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Abstract

Existing value function approximation methods have been successfully used in many ap-
plications, but they often lack useful a priori error bounds. We propose a new approximate
bilinear programming formulation of value function approximation, which employs global
optimization. The formulation provides strong a priori guarantees on both robust and
expected policy loss by minimizing specific norms of the Bellman residual. Solving a bi-
linear program optimally is NP-hard, but this is unavoidable because the Bellman-residual
minimization itself is NP-hard. We describe and analyze both optimal and approximate
algorithms for solving bilinear programs. The analysis shows that this algorithm offers
a convergent generalization of approximate policy iteration. We also briefly analyze the
behavior of bilinear programming algorithms under incomplete samples. Finally, we demon-
strate that the proposed approach can consistently minimize the Bellman residual on simple
benchmark problems.

Keywords: value function approximation, Markov decision processes, reinforcement
learning, approximate dynamic programming

1. Motivation

Solving large Markov Decision Problems (MDPs) is a very useful, but computationally
challenging problem addressed widely in the AI literature, particularly in the area of rein-
forcement learning. It is widely accepted that large MDPs can only be solved approximately.
The commonly used approximation methods can be divided into three broad categories: 1)
policy search, which explores a restricted space of all policies, 2) approximate dynamic pro-
gramming, which searches a restricted space of value functions, and 3) approximate linear
programming, which approximates the solution using a linear program. While all of these
methods have achieved impressive results in many application domains, they have significant
limitations.

Policy search methods rely on local search in a restricted policy space. The policy may
be represented, for example, as a finite-state controller (Stanley and Miikkulainen, 2004) or
as a greedy policy with respect to an approximate value function (Szita and Lorincz, 2006).
Policy search methods have achieved impressive results in such domains as Tetris (Szita and
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Lorincz, 2006) and helicopter control (Abbeel et al., 2006). However, they are notoriously
hard to analyze. We are not aware of any established theoretical guarantees regarding the
quality of the solution.

Approximate dynamic programming (ADP) methods iteratively approximate the value
function (Bertsekas and Ioffe, 1997; Powell, 2007; Sutton and Barto, 1998). They have been
extensively analyzed and are the most commonly used methods. However, approximate
dynamic programming methods typically do not converge and they only provide weak guar-
antees of approximation quality. The approximation error bounds are usually expressed in
terms of the worst-case approximation of the value function over all policies (Bertsekas and
Ioffe, 1997). In addition, most available bounds are with respect to the L∞ norm, while the
algorithms often minimize the L2 norm. While there exist some L2-based bounds (Munos,
2003), they require values that are difficult to obtain.

Approximate linear programming (ALP) uses a linear program to compute the approxi-
mate value function in a particular vector space (de Farias, 2002). ALP has been previously
used in a wide variety of settings (Adelman, 2004; de Farias and van Roy, 2004; Guestrin
et al., 2003). Although ALP often does not perform as well as ADP, there have been some
recent efforts to close the gap (Petrik and Zilberstein, 2009). ALP has better theoretical
properties than ADP and policy search. It is guaranteed to converge and return the closest
L1-norm approximation ṽ of the optimal value function v∗ up to a multiplicative factor.
However, the L1 norm must be properly weighted to guarantee a small policy loss, and
there is no reliable method for selecting appropriate weights (de Farias, 2002).

To summarize, the existing reinforcement learning techniques often provide good so-
lutions, but typically require significant domain knowledge (Powell, 2007). The domain
knowledge is needed partly because useful a priori error bounds are not available, as men-
tioned above. Our goal is to develop a more reliable method that is guaranteed to minimize
bounds on the policy loss in various settings.

We present new formulations of value function approximation that provably minimize
bounds on the policy loss using global optimization. Most of these bounds do not rely
on values that are hard to obtain, unlike, for example, approximate linear programming.
The focus of the work is on two broad bound minimization approaches: 1) minimizing L∞
bounds, and 2) minimizing weighted L1 norm bounds on the policy loss. In some sense, the
formulations minimize the bounds by unifying policy value-function search methods.

We start with a description of the framework and notation in Section 2 and the de-
scription of value function approximation in Section 3. Then, in Section 4, we describe the
proposed approximate bilinear programming (ABP) formulations. Bilinear programs are
typically solved using global optimization methods, which we briefly discuss in Section 5.
A drawback of the bilinear formulation is that solving bilinear programs may require expo-
nential time. We also show in Section 5 that this is unavoidable, because minimizing the
approximation error bound is in fact NP-hard.

In practice, only sampled versions of ABPs are often solved. While a thorough treat-
ment of sampling is beyond the scope of this paper, we examine the impact of sampling and
establish some guarantees in Section 6. Unlike classical sampling bounds on approximate
linear programming, we describe bounds that apply to the worst-case error. Section 7 shows
that ABP is related to other approximate dynamic programming methods, such as approx-
imate linear programming and policy iteration. Section 8 demonstrates the applicability
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of ABP using common reinforcement learning benchmark problems. Technical proofs are
provided in the appendix.

The general setting considered in this paper is a restriction of reinforcement learning.
Reinforcement learning methods can use samples without requiring a model of the environ-
ment. The methods we propose can also be based on samples, but they require additional
structure. In particular, they require that all or most actions are sampled for every state.
Such samples can be easily generated when a model of the environment is available.

2. Framework and Notation

This section formally defines the framework and the notation we use. We also define Markov
decision processes and the approximation errors involved. Markov decision processes come
in many flavors based on the objective function that is optimized. This work focuses on the
infinite horizon discounted MDPs, which are defined as follows.

Definition 1 (e.g. (Puterman, 2005)). A Markov Decision Process is a tuple (S,A, P, r, α).
Here, S is a finite set of states, A is a finite set of actions, P : S × A × S 7→ [0, 1] is the
transition function (P (s, a, s′) is the probability of transiting to state s′ from state s given
action a), and r : S×A 7→ R+ is a reward function. The initial distribution is: α : S 7→ [0, 1],
such that

∑
s∈S α(s) = 1.

The goal is to find a sequence of actions that maximizes γ-discounted discounted cumulative
sum of the rewards, also called the return. A solution of a Markov decision process is a
policy, which is defined as follows.

