
Yale University

From the SelectedWorks of Shuangge Ma

September 18, 2009

Integrative Analysis of Cancer Genomic Data
Shuangge Ma, Yale University

Available at: https://works.bepress.com/shuangge/4/

http://www.yale.edu
https://works.bepress.com/shuangge/
https://works.bepress.com/shuangge/4/


Integrative Analysis of Cancer Genomic Data

Ma, Steven (Shuangge)
Yale University, Department of Epidemiology and Public Health
60 College ST
New Haven, CT 06510, U.S.A.
E-mail: shuangge.ma@yale.edu

Abstract

In the past decade, we have witnessed a period of unparallel development in the field of cancer
genomics. To address the same or similar biomedical questions, multiple cancer genomic studies
have been independently designed and conducted. Cancer gene signatures identified from analysis
of individual datasets often have low reproducibility. A cost-effective way of improving reproducibil-
ity is to conduct integrative analysis of datasets from multiple studies with comparable designs. To
properly integrate multiple studies and conduct integrative analysis, we need to access various public
data warehouses, retrieve experiment protocols and raw data, evaluate individual studies and select
those with comparable designs, and develop novel statistical methods that can naturally accommo-
date the heterogeneity among studies and can identify genes with consistent effects across multiple
studies. In this article, we discuss new developments and challenges associated with integration
and integrative analysis of cancer genomic data. Special attentions are paid to newly developed
statistical methods for genomic marker selection in integrative analysis.
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In the past decade, we have witnessed an unparallel development in high throughput technolo-
gies. One of the most exciting developments is the microarray technology. Microarrays have been
extensively used in biomedical, particularly cancer, studies. Microarrays make it possible to measure
expressions of thousands of genes simultaneously and detect genomic markers that are associated with
cancer development and progression. In this article, we will mainly focus on cancer microarray studies,
although many issues and techniques discussed are also applicable to other high throughput (e.g., epi-
genetic, proteomic) measurements, and to other diseases or phenotypes (e.g., diabetes, cardiovascular
diseases).

Cancer Microarray Study

Cancer is a heterogeneous class of diseases caused by the abnormal proliferation of cells in the
body. On a cellular level, cancer development and progression can result from genetic mutations
and defects. For cancer research, development of microarray technologies opens the possibility for
transcriptional fingerprinting, as the collection of transcriptional activated genes and the levels of
mRNA can be a more accurate definition of the state of the cell than the simple genetics or the
histology. Massive applications of microarrays in cancer research started in the late 1990s. Significant
successes have been achieved since then (Knudsen 2006). As an example, gene signatures obtained
from microarray studies have already had a direct impact on breast cancer and lymphoma clinical
practice.

Based on their specific scientific goals, cancer microarray studies can be categorized as follows:
(1) Studies designed to understand cancer biology. For example, multiple studies have been conducted
to investigate whether patients with homogeneous histologies can be further categorized into different
subtypes with different genomic patterns; (2) Studies designed to identify diagnosis markers. Studies
have been conducted comparing expressions of tumor versus normal tissues, with the goal to identify
genes whose expressions are linked with an increased risk of developing cancer; (3) Studies designed to
identify prognosis markers. Studies have been conducted to identify genes whose expressions are linked
with shortened disease-free or overall survival in cancer patients; and (4) Studies designed to identify



Table 1: Public databases that host cancer microarray datasets [Note: the list is far from complete].

Name Organization URL
ArrayExpress European Bioinformatics Institute www.ebi.ac.uk/arrayexpress/
CIBEX Center for Information Biology cibex.nig.ac.jp
GEO National Institutes of Health www.ncbi.nih.gov/geo
CleanEx Swiss Institute of Bioinformatics www.cleanex.isb-sib.ch
RAD University of Pennsylvania www.cbil.upenn.edu/EPConDB/
GermOnline International Consortium www.germonline.org
HPMR Stanford University receptome.stanford.edu
PEPR Children’s National Medical Center microarray.cnmresearch.org

predictive markers, where the goal is to identify genes whose expressions are linked with a positive
response to treatment. We note that, the above categorization is based on our own experiences and
can be subjective. In addition, there may exist studies that belong to multiple categories.

