
University of Massachusetts Amherst

From the SelectedWorks of Shlomo Zilberstein

2012

Optimizing Memory-Bounded Controllers for
Decentralized POMDPs
Christopher Amato
Daniel S. Bernstein
Shlomo Zilberstein, University of Massachusetts - Amherst

Available at: https://works.bepress.com/shlomo_zilberstein/8/

http://www.umass.edu
https://works.bepress.com/shlomo_zilberstein/
https://works.bepress.com/shlomo_zilberstein/8/

Optimizing Memory-Bounded Controllers for Decentralized
POMDPs

Christopher Amato, Daniel S. Bernstein and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{camato,bern,shlomo}@cs.umass.edu

Abstract

We present a memory-bounded optimization
approach for solving infinite-horizon decen-
tralized POMDPs. Policies for each agent
are represented by stochastic finite state con-
trollers. We formulate the problem of opti-
mizing these policies as a nonlinear program,
leveraging powerful existing nonlinear opti-
mization techniques for solving the problem.
While existing solvers only guarantee locally
optimal solutions, we show that our formula-
tion produces higher quality controllers than
the state-of-the-art approach. We also in-
corporate a shared source of randomness in
the form of a correlation device to further
increase solution quality with only a limited
increase in space and time. Our experimen-
tal results show that nonlinear optimization
can be used to provide high quality, concise
solutions to decentralized decision problems
under uncertainty.

1 Introduction

Markov decision processes (MDPs) have been widely
used to study single agent sequential decision making
with full observability. Partially observable Markov
decision processes (POMDPs) have had success mod-
eling the more general situation in which the agent has
only partial information about the state of the sys-
tem. The decentralized partially observable Markov
decision processes (DEC-POMDP) is an even more
general framework which extends the POMDP model
to mutiagent settings. In a DEC-POMDP each agent
must make decisions based on uncertainty about the
other agents as well as imperfect information of the
system state. The agents seek to maximize a shared
total reward using solely local information in order to
act. Some examples of DEC-POMDP application ar-

eas include distributed robot control, networking and
e-commerce.

Although there has been some recent work on exact
and approximate algorithms for DEC-POMDPs (Nair
et al., 2003; Bernstein et al., 2005; Hansen et al., 2004;
Szer et al., 2005; Szer and Charpillet, 2005; Seuken
and Zilberstein, 2007), only two algorithms (Bern-
stein et al., 2005; Szer and Charpillet, 2005) are able
to find solutions for the infinite-horizon case. Such
domains as networking and robot control problems,
where the agents are in continuous use are more appro-
priately modeled as infinite-horizon problems. Exact
algorithms require an intractable amount of space for
all but the smallest problems. This may occur even if
an optimal or near-optimal solution is concise. DEC-
POMDP approximation algorithms can operate with a
limited amount of memory, but as a consequence may
provide poor results.

In this paper, we propose a new approach that ad-
dresses the space requirement of DEC-POMDP algo-
rithms while maintaining a principled method based
on the optimal solution. This approach formulates
the optimal memory-bounded solution for the DEC-
POMDP as a nonlinear program (NLP), thus allow-
ing a wide range of powerful nonlinear optimization
techniques to be applied. This is done by optimizing
the parameters of fixed-size independent controllers for
each agent, which when combined, produce the policy
for the DEC-POMDP. While no existing NLP solver
guarantees finding an optimal solution, our new formu-
lation facilitates a more efficient search of the solution
space and produces high quality controllers of a given
size.

We also discuss the benefits of adding a shared source
of randomness to increase the solution quality of our
memory-bounded approach. This allows a set of inde-
pendent controllers to be correlated in order to pro-
duce higher values, without sharing any local informa-
tion. Correlation adds another mechanism in efforts
to gain the most possible value with a fixed amount of

AMATO ET AL. 1

0123456789

space. This has been shown to be useful in order to
increase value of fixed-size controllers (Bernstein et al.,
2005) and we show that is also useful when combined
with our NLP approach.