Definition 2. A deterministic stationary policy π : S 7→ A assigns an action to each state
of the Markov decision process. A stochastic policy policy π : S ×A 7→ [0, 1]. The set of all
stochastic stationary policies is denoted as Π and satisfies

∑
a∈A π(s, a) = 1.

General non-stationary policies may take different actions in states in different time-
steps. We limit our treatment to stationary policies, since for infinite-horizon MDPs there
exists an optimal stationary and deterministic policy. We also consider stochastic policies
because they are more convenient to use in some settings that we consider.

The transition and reward functions for a given policy are denoted by Pπ and rπ. The
value function update for a policy π is denoted by Lπ, and the Bellman operator is denoted
by L. That is:

Lπv = Pπv + rπ Lv = max
π∈Π

Lπv.

The optimal value function, denoted v∗, satisfies v∗ = Lv∗.
We assume a vector representation of the policy π ∈ R|S||A|. The variables π are defined

for all state-action pairs and represent policies. That is π(s, a) represents the probability
of taking action a ∈ A in state s ∈ S. The space of all correct (stochastic) policies can be
represented using a set of linear equations:∑

a∈A
π(s, a) = 1 ∀s ∈ S

π(s, a) ≥ 0 ∀s ∈ S, ∀a ∈ A
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These inequalities can be represented using matrix notation as follows.

Bπ = 1

π ≥ 0,

where the matrix B : |S| × (|S| · |A|) is defined as follows.

B(s′, (s, a)) =

{
1 s = s′

0 otherwise
.

We use 0 and 1 to denote vectors of all zeros or ones of the appropriate size respectively.
The symbol I denotes an identity matrix of the appropriate dimension.

In addition, a policy π induces a state visitation frequency uπ : S → R, defined as
follows:

uπ =
(
I− γPT

π

)−1
α.

The return of a policy depends on the state-action visitation frequencies and αTvπ = rTuπ.
The optimal state-action visitation frequency is uπ∗ . State-action visitation frequency u :
S ×A → R is defined for all states and actions. Notice the missing subscript. We use ua to
denote the part of u that corresponds to action a ∈ A. State-action visitation frequencies
must satisfy: ∑

a∈A
(I− γP )Tua = α.

To formulate approximate linear and bilinear programs, it is necessary to restrict the
value functions so that their Bellman residuals are non-negative (or at least bounded from
below). We call such value functions transitive-feasible and define them as follows.

Definition 3. A value function is transitive-feasible when v ≥ Lv. The set of transitive-
feasible value functions is:

K = {v ∈ R|S| v ≥ Lv}.

Given some ε ≥ 0, the set of ε-transitive-feasible value functions is:

K(ε) = {v ∈ R|S| v ≥ Lv − ε1}.

Notice that the optimal value function v∗ is transitive-feasible. The following lemma
summarizes the key property of transitive-feasible value functions:

Lemma 4. Transitive feasible value functions form an upper bound on the optimal value
function. If v ∈ K(ε) is an ε-transitive-feasible value function, then

v ≥ v∗ − ε

1− γ1.
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3. Value Function Approximation

This section describes the basic methods for value function approximation. MDPs used in
practical applications are often too large for the optimal policy to be computed precisely.
In these cases, we first calculate an approximate value function ṽ and then take the greedy
policy π with respect to it. The quality of such a policy can be characterized using its value
function vπ in one of the following two main ways.

Definition 5 (Policy Loss). Let π be a policy computed from value function approximation.
The expected policy loss measures the expected loss of π, defined as follows:

‖v∗ − vπ‖1,α = αTv∗ − αTvπ (1)

where ‖x‖1,c denotes the weighted L1 norm: ||x‖1,c =
∑

i |c(i)x(i)|.
The robust policy loss measures the worst-case loss of π, defined as follows:

‖v∗ − vπ‖∞ = max
s∈S
|v∗(s)− vπ(s)| (2)

The expected policy loss captures the total loss of discounted reward when following
the policy π instead of the optimal policy assuming the initial distribution. The robust
policy loss ignores the initial distribution and, in some sense, measures the difference for
the worst-case initial distribution.

A set of state features is a necessary component of value function approximation. These
features must be supplied in advance and must capture the essential structure of the prob-
lem. The features are defined by mapping each state s to a vector φ(s) of features. We
denote φi : S → R to be a function that maps states to the value of feature i:

φi(s) = (φ(s))i.

The desirable properties of the features depend strongly on the algorithm, samples, and
attributes of the problem; the tradeoffs are not yet fully understood. The function φi can
also be treated as a vector, similarly to the value function v.

Value function approximation methods compute value functions that can be represented
using the state features. We call such value functions representable and define them below.

Definition 6. Given a convex polyhedral setM⊆ R|S|, a value function v is representable
(in M) if v ∈M.

Many methods that compute a value function based on a given set of features have been
developed, such as neural networks and genetic algorithms (Bertsekas and Ioffe, 1997). Most
of these methods are extremely hard to analyze, computationally complex, and hard to use.
Moreover, these complex methods do not satisfy the convexity assumption in Definition 6.
A simpler, more common, method is linear value function approximation. In linear value
function approximation, the value function of state s is represented as a linear combination
of nonlinear features φ(s). Linear value function approximation is easy to apply and analyze.

Linear value function approximation can be expressed in terms of matrices as follows.
Let the matrix Φ : |S|×m represent the features for the state-space, where m is the number
of features. The rows of the feature matrix Φ, also known as the basis, correspond to the
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features of the states φ(s). The feature matrix can be defined in one of the following two
ways:

Φ =

− φ(s1)T −
− φ(s2)T −

...

 Φ =

 | |
φ1 φ2 . . .
| |


The value function v is then represented as v = Φx and the set of representable functions
is M = colspan (Φ).

The goal of value function approximation is not just to obtain a good value function
ṽ but a policy with a small policy loss. Unfortunately, the policy loss of a greedy policy,
as formulated in Definition 5, depends non-trivially on the approximate value function ṽ.
Often, the only reliable method of precisely computing the policy loss is to simulate the
policy, which can be very costly. Value function approximation methods, therefore, optimize
bounds on the policy loss.