In what follows, we will focus on studies in categories (2)–(4). A common characteristic of such
studies is that a cancer clinical outcome (or phenotype) is measured along with gene expressions.
The cancer clinical outcome can be the categorical cancer status or response to treatment, censored
cancer survival, or a continuous marker. Supervised statistical methodologies are needed to identify
genes associated with the outcomes. In contrast, statistical analyses of studies in category (1) are
often unsupervised. Although studies in category (1) can be of great importance, they often demand
statistical techniques significantly different from those for studies in other categories, and hence will
not be discussed here.

Although significant successes have been achieved, cancer gene signatures identified from mi-
croarray studies often suffer from low reproducibility. For example, the breast cancer prognosis signa-
tures identified in van’t Veer et al. (2002) and Wang et al. (2005) contain 70 and 76 genes, respectively,
with only 3 genes in common. Although there exist more reproducible gene signatures, in general, the
reproducibility of cancer microarray gene signatures is of concern.

Several factors may have contributed to the low reproducibility. First, different studies may have
patients with different demographic characteristics (age, gender, race), clinical risk factors (tumor type
and stage), and treatment regimes. Such differences naturally raise the concern on comparability of
different studies. The low reproducibility caused by such differences can be improved by properly
adjusting for relevant risk factors in regression analysis. Second, seemingly different sets of identified
genes may correspond to the same or similar gene pathways. Pathway based analysis can be conducted
following gene based analysis to improve reproducibility. The third, and perhaps the most important,
reason is that most cancer microarray studies have relatively small sample sizes (101∼3 samples com-
pared to 103∼4 genes). Such studies can be severely underpowered, which may lead to significant
variations of identified gene signatures. An ideal solution to improve reproducibility is to conduct well
designed, large scale, prospective studies. However, such studies can be extremely time-consuming
and expensive. A cost-effective solution is to conduct integrative analysis of multiple existing studies
with comparable designs to increase statistical power and hence reproducibility.

Data Integration

Public data warehouses With cancer microarray studies, there has been a global coordinated effort
making experiment protocols and raw data publicly available. Multiple public data warehouses have
been constructed to host cancer microarray datasets. Although the original goal of such data ware-



Table 2: A list of pancreatic cancer microarray studies.

Dataset P1 P2 P3 P4
Reference Logsdon Friess Iacobuzio-Donahue Crnogorac-Jurcevic
PDAC 10 8 9 8
Normal 5 3 8 5
Array Affy. HuGeneFL Affy. HuGeneFL cDNA Stanford cDNA Sanger
UG 5521 5521 29621 5794

houses was to facilitate reproduction and validation of microarray studies, they make it possible to
conduct integrative analysis of multiple existing studies. We provide a partial list of public databases
in Table 1. Beyond those large databases, many cancer microarray datasets are hosted at researchers’
personal or institutional websites.

A case study of pancreatic cancer We provide descriptions of four pancreatic cancer microarray
studies in Table 2. Although this is a small example, we can already appreciate some of the difficulties
associated with integrating datasets from different cancer microarray studies. Careful examination of
the datasets described in Table 2 and others suggests that different studies may differ in platforms (e.g.,
nylon versus glass), technologies (e.g., oligo versus spotted), array annotations, sample annotations,
and ways to annotate and record the above information.

MIAME guideline To facilitate adoption of standards for experiment annotation and data repre-
sentation and to introduce standard for experimental controls and data normalization methods, the
MIAME (Minimum Information About A Microarray Experiment) guideline has been developed. The
MIAME was originally created by MGED, a consortium of industry and academic representatives in
the filed. It is now required by most major journals including Nature, Cell, and JAMA. Such journals
require two things for MIAME compliance: a MIAME checklist information in a Word document, and
deposit of the dataset to a public microarray database. Under the current MIAME guideline, a rela-
tively complete description of a cancer microarray study should contain information on the following
aspects, which are also summarized in Figure 1.

1. Experiment design, which includes a brief description of experiment’s goals, type of experiment
(time course, treated vs untreated, gene knockout), experiment factors (the conditions being
tested, e.g., time, dose, response to treatment), total number of hybridizations, types of replicates
(biological or technical), and links to citations;

2. Array design – each array used and each element (spot) on the array, and array design related
information (e.g. platform type: in situ synthesized or spotted, array provider, surface type:
glass, membrane, other);

3. Samples information, extract preparation and labeling, which includes origin of the samples
(name, provider and characteristics – gender, age, developmental stage), manipulations done to
the samples (growth conditions, treatments, separation techniques), RNA extraction protocols,
sample labeling protocols, and spiked-in controls;

4. Hybridization procedures and parameters: the solution (e.g., concentration of solutes), blocking
agent, wash procedure, quantity of labeled target used, time, concentration, volume, tempera-
ture, and description of hybridization instruments;



Figure 1: Protocols and materials re-
quired for the annotation of a microar-
ray experiment. LEX: Labeled Extract,
Evaluated or Reference.