The rest of the paper is organized as follows. We first
present some background on the DEC-POMDP model
and the finite state controller representation of their
solution. We then describe the current infinite-horizon
algorithms and describe some of their flaws. As an
alternative, we present a nonlinear program that rep-
resents the optimal fixed-size solution. We also incor-
porate correlation into the NLP method and discuss
its benefits. Lastly, experimental results are provided
comparing the nonlinear optimization methods with
and without correlation and the current state-of-the-
art DEC-POMDP approximation algorithm. This is
done by using an off-the-shelf, locally optimal non-
linear optimization method to solve the NLPs, but
more sophisticated methods are also possible. For a
range of domains and controller sizes, higher-valued
controllers are found with the NLP and using correla-
tion further increases solution quality. This suggests
that high quality, concise controllers can be found in
many diverse DEC-POMDP domains.

2 DEC-POMDP model and solutions

We first review the decentralized partially observable
Markov decision process (DEC-POMDP) model. For
clarity, we present the model for two agents as it is
straightforward to extend it to n agents.

A two agent DEC-POMDP can be defined with the
tuple: M = 〈S,A1, A2, P,R,Ω1,Ω2, O, T 〉

• S, the finite set of states
• A1 and A2, the finite sets of actions for each agent
• P , the set of state transition probabilities:
P (s′|s, a1, a2), the probability of transitioning
from state s to s′ when actions a1 and a2 are
taken by agents 1 and 2 respectively

• R, the reward function: R(s, a1, a2), the immedi-
ate reward for being in state s and agent 1 taking
action a1 and agent 2 taking action a2

• Ω1 and Ω2, the finite sets of observations for each
agent

• O, the set of observation probabilities:
O(o1, o2|s′, a1, a2), the probability of agents
1 and 2 seeing observations o1 and o2 respectively
given agent 1 has taken action a1 and agent 2
has taken action a2 and this results in state s′

Since we are considering the infinite-horizon DEC-
POMDP, the decision making process unfolds over an
infinite sequence of stages. At each step, every agent

chooses an action based on their local observation his-
tories, resulting in an immediate reward and an ob-
servation for each agent. Note that because the state
is not directly observed, it may be beneficial for the
agent to remember the observation history. A local
policy for an agent is a mapping from local observa-
tion histories to actions while a joint policy is a set of
policies, one for each agent in the problem. The goal is
to maximize the infinite-horizon total cumulative re-
ward, beginning at some initial distribution over states
called a belief state. In order to maintain a finite sum
over the infinite-horizon, we employ a discount factor,
0 ≤ γ < 1.

As a way to model DEC-POMDP policies with finite
memory, finite state controllers provide an appealing
solution. Each agent’s policy can be represented as a
local controller and the resulting set of controllers sup-
ply the joint policy, called the joint controller. Each
finite state controller can formally be defined by the
tuple 〈Q,ψ, η〉, where Q is the finite set of controller
nodes, ψ : Q → ∆A is the action selection model for
each node, and η : Q × A × O → ∆Q represents the
node transition model for each node given an action
was taken and an observation seen. For n agents, the
value for starting in agent 1’s nodes ~q and at state s
is given by

V (~q, s) =
∑
~a

n∏
i

P (ai|qi)
[
R(s,~a) + γ

∑
s′

P (s′|~a, s)·

∑
~o

O(~o|s′,~a)
∑
~q′

n∏
i

P (qi|qi, ai, oi)V (~q′, s′)
]

This is also referred to as the Bellman equation. Note
that the values can be calculated offline in order to
determine controllers for each agent that can then be
executed online for distributed control.

3 Previous work

As mentioned above, the only other algorithms that
we know of that can solve infinite-horizon DEC-
POMDPs are those of Bernstein et al. (2005) and
Szer and Charpillet (2005). Bernstein et al.’s ap-
proach, called bounded policy iteration for decentral-
ized POMDPs (DEC-BPI), is an approximate algo-
rithm that also uses stochastic finite state controllers.
Szer and Charpillet’s approach is also an approximate
algorithm, but it uses deterministic controllers.

DEC-BPI improves a set of fixed-size controllers by
using linear programming. This is done by iterating
through the nodes of each agent’s controller and at-
tempting to find an improvement. A linear program
searches for a probability distribution over actions and
transitions into the agent’s current controller that in-
creases the value of the controller for any initial state

AMATO ET AL.2

For variables: x(~q,~a), y(~q,~a, ~o, ~q′) and z(~q, s)
Maximize ∑

s

b0(s)z(~q0, s)

Given the Bellman constraints:

∀~q, s z(~q, s) =
∑
~a

x(~q,~a)
[
R(s,~a) + γ

∑
s′

P (s′|s,~a)
∑

~o

O(~o|s′,~a)
∑
~q′

y(~q,~a, ~o, ~q′)z(~q′, s′)
]

For each agent i and set of agents, −i, apart from i,

Independence constraints:
∀ai, ~q

∑
a−i

x(~q,~a) =
∑
a−i

x(qi, q
f
−i,~a)

∀~a, ~q, ~o, q′i
∑
q′−i

y(~q,~a, ~o, ~q′) =
∑
q′−i

y(qi, q
f
−i, ai, a

f
−i, oi, o

f
−i,

~q′)

And probability constraints:

∀qi
∑
~a

x(qi, q
f
−i,~a) = 1 and ∀qi, oi, ai

∑
~q′

y(qi, q
f
−i, ai, a

c
−i, oi, o

f
−i,

~q′) = 1

∀~q,~a x(~q,~a) ≥ 0 and ∀~q, ~o,~a y(~q,~a, ~o, ~q′) ≥ 0

Table 1: The nonlinear program representing the optimal fixed-size controller. Variable x(~q,~a) represents P (~a|~q),
variable y(~q,~a, ~o, ~q′) represents P (~q′|~q,~a, ~o), variable z(~q, s) represents V (~q, s), ~q0 represents the initial controller
node for each agent. Superscripted f ’s such as qf

−i represent arbitrary fixed values.

and any initial node of the other agents’ controllers.
If the improvement is discovered, the node is updated
based on the probability distributions found. Each
node for each agent is examined in turn and the algo-
rithm terminates when no agent can make any further
improvements.

This algorithm allows memory to remain fixed, but
provides only a locally optimal solution. This is due to
the linear program considering the old controller values
from the second step on and the fact that improvement
must be over all possible states and initial nodes for
the controllers of the other agents. As the number of
agents or size of controllers grows, this later drawback
is likely to severely hinder improvement.

Szer and Charpillet have developed a best-first search
algorithm that finds deterministic finite state con-
trollers of a fixed size. This is done by calculating a
heuristic for the controller given the known determinis-
tic parameters and filling in the remaining parameters
one at a time in a best-first fashion. They prove that
this technique will find the optimal deterministic finite
state controller of a given size, but its use remains lim-
ited. This approach is very time and memory intensive
and is restricted to deterministic controllers.

4 Nonlinear optimization approach

Due to the high space complexity of finding an opti-
mal solution for a DEC-POMDP, fixed-size solutions
are very appealing. Fixing memory balances optimal-
ity and computational concerns and should allow high
quality solutions to be found for many problems. Us-
ing Bernstein et al.’s DEC-BPI method reduces prob-
lem complexity by fixing controller size, but solution
quality is limited by a linear program that requires
improvement across all states and initial nodes of the
other agents. Also, each agent’s controller is improved
separately without consideration for the knowledge of
the initial problem state, thus reducing solution qual-
ity. Both of these limitations can be eliminated by
modeling a set of optimal controllers as a nonlinear
program. By setting the value as a variable and using
constraints to maintain validity, the parameters can be
updated in order to represent the globally optimal so-
lution over the infinite-horizon of the problem. Rather
than the the iterative process of DEC-BPI, the NLP
improves and evaluates the controllers of all agents at
once for a given initial state in order to make the best
possible use of the controller size.