Theorem 7. [Robust Policy Loss, e.g. (Williams and Baird, 1994)] Let π be a greedy policy
with respect to a value function ṽ. Then:

‖v∗ − vπ‖∞ ≤
2

1− γ ‖ṽ − Lṽ‖∞.

In addition, if ṽ ∈ K, the policy loss is minimized for the greedy policy and:

‖v∗ − vπ‖∞ ≤
1

1− γ ‖ṽ − Lṽ‖∞.

The bounds above ignore the initial distribution and may often be overly conserva-
tive. We establish new bounds on the expected policy loss that also consider the initial
distribution.

Theorem 8. [Expected Policy Loss] Let π be a greedy policy with respect to a value function
ṽ and let the state-action visitation frequencies of π be bounded as u ≤ uπ ≤ ū. Then:

‖v∗ − vπ‖1,α = αTv∗ − αTṽ + uTπ (ṽ − Lṽ)

≤ αTv∗ − αTṽ + uT [ṽ − Lṽ]− + ūT [ṽ − Lṽ]+ .

The state-visitation frequency uπ depends on the initial distribution α, unlike v∗. In addi-
tion, when ṽ ∈ K, the bound is:

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α + ‖ṽ − Lṽ‖1,ū
‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α +

1

1− γ ‖ṽ − Lṽ‖∞

Here we use [x]+ = max{x,0} componentwise.

Proof. The bound is derived as follows:

αTv∗ − αTvπ = αTv∗ − αTvπ + (uTπ (I− γPπ)− αT)ṽ

= αTv∗ − rTπuπ + (uTπ (I− γPπ)− αT)ṽ

= αTv∗ − rTπuπ + uTπ (I− γPπ)ṽ − αTṽ

= αTv∗ − αTṽ + uTπ ((I− γPπ)ṽ − rπ)

= αTv∗ − αTṽ + uTπ (ṽ − Lṽ) .
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We used the fact that uTπ (I−γPπ)−αT = 0, which follows from the definition of state-action
visitation frequencies and that v∗ ≥ vπ. The inequalities for ṽ ∈ K follow from Lemma 38,
Lemma 43, and the trivial version of the Holder’s inequality:

αTv∗ − αTṽ = −‖v∗ − ṽ‖1,α
uTπ (ṽ − Lṽ) ≤ ‖uπ‖1 ‖ṽ − Lṽ‖∞ =

1

1− γ ‖ṽ − Lṽ‖∞

Notice that the bounds in Theorem 8 can be minimized even without knowing the
optimal v∗. The optimal value function v∗ is independent of the approximate value function
ṽ and the greedy policy π depends only on ṽ.

Remark 9. The bounds in Theorem 8 generalize the bounds established by de Farias (2002,
Theorem 1.3), which state that whenever v ∈ K:

‖v∗ − vπ‖1,u ≤
1

1− γ ‖v
∗ − ṽ‖1,(1−γ)u.

This bound is a special case of Theorem 8 because αTv∗ − αTṽ ≤ 0 and:

‖ṽ − Lṽ‖1,u ≤ ‖v∗ − ṽ‖1,u ≤
1

1− γ ‖v
∗ − ṽ‖1,(1−γ)u,

from v∗ ≤ Lṽ ≤ ṽ. The proof of Theorem 8 also simplifies the proof of Theorem 1.3 in
(de Farias, 2002).

The methods that we propose require the following standard assumption.

Assumption 10. All multiples of the constant vector 1 are representable in M. That is,
for all k ∈ R we have that k1 ∈M.

Notice that the representation set M satisfies Assumption 10 when a first column of Φ
is 1. The impact of including the constant feature is typically negligible because adding a
constant to the value function does not change the greedy policy.

Value function approximation algorithms are typically variations of the exact algorithms
for solving MDPs. Hence, they can be categorized as approximate value iteration, approx-
imate policy iteration, and approximate linear programming. The ideas of approximate
value iteration could be traced to Bellman (1957), which was followed by many additional
research efforts (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Powell, 2007). Be-
low, we only discuss approximate policy iteration and approximate linear programming,
because they are the most closely related to our approach.

Approximate policy iteration (API) is summarized in algorithm 1. The function Z(π)
denotes the specific method used to approximate the value function for the policy π. The
two most commonly used methods — Bellman residual approximation and least-squares ap-
proximation (Lagoudakis and Parr, 2003) — minimize the L2 norm of the Bellman residual.

The approximations based on minimizing L2 norm of the Bellman residual are common
in practice since they are easy to compute and often lead to good results. Most theoretical
analyses of API, however, assume minimization of the L∞ norm of the Bellman residual:

Z(π) ∈ arg min
v∈M

‖(I− γPπ)v − rπ‖∞ (3)

7
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Algorithm 1: Approximate policy iteration, where Z(π) denotes a custom value
function approximation for the policy π.

1 π0, k ← rand, 1 ;
2 while πk 6= πk−1 do
3 ṽk ← Z(πk−1) ;
4 πk(s)← arg maxa∈A r(s, a) + γ

∑
s′∈S P (s, a, s′)ṽk(s) ∀s ∈ S ;

5 k ← k + 1 ;

L∞-API is shown in algorithm 1, where Z(π) is calculated using the following program:

min
φ,v

φ

s.t. (I− γPπ)v + 1φ ≥ rπ
−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(4)

We are not aware of convergence or divergence proofs of L∞-API, and this analysis is
beyond the scope of this paper. Theoretically, it is also possible to minimize the L1 norm
of the Bellman residual, but we are not aware of any study of such an approximation.

In the above description of API, we assumed that the value function is approximated for
all states and actions. This is impossible in practice due to the size of the MDP. Instead, API
only relies on a subset of states and actions, provided as samples. API is not guaranteed to
converge in general and its analysis is typically in terms of limit behavior. The limit bounds
are often very loose. We discuss the performance of API and how it relates to approximate
bilinear programming in more detail in Section 7.

Approximate linear programming — a method for value function approximation — is
based on the linear program formulation of exact MDPs:

min
v

∑
s∈S

c(s)v(s)

s.t. v(s)− γ
∑
s′∈S

P (s′, s, a)v(s′) ≥ r(s, a) ∀(s, a) ∈ (S,A)
(5)

We use A as a shorthand notation for the constraint matrix and b for the right-hand
side. The value c represents a distribution over the states, usually a uniform one. That
is,
∑

s∈S c(s) = 1. The linear program (5) is often too large to be solved precisely, so it is
approximated to get an approximate linear program by assuming that v ∈ M (de Farias
and van Roy, 2003), as follows:

min
v

cTv

s.t. Av ≥ b

v ∈M
(ALP–L1)

The constraint v ∈ M denotes the approximation. To actually solve this linear program,
the value function is represented as v = Φx. Assumption 10 guarantees the feasibility of
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the ALP. The optimal solution of the ALP, ṽ, satisfies: ṽ ≥ v∗. Therefore, the objective of
(ALP–L1) represents the minimization of ‖ṽ − v∗‖1,c (de Farias, 2002).

Approximate linear programming is guaranteed to converge to a solution and minimize
a weighted L1 norm on the solution quality.

Theorem 11 (e.g. (de Farias, 2002)). Given Assumption 10, let ṽ be the solution of the
approximate linear program (ALP–L1). If c = α then

‖v∗ − ṽ‖1,α ≤
2

1− γ min
v∈M

‖v∗ − v‖∞.

The difficulty with the solution of ALP is that it is hard to derive guarantees on the
policy loss based on the bounds in terms of the L1 norm; it is possible when the objective
function c represents ū, as Remark 9 shows. In addition, the constant 1/(1 − γ) may be
very large when γ is close to 1.

Approximate linear programs are often formulated in terms of samples instead of the full
formulation above. The performance guarantees are then based on analyzing the probability
that a large number of constraints is violated. It is generally hard to translate the constraint
violation bounds to bounds on the quality of the value function and the policy.

4. Bilinear Program Formulations

This section shows how to formulate value function approximation as a separable bilinear
program. Bilinear programs are a generalization of linear programs with an additional
bilinear term in the objective function. A separable bilinear program consists of two linear
programs with independent constraints and are fairly easy to solve and analyze.

Definition 12 (Separable Bilinear Program). A separable bilinear program in the normal
form is defined as follows:

min
w,x y,z

sT1w + rT1 x+ xTCy + rT2 y + sT2 z

s.t. A1x+B1w = b1 A2y +B2z = b2

w, x ≥ 0 y, z ≥ 0

(BP–m)

The objective of the bilinear program (BP–m) is denoted as f(w, x, y, z). We separate
the variables using a vertical line and the constraints using different columns to emphasize
the separable nature of the bilinear program. In this paper, we only use separable bilinear
programs and refer to them simply as bilinear programs.

We present three different approximate bilinear formulations that minimize the following
bounds on the approximate value function.

1. Robust policy loss: Minimizes ‖v∗ − vπ‖∞ by minimizing the bounds in Theorem 7:

min
π∈Π
‖v∗ − vπ‖∞ ≤ min

v∈M

1

1− γ ‖v − Lv‖∞

2. Expected policy loss: Minimizes ‖v∗−v)π‖1,α by minimizing the bounds in Theorem 8:

min
π∈Π
‖v∗ − vπ‖1,α ≤ αTv∗ + min

v∈M

(
−αTṽ +

1

1− γ ‖v − Lv‖∞
)

min
π∈Π
‖v∗ − vπ‖1,α ≤ αTv∗ + min

v∈M

(
−αTṽ + ‖v − Lv‖ū

)
.

9
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3. The sum of k largest errors: This formulation represents a hybrid between the robust
and expected formulations. It is more robust than simply minimizing the expected
performance but is not as sensitive to worst-case performance.

The appropriateness of each formulation depends on the particular circumstances of the
domain. For example, minimizing robust bounds is advantageous when the initial distribu-
tion is not known and the performance must be consistent under all circumstances. On the
other hand, minimizing expected bounds on the value function is useful when the initial
distribution is known.

In the formulations described below, we initially assume that samples of all states and
actions are used. This means that the precise version of the operator L is available. To solve
large problems, the number of samples would be much smaller; either simply subsampled
or reduced using the structure of the MDP. Reducing the number of constraints in linear
programs corresponds to simply removing constraints. In approximate bilinear programs it
also reduces the number of some variables, as Section 6 describes.

The formulations below denote the value function approximation generically by v ∈M.
That restricts the value functions to be representable using features. Representable value
functions v can be replaced by a set of variables x as v = Φx. This reduces the number of
variables to the number of features.

4.1 Robust Policy Loss

The solution of the robust approximate bilinear program minimizes the L∞ norm of the
Bellman residual ‖v − Lv‖∞. This minimization can be formulated as follows.

min
π λ,λ′,v

πTλ+ λ′

s.t. Bπ = 1 Av − b ≥ 0

π ≥ 0 λ+ λ′1 ≥ Av − b

λ, λ′ ≥ 0

v ∈M

(ABP–L∞)

All the variables are vectors except λ′, which is a scalar. The matrix A represents con-
straints that are identical to the constraints in (ALP–L1). The variables λ correspond
to all state-action pairs. These variables represent the Bellman residuals that are being
minimized. This formulation offers the following guarantees.

Theorem 13. Given Assumption 10, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate
bilinear program (ABP–L∞) satisfies:

π̃Tλ̃+ λ̃′ = ‖Lṽ − ṽ‖∞ ≤ min
v∈K∩M

‖Lv − v‖∞
≤ 2 min

v∈M
‖Lv − v‖∞

≤ 2(1 + γ) min
v∈M

‖v − v∗‖∞.

10
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Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the
policy loss is bounded by:

‖v∗ − vπ̃‖∞ ≤
2

1− γ

(
min
v∈M

‖Lv − v‖∞
)
.

It is important to note that the theorem states that solving the approximate bilinear
program is equivalent to minimization over all representable value functions, not only the
transitive-feasible ones. This follows by subtracting a constant vector 1 from ṽ to balance
the lower bounds on the Bellman residual error with the upper ones. This reduces the
Bellman residual by 1/2 without affecting the policy. Finally, note that whenever v∗ ∈M,
both ABP and ALP will return the optimal value function v∗.

To prove the theorem, we first define the following linear program, which solves for the
L∞ norm of the Bellman update Lπ for fixed value function v and policy π.

f1(π, v) = min
λ,λ′

πTλ+ λ′

s.t. 1λ′ + λ ≥ Av − b

λ ≥ 0

(6)

The linear program (6) corresponds to the bilinear program (ABP–L∞) with a fixed policy
π and value function v.

Lemma 14. Let v ∈ K be a transitive-feasible value function and let π be a policy. Then:

f1(π, v) ≥ ‖v − Lπv‖∞,

with an equality for a deterministic policy π.

Proof. The dual of the linear program (6) is the following program.

max
x

xT(Av − b)
s.t. x ≤ π

1Tx = 1

x ≥ 0

(7)

Note that replacing 1Tx = 1 by 1Tx ≤ 1 preserves the properties of the linear program
and would add an additional constraint in (ABP–L∞): λ′ ≥ 0.

First, we show that f1(π, v) ≥ ‖Lπv − v‖∞. Because v is feasible in the approximate
bilinear program (ABP–L∞), Av − b ≥ 0 and v ≥ Lv from Lemma 38. Let state s be the
state in which t = ‖Lπv − v‖∞ is achieved. That is:

t = v(s)−
∑
a∈A

π(s, a)

(
r(s, a) +

∑
s′∈S

γP (s′, s, a)v(s′)

)
.

Now let x(s, a) = π(s, a) for all a ∈ A. This is a feasible solution with value t, from the
stochasticity of the policy and therefore a lower bound on the objective value.

11
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To show the equality for a deterministic policy π, we show that f1(π, v) ≤ ‖Lv − v‖∞,
using that π ∈ {0, 1}. Then let x∗ be an optimal solution of (7). Define the index of x∗

with the largest objective value as:

i ∈ arg max
{i x∗(i)>0}

(Av − b)(i).

Let solution x′(i) = 1 and x′(j) = 0 for j 6= i, which is feasible since π(i) = 1. In addition:

(Av − b)(i) = ‖Lπv − v‖∞.

Now (x∗)T(Av − b) ≤ (x′)T(Av − b) = ‖Lπv − v‖∞, from the fact that i is the index of the
largest element of the objective function.

When the policy π is fixed, the approximate bilinear program (ABP–L∞) becomes the
following linear program:

f2(π) = min
λ,λ′,v

πTλ+ λ′

s.t. Av − b ≥ 0

1λ+ λ′ ≥ Av − b
λ ≥ 0

v ∈M

(8)

Using Lemma 38 , this linear program corresponds to:

f2(π) = min
v∈M∩K

f1(π, v).

Then it is easy to show that:

Lemma 15. Given a policy π, let ṽ be an optimal solution of the linear program (8). Then:

f2(π) = ‖Lπṽ − ṽ‖∞ ≤ min
v∈M∩K

‖Lπv − v‖∞.

When v is fixed, the approximate bilinear program (ABP–L∞) becomes the following
linear program:

f3(v) = min
π

f2(π, v)

s.t. Bπ = 1

π ≥ 0

(9)

Note that the program is only meaningful if v is transitive-feasible and that the function
f2 corresponds to a minimization problem.

Lemma 16. Let v ∈M∩K be a transitive-feasible value function. There exists an optimal
solution π̃ of the linear program (9) such that:

1. π̃ represents a deterministic policy
2. Lπ̃v = Lv
3. ‖Lπ̃v − v‖∞ = minπ∈Π ‖Lπv − v‖∞ = ‖Lv − v‖∞

12
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Proof. The existence of an optimal π that corresponds to a deterministic policy follows
from Lemma 15, the correspondence between policies and values π, and the existence of a
deterministic greedy policy.

Since v ∈ K, we have for some policy π that:

v ≥ Lv = Lπv ≥ Lπ̃v.

Assuming that Lπ̃ < Lv leads to a contradiction since π is also a feasible solution in the
linear program (9) and:

v − Lπ̃ > v − Lv
‖v − Lπ̃‖∞ > ‖v − Lv‖∞.

This proves the lemma.

Theorem 13 now easily follows from the lemmas above.

Proof. Let v̄ be a value function with the minimal ‖Lv̄−v̄‖∞ feasible in approximate bilinear
program (ABP–L∞), and let π̄ be a greedy policy with respect to v̄. Because v̄ ≥ v∗, as
Lemma 38 shows, we get:

t = ‖Lv̄ − v̄‖∞ = ‖Lv̄v̄ − v̄‖∞.

Let f∗ be the optimal objective value of (ABP–L∞). Because both v̄ and π̄ are feasible in
(ABP–L∞), we have that f∗ ≤ t. Now, assume that ṽ is an optimal solution of (ABP–L∞)
with an objective value f̃ = ‖Lṽ − ṽ‖∞ > t. Then, from Lemma 16, f̃ > t ≥ f∗, which
contradicts the optimality of ṽ.

To show that the optimal policy is deterministic and greedy, let π∗ be the optimal policy.
Then consider the state s for which π̃ does not define a deterministic greedy action. From
the definition of greedy action ā:

(Lāṽ)(s) ≤ (Lπ̃ṽ)(s).

From the bilinear formulation (ABP–L∞), it is easy to show that there is an optimal solution
such that:

(Laṽ)(s) ≤ λ̃′ + λ̃(s, a)

λ̃(s, ā) ≤ λ̃(s, a).

Then setting π̃(s, ā) = 1 and all other action probabilities to 0, the difference in the objective
value function:

λ̃(s, ā)−
∑
a∈A

λ̃(s, a) ≤ 0.

Therefore, the objective function for the deterministic greedy policy does not increase.
The remainder of the theorem follows directly from Proposition 40, Proposition 41, and
Proposition 42. The bounds on the policy loss then follow directly from Theorem 7.

13
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4.2 Expected Policy Loss

This section describes bilinear programs that minimize expected policy loss for a given initial
distribution ‖v − Lv‖1,α. The initial distribution can be used to derive tighter bounds on
the policy loss. We describe two formulations. They respectively minimize an L∞ and a
weighted L1 norm on the Bellman residual.

