for the con�gurations that do not include any 2-opt exchanges in the promisingindex. The sampling procedure is the two step sampling scheme with weighted sampling II used to getthe �rst sample. We see that the algorithm quickly gets to a solution that is about 10%-15% above theminimum cost, but seems to have trouble improving on these solutions. Furthermore, from Table 1 we seethat increasing the sample size has very little e�ect on the performance if we use weighted sampling. If weuse uniform sampling then there is clearly an e�ect of the number of samples.We note that the computational e�ort of each iteration is, in general, dependent on the con�guration,that is, the value of p, N and in later experiments, how many improvements are made in the promisingindex. It is very intuitive why the number of samples (N) and the number of improvements e�ect thecomputational e�ort. What may not be as clear is that the weight (p) also has signi�cant e�ect. The reasonfor this is that the number of times the algorithm retreats may depend on this weight. If the algorithmretreats frequently, it tends to stay at small depth and hence the most promising region has more subregionsthan if it was at a greater depth. Since more subregions implies more computational e�ort in each iteration,con�gurations where retreating is common, tend to use more computational e�ort in each iteration. Ourexperience indicates that con�gurations with small weight tend to retreat more than con�gurations withlarge weight.Notice that the weighted sampling is uniformly better than the uniform sampling. We have to keep inmind, however that the weighted sampling requires more computational e�ort. Obtaining an uniform sample12



takes O(n) operations, but O(n2) operations are needed for the weighted sampling. Since sample size hasvery little e�ect for the weighted sampling, and the weighted sampling scheme is uniformly better, we letthe sample size be �xed and equal to one in the remaining experiments.Table 2 shows the results for when we incorporate 2-opt exchanges into the promising index. We observethat by using this promising indices, we get very quickly within 10% of the optimum and all of the con�gu-rations get within 6.3% in 300 iterations. We also see that varying p from 0:90 to 0:99 has an e�ect on theobjective function, particularly for the con�gurations where more 2-opt exchanges are performed. We alsoget a clear improvement in quality as we increase the number of 2-opt exchanges included in the promisingindex. This is to be expected, since this simply uses more computational e�ort. The best con�gurationseasily �nd solutions that are around 1% above the global optimum.It is clear from these results that in order to get within 1% of the optimum in less than three hundrediterations, it is necessary to incorporate the 2-opt exchanges into the promising index. Furthermore, weightedsampling outperforms uniform sampling, so we conclude that in order to obtain fast convergence of the NPalgorithm, it is necessary to make intelligent choices in the sampling scheme and the promising index.We point out that we have only used the simplest of weighted sampling schemes and the simplest im-provement heuristic. This is done to minimize the computational e�ort. More elaborate sampling schemesand promising indices will undoubtedly improve the quality of the solutions, but will also increase thecomputational e�ort.We repeated these experiments using the same con�gurations but starting at an initial most promisingregion that is at a depth ten above the maximum depth (41 in this case). This initial region was foundby determining the nearest neighbor tour and truncating it to the desired length. The results are given inTable 3 and Table 4 below. We notice that if little e�ort is put into the promising