Compared with other DEC-POMDP algorithms, the
NLP approach makes more efficient use of memory

AMATO ET AL. 3

than the exact methods, and using locally optimal
NLP algorithms provides an approximation technique
with a search based on the optimal solution of the
problem. Rather than adding nodes and then attempt-
ing to remove those that will not improve the con-
troller, as a dynamic programming approach might do,
we search for the best controllers of a fixed size. The
NLP is also able to take advantage of the start distri-
bution, thus making better use of its size.

The NLP approach has already shown promise in
the POMDP case. In a previous paper (Amato et
al., 2007), we have modeled the optimal fixed-size
controller for a given POMDP as an NLP and with
locally optimal solution techniques produced consis-
tently higher quality controllers than a current state-
of-the-art method. The success of the NLP in the sin-
gle agent case suggested that an extension to DEC-
POMDPs could also be successful. To construct this
NLP, extra constraints are needed to guarantee inde-
pendent controllers for each agent, while still maximiz-
ing the value.

4.1 Nonlinear problem model

The nonlinear program seeks to optimize the value
of fixed-size controllers given a initial state distribu-
tion and the DEC-POMDP model. The parameters
of this problem in vector notation are the joint ac-
tion selection probabilities at each node of the con-
trollers P (~a|~q), the joint node transition probabilities
P (~q′|~q,~a, ~o) and the values of each node in each state,
V (~q, s). This approach differs from Bernstein et al.’s
approach in that it explicitly represents the node val-
ues as variables. To ensure that the values are correct
given the action and node transition probabilities, non-
linear constraints must be added to the optimization.
These constraints are the Bellman equations given the
policy determined by the action and transition prob-
abilities. Constraints are also added to ensure dis-
tributed action selection and node transitions for each
agent. We must also ensure that all probabilities are
valid numbers between 0 and 1.

Table 1 describes the nonlinear program that defines
the optimal controller for an arbitrary number of
agents. The value of designated initial local nodes is
maximized given the initial state distribution and the
necessary constraints. The independence constraints
guarantee that action selection and transition proba-
bilities can be summed out for each agent by ensuring
that they do not depend on any information that is
not local.

Theorem 1 An optimal solution of the NLP results
in optimal stochastic controllers for the given size and
initial state distribution.

Proof sketch. The optimality of the controllers fol-
lows from the NLP constraints and maximization of
given initial nodes at the initial state distribution.
The Bellman equation constraints restrict the value
variables to valid amounts based on the chosen prob-
abilities, the independence constraints guarantee dis-
tributed control and the maximum value is found for
the initial nodes and state. Hence, this represents op-
timal controllers.

4.2 Nonlinear solution techniques

There are many efficient algorithms for solving large
NLPs. When the problem is non-convex, as in our
case, there are multiple local maxima and no NLP
solver guarantees finding the optimal solution. Nev-
ertheless, existing techniques proved useful in finding
high-quality results for large problems.

For this paper, we used a freely available nonlinearly
constrained optimization solver called filter (Fletcher
et al., 2002) on the NEOS server (http://www-
neos.mcs.anl.gov/neos/). Filter finds solutions by a
method of successive approximations called sequential
quadratic programming (SQP). SQP uses quadratic
approximations which are then more efficiently solved
with quadratic programming (QP) until a solution to
the more general problem is found. A QP is typically
easier to solve, but must have a quadratic objective
function and linear constraints. Filter adds a “filter”
which tests the current objective and constraint vi-
olations against those of previous steps in order to
promote convergence and avoid certain locally optimal
solutions. The DEC-POMDP and nonlinear optimiza-
tion models were described using a standard optimiza-
tion language AMPL.