The expected policy loss can be minimized by solving the following bilinear formulation.

min
π λ,λ′,v

πTλ+ λ′ − (1− γ)αTv

s.t. Bπ = 1 Av − b ≥ 0

π ≥ 0 λ+ λ′1 ≥ Av − b

λ, λ′ ≥ 0

v ∈M

(ABP–L1)

Notice that this formulation is identical to the bilinear program (ABP–L∞) with the
exception of the term −(1− γ)αTv.

Theorem 17. Given Assumption 10, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate
bilinear program (ABP–L1) satisfies:

1

1− γ
(
π̃Tλ̃+ λ̃′

)
− αTṽ =

1

1− γ ‖Lṽ − ṽ‖∞ − α
Tv ≤ min

v∈K∩M

(
1

1− γ ‖Lv − v‖∞ − α
Tv

)
≤ min

v∈M

(
1

1− γ ‖Lv − v‖∞ − α
Tv

)
Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the
policy loss is bounded by:

‖v∗ − vπ̃‖1,α ≤
2

1− γ

(
min
v∈M

1

1− γ ‖Lv − v‖∞ − ‖v
∗ − v‖1,α

)
.

Notice that the bound in this theorem is tighter than the one in Theorem 13. In
particular, ‖v∗ − ṽ‖1,α > 0, unless the solution of the ABP is the optimal value function.

Proof. The proof of the theorem is almost identical to the proof of Theorem 13 with two
main differences. First, the objective function of (ABP–L1) is insensitive to adding a
constant to the value function:

‖(ṽ + k1)− L(v + k1)‖∞ − αT(v + k1) = ‖ṽ − Lv‖∞ − αTv.

Hence the missing factor 2 when going from minimization over K∩M to minimization over
M. The second difference is in the derivation of the bound on the policy loss, which follows
directly from Theorem 8.

14
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The bilinear program formulation in (ABP–L1) can be further strengthened when an
upper bound on the state-visitation frequencies is available.

min
π λ,v

πTUλ− αTv

s.t. Bπ = 1 Av − b ≥ 0

π ≥ 0 λ ≥ Av − b

λ ≥ 0

v ∈M

(ABP–U)

Here U : |S| · |A| × |S| · |A| is a matrix that maps a policy to bounds on state-action
visitation frequencies. It must satisfy that:

π(s, a) = 0⇒ (πTU)(s, a) = 0 ∀s ∈ S ∀a ∈ A.

Remark 18. One simple option is to have U represent a diagonal matrix of ū, where ū is
the bound for all policies π ∈ Π. That is:

U((s, a), (s′, a′)) =

{
ū(s) s′ = s

0 otherwise
∀s, s′ ∈ S a, a′ ∈ A.

The formal guarantees for this formulation are as follows.

Theorem 19. Given Assumption 10 and that for all π ∈ Π :
∑

a∈A(πTU)(s, a) ≥ uTπ (s),

any optimal solution (π̃, ṽ, λ̃, λ̃′) of the bilinear program (ABP–U) then satisfies:

π̃TUλ̃− αTṽ = ‖ṽ − Lṽ‖ū − αTṽ ≤ min
v∈K∩M

(
‖v − Lv‖ū − αTv

)
.

Assuming that U is defined as in Remark 18, there exists an optimal solution π̃ that is
greedy with respect to ṽ and:

‖v∗ − vπ̃‖1,α ≤ min
v∈M∩K

(
‖v − Lv‖1,ū(v) − ‖v∗ − v‖1,α

)
.

Here, ū(v) represents an upper bound on the state-action visitation frequencies for a policy
greedy with respect to value function v.

Unlike Theorem 13 and Theorem 17, the bounds in this theorem do not guarantee that
the solution quality does not degrade by restricting the value function to be transitive-
feasible.

To prove the theorem we first define the following linear program that solves for the L1

norm of the Bellman update Lπ for a value function v.

f1(π, v) = min
λ,λ′

πTUλ

s.t. 1λ′ + λ ≥ Av − b

λ ≥ 0

(10)

The linear program (6) corresponds to the bilinear program (ABP–U) with a fixed policy
π and value function v. Notice, in particular, that αTv is a constant.
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Lemma 20. Let value function v be feasible in the bilinear program (ABP–U), and let π
be an arbitrary policy. Then:

f1(π, v) ≥ ‖Lπv − v‖1,ū,

with an equality for a deterministic policy.

Proof. The dual of the linear program (10) program is the following.

max
x

xT(Av − b)
s.t. x ≤ UTπ

x ≥ 0

(11)

We have that f1(π, v) ≥ ‖Lπv − v‖1,ū since x = UTπ is a feasible solution. To show the
equality for a deterministic policy π, let x∗ be an optimal solution of linear program (11).
Since Av ≥ b and U is non-negative, an optimal solution satisfies x = UTπ. The optimal
value of the linear program thus corresponds to the definition of the weighted L1 norm.

The proof of Theorem 19 is similar to the proof of Theorem 13, but using Theorem 8
instead of Theorem 7 to bound the policy loss. The existence of a deterministic and greedy
optimal solution π̃ follows also like Theorem 13, omitting λ′ and weighing λ by ū.

4.3 Hybrid Formulation

While the robust bilinear formulation (ABP–L∞) guarantees to minimize the robust ap-
proximation error it may be overly pessimistic. The bilinear program (ABP–U), on the
other hand, optimizes the average performance, but does not provide strong guarantees. It
is possible to combine the advantages (and disadvantaged) of these programs using a hybrid
formulation. The hybrid formulation minimizes the hybrid norm of the Bellman residual,
defined as:

‖x‖k,c = max
{y 1Ty=k,1≥y≥0}

n∑
i=1

y(i)c(i)|x(i)|,

where n is the length of vector x and c ≥ 0. It is easy to show that this norm represents the
c-weighted L1 norm of the k largest components of the vector. As such, it is more robust
than the plain L1 norm, but is not as sensitive to outliers as the L∞ norm. Notice that the
solution may be fractional when k /∈ Z — that is, some elements are counted only partially.