index, then the results areslightly worse than before for �xed number of iterations. Note however, that the same number of iterationsrequires much less computational e�ort than before. If more computational e�ort is used in the promisingindex, the results are comparable to previous results, but with much less computational e�ort. We concludethat using such di�erent initial most promising region is generally bene�cial.Finally, in Table 5 we have a comparison between using the same computational e�ort (path evaluations)in either Crude Random Seedgeh (CRS) or the NP method. We note that the NP method �nds solutions thatare generally 10-100 times better than the ones found by the CRS algorithm. More interestingly, we notethat using more computational e�ort intelligently in the promising index and sampling of the NP methodgenerates more than one hundred fold improvement, while increasing the computational e�ort by the sameamount in CRS only improves the performance slightly.5.2 Euclidean Problem with 417 citiesA much more challenging problem is the 417 problem from the TSPLIB library. Reineilt [12] reports theresults in Table 6 for this problem.Since replicating the previous experiment on a single workstation would be too time consuming for thisproblem, we used a distributed resource management system called Condor to submit these jobs to the poolof HP workstations available at the CAE facilities at UW-Madison. Condor is a distributed job schedulerthat seeks out idle workstations and assigns waiting jobs to them. This system is therefore ideal for largeand computational intensive jobs such as these experiments.We build on the experience obtain from the eil51 problem and use only weighted partitioning and use asthe initial most promising region, a region of depth ten above the maximum depth. As before, this initialregion is found using nearest neighbor search and truncation. The results can by found in Table 7 below.6 ConclusionsWe have shown how a new optimization methodology, the NP method, can be used to solve the travelingsalesman problem. This method uses partitioning and random sampling to globally search the entire solutionspace, and can incorporate local search heuristic into a promising index that is used to determine where toconcentrate the search. Since many powerful local heuristics have been devised for the TSP this is a veryattractive property for this problem. 13



For each problem that the NP method is applied to we need to determine how to partition, how to sample,how to calculate the promising index, and how to retreat. For the TSP we presented a generic partitioningthat can be applied to most combinatorial problems and a knowledge-based clustered partitioning that takesadvantage of the special structure of the problem. We expect this partitioning to focus the computationale�ort better than the generic partitioning and intend to implement this partitioning method in the future.In addition to the uniform sampling scheme that can be applied to all combinatorial problems, wepresented two weighted sampling schemes that take into consideration the special structure of the TSP.Our numerical experience indicates that a simple version of the weighted sampling is superior to uniformsampling. We also proposed a two-step sampling scheme to increase the e�ciency of either uniform orweighted sampling.In our numerical experiments, we incorporated the 2-opt exchange local search heuristic into the promisingindex with good results. Future work will determine if it is bene�cial to use more sophisticated improvementheuristics in the promising index.We have shown that the NP method is a powerful alternative in solving combinatorial problems, suchas the traveling salesman problem. It can be applied in its generic version, but also o�er much exibility