Figure 2: Example of a GEO submission under the MIAME
guideline.

5. Measurements, including scanning information, scan parameters (laser power, spatial resolution,
pixel space, PMT voltage), laboratory protocol for scanning (scanning hardware and software
used), and image analysis information;

6. Normalization strategy (spiking, housekeeping genes, total array, other), normalization algo-
rithm, and control array elements.

In Figure 2, we provide an example of GEO submission that follows the MIAME guideline.
Figure 2 includes two parts (separated by “sample table begin”): the MIAME information in the top
and the data table in the bottom.

Computation of similarity A critical step in integrative analysis is the selection of studies with
comparable designs, which amounts to computing the dissimilarity measurements between studies.
For studies that follow the MIAME guideline, we can use the experiment annotations to compute
dissimilarities, and select those with zero or small dissimilarities for downstream integrative analysis.

One possibility is the component-wise experiment dissimilarity measurement. For two cancer
microarray studies, we have two sets of annotation terms (denoted as A and B, respectively). The
component-wise dissimilarity between these two studies can be defined as 1−|A∩B|/|A∪B| (Jaccard)
or 1−1/2(|A∩B|/|A|+|A∩B|/|B|) (Kulczynski). Choosing one versus the other measurement depends
on how the researchers want to weigh containments.

As with simple numerical measurements, once the distance (dissimilarity) is properly defined,
cancer microarray studies can be classified into clusters, where studies in the same cluster share similar
schemes and can be integrated for further analysis.

After clusters of studies have been defined, we can evaluate comparability of selected studies us-
ing (for example) the approach in Butte and Kohane (2006), which is based on mapping concepts found
in sample annotations to UMLS (Unified Medical Language System) meta-thesaurus. Specifically, for
study i, the silhouettes can be computed as follows: [1] Compute a(i), the average dissimilarity between
study i and all other studies in the same cluster as study i; [2] Compute d(i, C), the average dissimi-
larity between study i and cluster C that study i does not belong to; [3] Compute b(i) = minCd(i, C),
the dissimilarity between study i and its neighbor cluster; [4] Compute s(i) = b(i)−a(i)

max(a(i),b(i)) . If study i



is in a singleton cluster, then s(i) = 0. Larger s(i)s suggest studies are better clustered, whereas small
s(i)s suggest that studies lie between clusters, and negative s(i)s suggest possibly wrong clustering.

Integrative Analysis

Knudsen (2006) and references therein show that, for cancers of the breast, ovary, lung, colon,
prostate and lymphatics, there are multiple independent studies. Using the approach described above,
for a specific type of cancer, we will be able to select multiple studies with comparable designs. Avail-
able statistical methodologies that can analyze multiple cancer microarray datasets can be categorized
as meta analysis and integrative analysis methods.

Meta analysis Meta analysis methods analyze each dataset separately, and then combine summary
statistics from analysis of multiple datasets.

Available meta analysis methods can be further categorized as follows: (1) Category 1 fo-
cuses on comparative analysis of published results, such as lists of significant genes, without actu-
ally accessing the raw data. Representative examples include the Lists of Lists Annotated (LOLA,
www.lola.gwu.edu) and L2L (depts.washington.edu/l2l) methods. Those methods only involve search-
ing publication databases (for example PubMed or NCBI) and utilizing text mining techniques; and
(2) Category 2 uses raw data to compute unified statistics across multiple studies, and then combines
those statistics. Available methods include (a) the effect size approach. The effect size may be mea-
sured for each gene in each study as the Z score, and then combined under a random or fixed effects
model; (b) the p-value approach, which applies significance testing separately to each study and then
combines the resulting p-values utilizing methods such as Fisher’s inverse Chi-square; and (c) the
vote counting approach, which ranks genes according to the number of studies that show statistical
significance for the genes in question.

Integrative analysis Integrative analysis, in the narrow sense, differs from meta analysis by pooling
and analyzing raw data from multiple studies (as opposed to summary statistics).

