Skip to main content
Unpublished Paper
Region-Based Incremental Pruning for POMDPs
  • Zhengzhu Feng
  • Shlomo Zilberstein, University of Massachusetts - Amherst
We present a major improvement to the incremental pruning algorithm for solving partially observable Markov decision processes. Our technique targets the cross-sum step of the dynamic programming (DP) update, a key source of complexity in POMDP algorithms. Instead of reasoning about the whole belief space when pruning the cross-sums, our algorithm divides the belief space into smaller regions and performs independent pruning in each region. We evaluate the benefits of the new technique both analytically and experimentally, and show that it produces very significant performance gains. The results contribute to the scalability of POMDP algorithms to domains that cannot be handled by the best existing techniques.
Publication Date
July 11, 2012
This is the pre-published version harvested from arXiv.
Citation Information
Zhengzhu Feng and Shlomo Zilberstein. "Region-Based Incremental Pruning for POMDPs" (2012)
Available at: