Skip to main content
Article
Effect of Composite Electrode Microstructure on Temperature Distribution in Solid Oxide Fuel Cells
Electrochimica Acta
  • Siamak Farhad, University of Akron, Main Campus
  • Alan S. Fung
  • Feridun Hamdullahpur
Document Type
Article
Publication Date
6-1-2013
Abstract

Temperature distributions in the solid structure of planar solid oxide fuel cells with various microstructures of composite electrodes are studied through the combined micro and macro cell modeling. The results of the computer simulation reveal that the composite electrode microstructure can play a significant role in the mean temperature, temperature difference between the hottest and coldest spots, and maximum temperature gradient in the solid structure of the cell. The variation of these three parameters at different electrodes microstructural variables – including porosity, thickness, particle size ratio, and the size and volume fraction of particles – is quantified in this article.

Citation Information
Siamak Farhad, Alan S. Fung and Feridun Hamdullahpur. "Effect of Composite Electrode Microstructure on Temperature Distribution in Solid Oxide Fuel Cells" Electrochimica Acta Vol. 99 Iss. 1 (2013) p. 9 - 14
Available at: http://works.bepress.com/siamak_farhad/18/