5 Incorporating correlation

Bernstein et al. also allow each agent’s controller to be
correlated by using a shared source of randomness in
the form of a correlation device. As an example of one
such device, imagine that before each action is taken, a
coin is flipped and both agents have access to the out-
come. Each agent can then use that new information
to affect their choice of action. Along with stochas-
ticity, correlation is another means of increasing value
when memory is limited.

A correlation device provides extra signals to the
agents and operates independently of the DEC-
POMDP. That is, the correlation device is a tuple
〈C,ψ〉, where C is a set of states and ψ : C → ∆C
is a stochastic transition function that we will repre-
sent as P (c′|c). At each step of the problem, the device
transitions and each agent can observe its state.

AMATO ET AL.4

For variables: w(c, c′), x(~q,~a, c), y(~q,~a, ~o, ~q′, c) and z(~q, s, c)
Maximize ∑

s

b0(s)z(~q0, s)

Given the Bellman constraints:

∀~q, s z(~q, s, c) =
∑
~a

x(~q,~a, c)
[
R(s,~a) + γ

∑
s′

P (s′|s,~a)
∑

~o

O(~o|s′,~a)
∑
~q′

y(~q,~a, ~o, ~q′, c)
∑
c′

w(c, c′)z(~q′, s′, c)
]

Table 2: The nonlinear program representing the optimal fixed-size controller including a correlation device.
Variable x(~q,~a, c) represents P (~a|~q, c), variable y(~q,~a, ~o, ~q′, c) represents P (~q′|~q,~a, ~o, c), variable z(~q, s, c) repre-
sents V (~q, s, c), ~q0 represents the initial controller node for each agent and w(c, c′) represents P (c′|c). The other
constraints are similar to those above with the addition of a sum to one constraint for the correlation device.

The independent local controllers defined above can be
modified to make use of the correlation device. This
is done by making the parameters dependent on the
signal from the correlation device. For agent i, ac-
tion selection is then P (ai|qi, c) and node transition is
P (q′i|qi, ai, oi, c). For n agents, the value of the corre-
lated joint controller beginning in nodes ~q, state s and
correlation device state c is defined as V (~q, s, c) =∑
~a

n∏
i

P (ai|qi, c)
[
R(s,~a) + γ

∑
s′

P (s′|~a, s)
∑

~o

O(~o|s′,~a)·

∑
~q′

n∏
i

P (qi|qi, ai, oi, c)
∑
c′

P (c′|c)V (~q′, s′, c′)
]

Our NLP can be extended to include a correlation
device. This optimization problem, the first part of
which is shown in Table 2, is very similar to the pre-
vious NLP. A new variable is added for the transi-
tion function of the correlation device and the other
variables now include the signal from the device. The
Bellman equation incorporates the new correlation de-
vice signal at each step, but the other constraints re-
main the same. A new probability constraint is also
added to ensure that the transition probabilities for
each state of the correlation device sum to one.

6 Experimental results

We tested our nonlinear programming approach in
three DEC-POMDP domains. In each experiment, we
compare Bernstein et al.’s DEC-BPI with NLP solu-
tions using filter for a range of controller sizes. We
also implemented each of these approaches with a cor-
relation device of size two. We do not compare with
Szer and Charpillet’s algorithm because the problems
presented in that work are slightly different than those
used by Bernstein et al. Nevertheless, on the problems
that we tested, our approach can and does achieve
higher values than Szer and Charpillet’s algorithm for
all of the controller sizes for which that the best-first
search is able to find a solution.

size DEC-BPI DEC-BPI corr NLO NLO-corr

1 4.687 6.290 9.1 9.1
2 4.068 7.749 9.1 9.1
3 8.637 7.781 9.1 9.1
4 7.857 8.165 9.1 9.1

Table 3: Broadcast problem values using NLP meth-
ods and DEC-BPI with and without a 2 node correla-
tion device

size DEC-BPI DEC-BPI corr NLO NLO-corr

1 < 1s < 1s 1s 2s
2 < 1s 2s 3s 8s
3 2s 7s 764s 2119s
4 5s 24s 4061s 10149s

Table 4: Broadcast problem mean optimization times
using NLP methods and DEC-BPI with and without
a 2 node correlation device

Each NLP and DEC-BPI algorithm was run until con-
vergence was achieved with ten different random de-
terministic initial controllers, and the mean values and
times are reported. The times reported for each NLP
method can only be considered estimates due to run-
ning each algorithm on external machines with uncon-
trollable load levels, but we expect that they vary by
only a small constant. Note that our goal in these ex-
periments is to demonstrate the benefits of our formu-
lation when used in conjunction with an “off the shelf”
solver such as filter. The formulation is very general
and many other solvers may be applied. Throughout
this section we will refer to our nonlinear optimization
as NLO and the optimization with the correlation de-
vice with two states as NLO-corr.

6.1 Broadcast problem

A DEC-POMDP used by Bernstein et al. was a sim-
plified two agent networking example. This problem

AMATO ET AL. 5

Figure 1: Recycling robots values using NLP methods
and DEC-BPI with and without a 2 node correlation
device

has 4 states, 2 actions and 5 observations. At each
time step, each agent must choose whether or not to
send a message. If both agents send, there is a collision
and neither gets through. A reward of 1 is given for
every step a message is successfully sent over the chan-
nel and all other actions receive no reward. Agent 1
has a 0.9 probability of having a message in its queue
on each step and agent 2 has only a 0.1 probability.
The domain is initialized with only agent 1 possessing
a message and a discount factor of 0.9 was used.

Table 3 shows the values produced by DEC-BPI and
our nonlinear programming approach with and with-
out a correlation device for several controller sizes.
Both nonlinear techniques produce the same value, 9.1
for each controller size. In all cases this is a higher
value than that produced by Bernstein et al.’s inde-
pendent and correlated approaches. As 9.1 is the max-
imum value that any approach that we tested receives
for the given controller sizes, it is likely that it is opti-
mal for these sizes.

The time used by each algorithm is shown in Table
4. As expected, the nonlinear optimization methods
require more time to find a solution than the DEC-
BPI methods. As noted above, solution quality is also
higher using nonlinear optimization. Either NLP ap-
proach can produce a higher valued one node controller
in an amount of time similar to or less than each DEC-
BPI method. Therefore, for this problem, the NLP
methods are able to find higher valued, more concise
solutions given a fixed amount of space or time.

6.2 Recycling robots

As another comparison, we have extended the Recy-
cling Robot problem (Sutton and Barto, 1998) to the
multiagent case. The robots have the task of picking
up cans in an office building. They have sensors to

Figure 2: Recycling robots graphs for value vs time
for the NLP and DEC-BPI methods with and without
the correlation device.

find a can and motors to move around the office in
order to look for cans. The robots are able to con-
trol a gripper arm to grasp each can and then place it
in an on-board receptacle. Each robot has three high
level actions: (1) search for a small can, (2) search for
a large can or (3) recharge the battery. In our two
agent version, the larger can is only retrievable if both
robots pick it up at the same time. Each agent can
decide to independently search for a small can or to
attempt to cooperate in order to receive a larger re-
ward. If only one agent chooses to retreive the large
can, no reward is given. For each agent that picks up
a small can, a reward 2 is given and if both agents
cooperate to pick the large can, a reward of 5 is given.
The robots have the same battery states of high and
low, with an increased likelihood of transitioning to a
low state or exhausting the battery after attempting
to pick up the large can. Each robot’s battery power
depends only on its own actions and each agent can
fully observe its own level, but not that of the other
agent. If the robot exhausts the battery, it is picked
up and plugged into the charger and then continues to
act on the next step with a high battery level. The two
robot version used in this paper has 4 states, 3 actions
and 2 observations. A discount factor of 0.9 was used.