The bilinear program that minimizes the hybrid norm is defined as follows.

min
π λ,λ′,v

πTUλ+ kλ′

s.t. Bπ = 1 Av − b ≥ 0

π ≥ 0 λ+ λ′U−11 ≥ Av − b

λ, λ′ ≥ 0

v ∈M

(ABP–h)

Here U is a matrix that maps a policy to bounds on state-action visitation frequencies, for
example, as defined in Remark 18.
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Theorem 21. Given Assumption 10 and U that is defined as in Remark 18, any optimal
solution (π̃, ṽ, λ̃, λ̃′) of (ABP–h) then satisfies:

π̃TUλ̃+ kλ̃′ = ‖Lṽ − ṽ‖k,ū(π̃) ≤ min
v∈M∩K

‖Lṽ − ṽ‖k,ū(v).

Here, ū(v) represents the upper bound on the state-action visitation frequencies for policy
greedy with respect to value function v.

The implication of these bounds on the policy loss is beyond the scope of this paper,
but it is likely that some form of policy loss bounds can be developed.

The proof of the theorem is almost identical to the proof of Theorem 13 lemma. We
first define the following linear program, which solves for the required norm of the Bellman
update Lπ for value function v and policy π.

f1(π, v) = min
λ,λ′

πTUλ+ kλ′

s.t. λ′U−11 + λ ≥ Av − b

λ, λ′ ≥ 0

(12)

The linear program (12) corresponds to the bilinear program (ABP–h) with a fixed policy
π and value function v.

Lemma 22. Let v ∈ K be a transitive-feasible value function and let π be a policy and U
be defined as in Remark 18. Then:

f1(π, v) ≥ ‖v − Lπv‖k,ū,

with an equality for a deterministic policy π.

Proof. The dual of the linear program (6) program is the following.

max
x

xT(Av − b)

s.t. x ≤ UTπ

1T
(
UT
)−1

x ≤ k
x ≥ 0

(13)

First, change the variables in the linear program to x = UTz to get:

max
z

zTU(Av − b)

s.t. z ≤ π
1Tz ≤ k
z ≥ 0

(14)

using the fact that U is diagonal and positive.
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The norm‖Lπv − v‖k,c can be expressed as the following linear program:

max
y

yTXU(Av − b)

s.t. y ≤ 1

1Ty ≤ k
y ≥ 0

(15)

Here, the matrix X : |S| × |S| · |A| selects the subsets of the Bellman residuals that
correspond the the policy as defined:

X(s, (s′, a′)) =

{
π(s′, a′) when s = s′

0 otherwise
.

It is easy to shows that v − Lπv = X(Av − b). Note that XU = UX from the definition of
U .

Clearly, when π ∈ {0, 1} is deterministic the linear programs (14) and (15) are identical.
When the policy π is stochastic, assume an optimal solution y of (15) and let z = XTy.
Then, z is feasible in (14) with the identical objective value, which shows the inequality.

5. Solving Bilinear Programs

This section describes methods for solving approximate bilinear programs. Bilinear pro-
grams can be easily mapped to other global optimization problems, such as mixed integer
linear programs (Horst and Tuy, 1996). We focus on a simple iterative algorithm for solving
bilinear programs approximately, which also serves as a basis for many optimal algorithms.

Solving a bilinear program is an NP-complete problem (Bennett and Mangasarian,
1992). The membership in NP follows from the finite number of basic feasible solutions
of the individual linear programs, each of which can be checked in polynomial time. The
NP-hardness is shown by a reduction from the SAT problem.

There are two main approaches to solving bilinear programs optimally. In the first
approach, a relaxation of the bilinear program is solved. The solution of the relaxed problem
represents a lower bound on the optimal solution. The relaxation is then iteratively refined,
for example by adding cutting plane constraints, until the solution becomes feasible. This
is a common method used to solve integer linear programs. The relaxation of the bilinear
program is typically either a linear or semi-definite program (Carpara and Monaci, 2009).

In the second approach, feasible, but suboptimal, solutions of the bilinear program
are calculated approximately. The approximate algorithms are usually some variation of
algorithm 2. The bilinear program formulation is then refined — using concavity cuts (Horst
and Tuy, 1996) — to eliminate previously computed feasible solutions and solved again.
This procedure can be shown to find the optimal solution by eliminating all suboptimal
feasible solutions.

The most common and simplest approximate algorithm for solving bilinear programs
is algorithm 2. This algorithm is shown for the general bilinear program (BP–m), where
f(w, x, y, z) represents the objective function. The minimizations in the algorithm are linear
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Algorithm 2: Iterative algorithm for solving (BP–m)

1 (x0, w0)← random ;
2 (y0, z0)← arg miny,z f(w0, x0, y, z) ;
3 i← 1 ;
4 while yi−1 6= yi or xi−1 6= xi do
5 (yi, zi)← arg min{y,z A2y+B2z=b2 y,z≥0} f(wi−1, xi−1, y, z) ;

6 (xi, wi)← arg min{x,w A1x+B1w=b1 x,w≥0} f(w, x, yi, zi) ;

7 i← i+ 1

8 return f(wi, xi, yi, zi)

programs which can be easily solved. Interestingly, as we will show in Section 7, algorithm 2
applied to ABP generalizes a version of API.

While algorithm 2 is not guaranteed to find an optimal solution, its empirical perfor-
mance is often remarkably good (Mangasarian, 1995). Its basic properties are summarized
by the following proposition.

Proposition 23 (e.g. (Bennett and Mangasarian, 1992)). algorithm 2 is guaranteed to
converge, assuming that the linear program solutions are in a vertex of the optimality sim-
plex. In addition, the global optimum is a fixed point of the algorithm, and the objective
value monotonically improves during execution.

The proof is based on the finite count of the basic feasible solutions of the individual
linear programs. Because the objective function does not increase in any iteration, the
algorithm will eventually converge.

algorithm 2 can be further refined in case of approximate bilinear programs. For ex-
ample, the constraint v ∈ M in the bilinear programs serves just to simplify the bilinear
program and a value function that violates it may still be acceptable. The following propo-
sition motivates the construction of a new value function from two transitive-feasible value
functions.

Proposition 24. Let ṽ1 and ṽ2 be feasible value functions in (ABP–L∞). Then the value
function

ṽ(s) = min{ṽ1(s), ṽ2(s)}
is also feasible in bilinear program (ABP–L∞). Therefore ṽ ≥ v∗ and

‖v∗ − ṽ‖∞ ≤ min {‖v∗ − ṽ1‖∞, ‖v∗ − ṽ2‖∞} .