intaking advantage of special structure. Another very attractive feature of the NP method is that it is parallelin nature and can therefore take maximum advantage of emerging parallel processing capabilities.The numerical experiments indicate that the method is capable of �nding good solutions quickly, andagain there is much exibility inherent in the method.1. If time is very limited, then the NP method gives us immediately as good a solution as is obtained bya multi start 2-opt exchange heuristic.2. If time is somewhat limited the NP method gives us very high quality solutions within a short time.3. If time is virtually limitless the NP method converges to the optimal tour (asymptotic convergence).It is also apparent that using the NP method has further bene�ts. It can equally be applied to stochasticproblems, such as the stochastic TSP. It is readily transferable to other combinatorial problems and even toproblems with a countable in�nite feasible region. Future work will focus on more numerical experimentsand implementing the knowledge-based clustered partitioning, as well as a parallel version of the algorithm.References[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading,MA (1983).[2] D. Applegate, R. Bixby, V. Chv�atal and W. Cook, \Finding Cuts in the TSP (A preliminary report),"DIMACS Technical Report 95-05 (1995).[3] G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer, New York (1996).[4] D.E. Goldberg, Genetic Algorithms in Seedgeh Optimization, and Machine Learning. Addison-Wesley,Reading, MA (1989).[5] S. Kirkpatrick, C.D. Delatt Jr. & M.P.Vecchi, \Optimization by Simulated Annealing", Science 222:671-680 (1983).[6] J. Knox, \Tabu search performance on the symmetric traveling salesman problem," Computers andOperations Research 21:867-876 (1994).[7] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.), The Traveling SalesmanProblem, John Wiley & Sons, Chichester (1985).[8] M. Malek, M. Guruswamy, H. Owens and M. Pandya, \Serial and Simulated Annealing and TabuSeedgeh Algorithms for the Traveling Salesman Problem," Annual of Operations Research 21:59-84(1989). 14
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Iterations p = 0:00 p = 0:90N = 1 N = 10 N = 100 N = 1 N = 10 N = 1001 216% 236% 133% 34.5% 45.8% 34.5%10 216% 214% 133% 29.3% 27.2% 29.3%50 182% 189% 110% 16.2% 27.2% 16.2%100 182% 189% 110% 15.0% 27.0% 15.0%200 182% 189% 110% 15.0% 21.4% 15.0%300 182% 189% 110% 15.0% 21.4% 15.0%Iterations p = 0:95 p = 0:99N = 1 N = 10 N = 100 N = 1 N = 10 N = 1001 31.2% 28.9% 24.2% 25.8% 25.8% 23.0%10 22.3% 16.2% 14.3% 12.9% 16.2% 13.4%50 11.5% 16.2% 12.2% 11.0% 11.7% 12.9%100 11.5% 16.2% 12.2% 11.0% 11.5% 10.6%200 11.5% 16.2% 12.2% 11.0% 11.5% 10.6%300 11.5% 16.2% 12.2% 11.0% 11.5% 10.6%Table 1: Results for the problem eil51 when no heuristic improvements are made in the promising index andwe use the entire feasible region as the initial most promising region. The percentages indicate how muchthe solution is above the known optimal solution.
Iterations ~n 2~np = :00 p = :90 p = :95 p = :99 p = :00 p = :90 p = :95 p = :991 29.3% 18.3% 12.2% 13.8% 18.3% 9.2% 8.5% 8.2%10 27.7% 6.6% 10.8% 9.6% 13.1% 5.4% 7.0% 8.2%50 17.1% 6.6% 8.2% 4.9% 7.3% 3.5% 5.2% 5.6%100 17.1% 6.6% 8.2% 4.5% 5.9% 3.1% 4.9% 2.8%200 17.1% 5.4% 7.3% 4.5% 5.9% 3.1% 3.5% 2.8%300 17.1% 5.4% 6.3% 4.5% 4.0% 3.1% 2.3% 2.8%Iterations 3~n 4~np = :00 p = :90 p = :95 p = :99 p = :00 p = :90 p = :95 p = :991 16.0% 7.7% 8.5% 7.5% 11.3% 6.1% 7.7% 7.5%10 8.0% 6.1% 3.8% 7.5% 6.3% 6.1% 5.9% 4.9%50 4.7% 3.5% 3.8% 1.2% 4.5% 2.3% 4.2% 1.4%100 3.5% 3.1% 3.3% 1.2% 3.5% 2.3% 2.8% 1.4%200 2.8% 2.8% 3.3% 1.2% 3.5% 2.3% 2.8% 1.4%300 2.8% 2.8% 2.1% 1.2% 3.5% 2.3% 2.3% 1.4%Table 2: Results for the problem eil51 when 2-opt exchange improvements are made in the promising indexand we use the entire feasible region as the initial most promising region. The number of improvements is�xed to be ~n, 2~n, 3~n or 4~n where ~n is the number of cities that have not been �xed in the current mostpromising region. The percentages indicate how much the solution is above the known optimal solution.16