We can see in Figure 1 that in this domain higher
quality controllers are produced by using nonlinear op-
timization. Both NLP methods permit higher mean
values than either DEC-BPI approach for all controller
sizes. Also, correlation is helpful for both the NLP and
DEC-BPI approaches, but becomes less so for larger
controller sizes. For the nonlinear optimization cases,
both approaches converge to within a small amount of
the maximum value that was found for any controller
size tested. As controller size grows, the NLP methods
are able to reliably find this solution and correlation
is no longer useful.

AMATO ET AL.6

The running times of each algorithm follow the same
trend as above in which the nonlinear optimization
approaches required much more time as controller size
increases. The ability for the NLP techniques to pro-
duce smaller, higher valued controllers with similar or
lesser running time also follows the same trend.

Figure 2 shows the values that can be attained for each
method based on the mean time necessary for conver-
gence. Results are included for NLP techniques up to
four nodes with the correlation device and five nodes
without it while DEC-BPI values are given for four-
teen nodes with the correlation device and eighteen
without it. This graph demonstrates that even if we
allow controller size to continue to grow and examine
only the amount of time that is necessary to achieve a
solution, the NLP methods continue to provide higher
values. Although the values of the controllers pro-
duced by the DEC-BPI methods are somewhat close
to those of the NLP techniques as controller size grows,
our approaches produce that value with a fraction of
the controller size.

6.3 Multiagent tiger problem

Another domain with 2 states, 3 actions and 2 ob-
servations called the multiagent tiger problem was in-
troduced by Nair et al. (Nair et al., 2003). In this
problem, there are two doors. Behind one door is a
tiger and behind the other is a large treasure. Each
agent may open one of the doors or listen. If either
agent opens the door with the tiger behind it, a large
penalty is given. If the door with the treasure be-
hind it is opened and the tiger door is not, a reward is
given. If both agents choose the same action (i.e., both
opening the same door) a larger positive reward or a
smaller penalty is given to reward this cooperation. If
an agent listens, a small penalty is given and an obser-
vation is seen that is a noisy indication of which door
the tiger is behind. While listening does not change
the location of the tiger, opening a door causes the
tiger to be placed behind one of the door with equal
probability. A discount factor of 0.9 was used.

Figure 3 shows the values attained by each NLP and
DEC-BPI method for the given controller sizes. Fig-
ure 4 shows the values of just the two NLP methods.
These graphs show that not only do the NLP meth-
ods significantly outperform the DEC-BPI approaches,
but correlation greatly increases the value attained by
the nonlinear optimization. The individual results for
this problem suggest the DEC-BPI approach is more
dependent on the initial controller and the large penal-
ties in this problem result in several results that are
very low. This outweighs the few times that more rea-
sonable value is attained. Nevertheless, the max value
attained by DEC-BPI for all cases is still less than the

Figure 3: Multiagent Tiger problem values using NLP
methods and DEC-BPI with and without a 2 node
correlation device.

Figure 4: Multiagent Tiger problem values using just
the NLP methods with and without a 2 node correla-
tion device.

Figure 5: Multiagent Tiger problem graphs for value
vs. time for the NLP methods with and without the
correlation device.

mean value attained by the NLP methods. Again for
this problem, more time is needed for the NLP ap-
proaches, but one node controllers are produced with
higher value than any controller size for the DEC-BPI

AMATO ET AL. 7

methods and require very little time.

The usefulness of the correlation device is illustrated
in Figure 5. For given amounts of time, the nonlinear
optimization that includes the correlation device pro-
duces much higher values. The DEC-BPI methods are
not included in this graph as they were unable to pro-
duce mean values greater than -50 for any controller
size up to 22 for which mean time to convergence was
over 5000 seconds. This shows the importance of cor-
relation in this problem and the ability of our NLP
technique to take advantage of it.