A family of integrative analysis approaches, which have been referred to as “intensity ap-
proaches” in the literature, compare intensity measurements of a gene matched across multiple studies,
and search for transformations that make those measurements comparable (Shabalin et al. 2008 and
references therein). After transformation, multiple datasets can be directly combined and treated as
if they were from a single study. Single-dataset methods can then be used for analysis. It is impor-
tant to note that the comparability of gene expressions obtained from different platforms (even after
transformations) is still debatable.

MTGDR: A New Integrative Analysis Approach

In this section, we describe a newly proposed integrative analysis method called MTGDR (Ma
and Huang 2009), and demonstrate the basic principals of statistical methods for integrative analysis.

Data and model For simplicity of notation, we assume that the same set of d genes are measured in M

studies with M > 1. For study m = 1 . . . M , let Y m denote the cancer clinical outcome and Zm denote
the gene expressions. In addition, we assume a regression model Y m ∼ φ(Zm′βm), where βm is the
regression coefficient, Zm′ denotes the transpose of Zm, and φ is the known link function. We assume
the same link function φ across different experiments. However, we allow for different regression
coefficients βm and, hence, different models under different studies. The rationale is that a one unit
gene expression change in experiment 1 (say, for example, a cDNA study) may not be equivalent to a
one unit change in experiment 2 (say, for example, an Affymetrix study). The regression coefficients,
which measure the strength of associations, should be allowed to differ.



Consider binary cancer outcomes. For study m, Y m = 1 and Y m = 0 may denote the presence
and absence of cancer or two different cancer stages, respectively. We assume the commonly used
logistic regression model, which postulates that the logit of the conditional probability logit(P (Y m =
1|Zm)) = αm+Zm′βm, where αm is the unknown intercept. Suppose that there are nm iid observations
in experiment m. The log-likelihood is: Rm(βm) =

∑nm
j=1 Y m

j (αm+Zm′
j βm)−log(1+exp(αm+Zm′

j βm)).

MTGDR method The MTGDR is a gene selection method, which can analyze multiple, heteroge-
neous datasets. With the MTGDR, gene selection amounts to identifying nonzero components of the
regression coefficients βm. In integrative analysis, it is reasonable to assume that the sets of genes
with nonzero coefficients (i.e., the identified cancer-associated genes) are the same across different
experiments. However, even though similar logistic regression models are used to link genes with
cancer outcomes in all experiments, the nonzero components of the regression coefficients βm may
be not equal across experiments. This is mainly due to the concern of different experimental setups,
especially platforms.

Let β = (β1, . . . , βM ). Let R(β) = R1(β1) + . . . + RM (βM ), the overall objective function. Let
∆ν be a small positive increment. In the implementation, we choose ∆ν = 10−3. Let βm(ν) denote
the parameter estimate of βm corresponding to ν. Let 0 ≤ τ ≤ 1 be a fixed threshold value. The
MTGDR algorithm proceeds as follows.

1. Initialize β = 0 (component-wise) and ν = 0.

2. With current estimate β, compute the d × M negative gradient matrix g(ν) = −∂R(β)/∂β,
where the (j, m)th element of g is gj,m(ν) = −∂Rm(βm)/∂βm

j .

3. Compute the length d vector of meta gradient G, where the jth component of G is Gj(ν) =∑M
m=1 gj,m(ν).

4. Compute the meta threshold vector F (ν) of length d, where the jth component of F (ν): Fj(ν) =
I(|Gj(ν)| ≥ τ ×maxl|Gl(ν)|) and I is the indicator function.

5. Update the (j, m)th element of β: βj,m(ν + ∆ν) = βj,m(ν) − ∆νgj,m(ν)F (ν) and update ν by
ν + ∆ν.

6. Steps 2-5 are iterated k times, where k is determined by cross validation.

The tuning parameters τ and k jointly determine the property of β and hence the property of
gene selection. When τ ≈ 0, β is dense even for small values of k (i.e, many genes are selected). When
τ ≈ 1, β is sparse for small k and remains so for a relatively large number of iterations. But it will
become dense eventually. At the extreme, when τ = 1, the MTGDR usually updates estimates for a
single gene at each iteration, which is similar to the stage-wise approaches. When τ is in the middle
range, the characteristics of β are between those for τ = 0 and τ = 1. For τ 6= 0, gene selection can
be achieved with cross-validated finite k by having certain components of β exactly equal to zero.