Iterations ~n 2~np = :00 p = :90 p = :95 p = :99 p = :00 p = :90 p = :95 p = :991 32.4% 21.8% 16.0% 14.3% 18.5% 8.0% 2.8% 4.5%10 23.5% 12.2% 12.0% 9.2% 12.2% 6.1% 2.8% 4.0%50 16.0% 12.2% 12.0% 9.2% 8.0% 4.2% 2.8% 2.1%100 16.0% 10.3% 12.0% 6.8% 7.5% 4.2% 2.8% 2.1%200 16.0% 8.0% 9.4% 6.8% 7.5% 4.0% 2.8% 2.1%300 16.0% 7.3% 9.4% 6.8% 7.5% 3.8% 2.8% 2.1%Iterations 3~n 4~np = :00 p = :90 p = :95 p = :99 p = :00 p = :90 p = :95 p = :991 15.5% 7.5% 5.4% 8.7% 13.6% 7.3% 10.0% 9.2%10 9.9% 4.9% 5.4% 2.8% 3.5% 2.6% 7.5% 6.6%50 4.5% 4.7% 3.5% 2.8% 3.5% 2.6% 1.2% 2.8%100 4.5% 4.5% 2.1% 2.8% 3.5% 2.6% 1.2% 1.9%200 4.0% 3.5% 2.1% 1.4% 2.6% 2.6% 0.9% 1.9%300 4.0% 2.8% 2.1% 1.4% 2.6% 2.3% 0.9% 1.9%Table 3: Results for the problem eil51 when 2-opt exchange improvements are made in the promising indexand we use a region of depth ten above the maximum depth as the initial most promising region. Thenumber of improvements is �xed to be ~n, 2~n, 3~n or 4~n where ~n is the number of cities that have not been�xed in the current most promising region. The percentages indicate how much the solution is above theknown optimal solution. Iterations p = :00 p = :90 p = :95 p = :991 260% 34.7% 26.5% 21.4%10 208% 26.1% 22.1% 12.9%50 206% 18.5% 22.1% 10.6%100 206% 18.5% 16.0% 10.6%200 206% 18.5% 16.0% 10.6%300 206% 18.5% 16.0% 10.6%Table 4: Results for the problem eil51 when no improvements are made in the promising index and we use aregion of depth ten above the maximum depth as the initial most promising region. The percentages indicatehow much the solution is above the known optimal solution.0 ~n 2~n 3~n 4~nMethod p = :00 p = :99 p = :00 p = :99 p = :00 p = :99 p = :00 p = :99 p = :00 p = :99NP 206% 10.6% 16.0% 6.8% 7.5% 2.1% 4.0% 1.4% 2.8% 2.1%2-Opt 32.9% 42.7% 10.6% 13.6% 11.3% 11.3% 11.0% 12.2% 5.6% 10.8%CRS 217% 208% 167% 178% 178% 173% 173% 172% 166% 163%Table 5: Comparison with Crude Random Search (CRS) and 2-opt exchange heuristic using the same numberof path evaluations. The percentages indicate how much the solution is above the known optimal solution.We see that increasing the computational e�ort has a large e�ect when we apply the NP method, butincreasing the computational e�ort by the same amount does not produce signi�cant e�ect when we applythe CRS. 17



Method Performance2-opt exchange, random starting tour 47.4 %3-opt exchange, random starting tour 9.1 %3-opt exchange, nearest neighbor starting tour 6.2 %2-opt exchange, nearest neighbor starting tour 5.7 %Lin-Kernighan, random starting tour 3.1 %Iterated Lin-Kernighan 2.5 %Table 6: Results for the 417 problem obtain through various heuristics. The percentages indicate how muchthe solution is above the known optimal solution.

Iterations ~n 2~n 3~n 4~np = :90 p = :99 p = :90 p = :99 p = :90 p = :99 p = :90 p = :991 28.0% 18.8% 15.3% 14.4% 12.4% 12.2% 11.4% 9.1%10 26.9% 13.5% 11.6% 11.4% 10.2% 8.5% 10.4% 8.5%50 25.6% 11.9% 10.0% 11.4% 7.3% 8.2% 7.0% 8.5%100 25.6% 11.9% 9.2% 9.3% % % % %200 25.6% 11.9% % % % % % %300 24.5% 11.9% % % % % % %Table 7: Results for the problem 417 when 2-opt exchange improvements are made in the promising indexand we use a region of depth ten above the maximum depth as the initial most promising region. Thenumber of improvements is �xed to be ~n, 2~n, 3~n or 4~n where ~n is the number of cities that have not been�xed in the current most promising region. The percentages indicate how much the solution is above theknown optimal solution.
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