7 Conclusion

We introduced a novel approach to solving decentral-
ized POMDPs by using a nonlinear program formula-
tion. This memory-bounded stochastic controller for-
mulation allows a wide range of powerful nonlinear
programming algorithms to be applied to solve DEC-
POMDPs. The approach is easy to implement as it
mostly involves reformulating the problem and feed-
ing it into an NLP solver.

We showed that by using an off-the-shelf locally opti-
mal NLP solver, we were able to produce higher valued
controllers than the current state-of-the-art technique
for an assortment of DEC-POMDP problems. Our ex-
periments also demonstrate that incorporating a cor-
relation device as a shared source of randomness for
the agents can further increase solution quality. While
the time taken to find a solution to the NLP can be
higher, the fact that higher values can be found with
smaller controllers by using the NLP suggests adopt-
ing more powerful optimization techniques for smaller
controllers can be more productive in a given amount
of time. The combination of start state knowledge
and more advanced optimization allows us to make ef-
ficient use of the limited space of the controllers. These
results show that this method can allow compact opti-
mal or near-optimal controllers to be found for various
DEC-POMDPs.

In the future, we plan to conduct a more exhaustive
analysis of the NLP representation and explore more
specialized algorithms that can be tailored for this op-
timization problem. While the performance we get
using a standard nonlinear optimization algorithm is
very good, specialized solvers might be able to further
increase solution quality and scalability. We also plan
to characterize the circumstances under which intro-
ducing a correlation device is cost effective.

Acknowledgements

An earlier version of this paper without improvements
such as incorporating a correlation device was pre-

sented at the AAMAS-06 Workshop on Multi-Agent
Sequential Decision Making in Uncertain Domains.
This work was supported in part by the Air Force Of-
fice of Scientific Research (Grant No. FA9550-05-1-
0254) and by the National Science Foundation (Grant
No. 0535061). Any opinions, findings, conclusions
or recommendations expressed in this manuscript are
those of the authors and do not reflect the views of the
US government.

References

Christopher Amato, Daniel S. Bernstein, and Shlomo
Zilberstein. Solving POMDPs using quadratically con-
strained linear programs. In Proceedings of the Twen-
tieth International Joint Conference on Artificial In-
telligence, Hyderabad, India, 2007.

Daniel S. Bernstein, Eric Hansen, and Shlomo Zil-
berstein. Bounded policy iteration for decentralized
POMDPs. In Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, Ed-
inburgh, Scotland, 2005.

Roger Fletcher, Sven Leyffer, and Philippe L. Toint.
On the global convergence of a filter-SQP algorithm.
SIAM Journal of Optimization, 13:44–59, 2002.

Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zil-
berstein. Dynamic programming for partially observ-
able stochastic games. In Proceedings of the Nine-
teenth National Conference on Artificial Intelligence,
San Jose, CA, 2004.

Ranjit Nair, David Pynadath, Makoto Yokoo, Milind
Tambe, and Stacy Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for
multiagent settings. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelli-
gence, Acapulco, Mexico, 2003.

Sven Seuken and Shlomo Zilberstein. Memory-
bounded dynamic programming for DEC-POMDPs.
In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, Hyderabad, In-
dia, 2007.

Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

Daniel Szer and Francois Charpillet. An optimal best-
first search algorithm for solving infinite horizon DEC-
POMDPs. In Proceedings of the Sixteenth European
Conference on Machine Learning, Porto, Portugal,
2005.

Daniel Szer, Francois Charpillet, and Shlomo Zilber-
stein. MAA*: A heuristic search algorithm for solving
decentralized POMDPs. In Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelli-
gence, Edinburgh, Scotland, 2005.

AMATO ET AL.8

	University of Massachusetts Amherst
	From the SelectedWorks of Shlomo Zilberstein
	2012

	Optimizing Memory-Bounded Controllers for Decentralized POMDPs
	paper.dvi