Pancreatic cancer study Pancreatic ductal adenocarcinoma (PDAC) is a major cause of malignancy-
related deaths. Apart from surgery, there is still no effective therapy, and even resected patients die
usually within one year postoperatively. As shown in Table 2, we collect data from four indepen-
dent studies, and conduct integrative analysis. We compute the dissimilarity measurements using
the MIAME descriptions and find reasonable similarity among the four studies. In addition, we have
manually examined the experiment protocols and experimental setup, and determined that the de-
signs of the four studies are comparable. Among the four studies, two use cDNA arrays, and two
use oligonucleotide arrays. Cluster ID and gene names are assigned to all of the cDNA clones and



Affymetrix probes based on UniGene Build 161. The two sample groups considered in our analysis are
PDAC and normal pancreatic tissues. We identity a consensus set of 2984 UniGene IDs. We remove
genes with more than 30% missingness in any of the four datasets. There are 1204 genes remained for
downstream analysis.

In the MTGDR analysis, tuning parameters are chosen via the 3-fold cross validation. Fifteen
genes are identified as being associated with the risk of developing pancreatic cancer (results available
upon request). We find that, if a gene has a nonzero coefficient in one dataset, then it has nonzero
coefficients in all the datasets (which indicates that this gene is identified as cancer-associated in
all studies). However, the estimated coefficients for one gene can be different across studies. This
is the extra flexibility allowed by the MTGDR, which naturally accommodates differences among
experimental setups in different studies. We evaluate the biological implications of selected genes by
surveying http://www.ncbi.nlm.nih.gov/ and other public databases. Among the 15 genes, several
(including Fibrinogen-like 1, Carnitine acetyltransferase, CRAT, PABPC4, RPS9 ribosomal protein
S9, fibronectin 1, BCAT1, MKNK1, PTPN12, GATM, NBL1) have been confirmed to be associated
with the risk of developing pancreatic cancer in independent studies.

We conduct extensive evaluations and comparisons. The results have been summarized in Ma
and Huang (2009). Specifically, we have found that (a) the MTGDR gene signature can be significantly
different from alternatives; (b) compared with gene signatures identified using alternative approaches
including the pooled analysis, meta analysis, and single-dataset analysis, the gene signature identified
by the MTGDR is more reproducible, and has better predictive power.

Remarks Although the MTGDR is a very specific algorithm, it does provide insights into the essential
features common to most integrative analysis methods. Specifically, in integrative analysis, the effect
of a single gene (on a cancer outcome) needs to be considered in multiple studies simultaneously.
Such an effect needs to be described using the vector of regression coefficients, with one coefficient
for each study. In addition, it is crucial to allow for the existence of heterogeneity among different
studies. Following the development of MTGDR, we can extend other single-dataset gene selection
methods to integrative analysis of multiple datasets. In a recent endeavor, we have considered the
group penalization methods for integrative analysis, which have roots in the single-dataset penalization
methods.

Discussions

Cancer microarray study is a representative example of the “large p, small n” data, which has
attracted extensive attentions. Analysis of individual datasets can be underpowered, which may lead to
low reproducibility of findings. Integrative analysis of multiple datasets can increase statistical power
without additional cost. Successful integrative analysis demands proper execution of the following
steps: (1) establishment of public databases for data storage and access; (2) detailed descriptions of
each individual study; (3) computation of dissimilarities between studies, and selection of comparable
studies; and (4) effective statistical methods for integrative analysis.

Many public databases have been established. Although most of them have already been very
successful, communications among databases are less satisfactory. Effective integration of databases is
of critical need. Software, that can conduct automated database searching and dataset integration, is
needed. The MIAME guideline has been proposed and commonly adopted for descriptions of cancer
microarray data. Of note, other guidelines have also been developed and (maybe less extensively)
adopted. Integration and unification of guidelines may be needed for better integration of studies
(described using different guidelines). There have been a few published studies investigating different
definitions of dissimilarity. We must realize that a small number of experiment annotations cannot
provide complete descriptions of all studies. Examination of each individual studies by experts and



selection of studies based on experiences still play an important role. Efficient statistical methodologies
for integrative analysis still have a long way to go. Although considerable successes have been achieved,
most available approaches have not been extensively tested and there is no consensus on the relative
performance of different approaches.
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