The proof of the proposition is based on Jensen’s inequality and is provided in the
appendix. Note that ṽ may have a greater Bellman residual than either ṽ1 or ṽ2.

Proposition 24 can be used to extend algorithm 2 when solving ABPs. One option is
to take the state-wise minimum of values from multiple random executions of algorithm 2,
which preserves the transitive feasibility of the value function. However, the increasing
number of value functions used to obtain ṽ also increases the potential sampling error.
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6. Sampling Guarantees

In most practical problems, the number of states is too large to be explicitly enumerated.
Even though the value function is restricted to be representable, the problem cannot be
solved. The usual approach is to sample a limited number of states, actions, and their tran-
sitions to approximately calculate the value function. This section shows basic properties
of the samples that can provide guarantees of the solution quality with incomplete samples.

First, we show a formal definition of the samples and then show how to use them. The
simplest samples are defined as follows.

Definition 25. One-step simple samples are defined as:

Σ̃ ⊆ {(s, a, (s1 . . . sn), r(s, a)) s, s′ ∈ S, a ∈ A},

where s1 . . . sn are selected i.i.d. from the distribution P (s, a).

More informative samples include the full distribution instead of samples from the dis-
tribution. While these samples are often unavailable in practice, they are useful in the
theoretical analysis of sampling issues.

Definition 26. One-step samples with expectation are defined as follows:

Σ̄ ⊆ {(s, a, P (s, a), r(s, a)) s ∈ S, a ∈ A}.

Membership a state in the samples is denoted simply as s ∈ Σ or (s, a) ∈ Σ with the
remaining variables, such as r(s, a) considered to be available implicitly.

The sampling models may vary significantly in different domains. The focus of this work
is on problems with either a fixed set of available samples or a domain model. Therefore,
we do not analyze methods for gathering samples. We also do not assume that the samples
come from previous executions, but rather from a deliberate sample-gathering process.

The samples are used to approximate the Bellman operator and the set of transitive-
feasible value functions.

Definition 27. The sampled Bellman operator and the corresponding set of sampled
transitive-feasible functions are defined as:

(L̄(v))(s̄) = max
{a (s̄,a)∈Σ̄}

r(s̄, a) + γ
∑
s′∈S

P (s̄, a, s′)v(s′) ∀s̄ ∈ Σ̄ (16)

K̄ =
{
v (s̄, a, P (s̄, a), r(s̄, a)) ∈ Σ̄, v(s̄) ≥ (L̄v)(s̄)

}
(17)

The less-informative set of samples Σ̃ can be used as follows.

Definition 28. The estimated Bellman operator and the corresponding set of estimated
transitive-feasible functions are defined as:

(L̃(v))(s̄) = max
{a (s̄,a)∈Σ̃}

r(s̄, a) + γ
1

n

n∑
i=1

v(si) ∀s̄ ∈ Σ̃ (18)

K̃ =
{
v (s̄, a, (s1 . . . sn), r(s̄, a)) ∈ Σ̃, v(s̄) ≥ (L̃v)(s̄)

}
(19)
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Notice that operators L̃ and L̄ map value functions to a subset of all states — only
states that are sampled. The values for other states are assumed to be undefined.

The samples can also be used to create an approximation of the initial distribution, or
the distribution of visitation-frequencies of a given policy. The estimated initial distribution
ᾱ is defined as:

ᾱ(s) =

{
α(s) (s, ·, ·, ·) ∈ Σ̄

0 otherwise
.

The existing sampling bounds for approximate linear programming focus on bounding
the probability that a large number of constraints is violated when assuming a distribution
over the constraints (de Farias and van Roy, 2004). The difficulty with this approach is that
the bounds on the number of violated constraints do not transform easily to the bounds on
the quality of the value function, or the policy. In addition, the constraint distribution is
often somewhat arbitrary because it is difficult to define and sampling from the appropriate
distributions.

Our approach, on the other hand, is to define properties of the sampled operators
that guarantee that the sampling error bounds are small. These bounds do not rely on
distributions over constraints and transform directly to bounds on the policy loss. To
define bounds on the sampling behavior, we propose the following assumptions.The first
assumption limits the error due to missing transitions in the sampled Bellman operator L̄.

Assumption 29 (Constraint Sampling Behavior). For all representable value functions
v ∈M:

K ⊆ K̄ ⊆ K(εp)

The second assumption quantifies the error on the estimation of the transitions of the
estimated Bellman operator L̃.

Assumption 30 (Constraint Estimation Behavior). For all representable value functions
v ∈M the following holds:

K̄(−εs) ⊆ K̃ ⊆ K̄(εs).

These assumptions are intentionally made generic so that they apply to a wide range
of scenarios. Domain specific assumptions are likely to lead to much tighter bounds, but
these are beyond the scope of this paper.

Although we define the sampled Bellman operator directly, in practice only its approx-
imate version is typically estimated. The direct definitions are defined only for the sake of
theoretical analysis. The sampled matrices used in bilinear program (ABP–L∞) are defined
as follows for all (si, aj) ∈ Σ̃.

ÃΦ =

(− φ(si)
T − γ 1

m

∑
s′∈s′1...s′m

P (si, aj , s
′)φ(s′)T −

− ... −

)
b̃ =

(
r(si, aj)

...

)
B̃(s′, (si, aj)) = I

{
s′ = si

}
∀s′ ∈ Σ̃
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The ordering over states in the definitions above is also assumed to be consistent. The
sampled version of the bilinear program (ABP–L∞) is then:

min
π λ,λ′,x

πTλ+ λ′

s.t. B̃π = 1 ÃΦx− b ≥ 0

π ≥ 0 λ+ λ′1 ≥ ÃΦx− b̃

λ, λ′ ≥ 0

(s–ABP–L∞)

The size of the bilinear program (s–ABP–L∞) scales with the number of samples and
features, not with the size of the full MDP, because the variables λ and π are defined only
for state — action pairs in Σ̃. That is |π| = |λ| = |{(s, a) ∈ Σ}|. The number of constraints
in (s–ABP–L∞) is approximately three times the number of variables λ. Finally, the number
of variables x corresponds to the number of approximation features.

Theorem 13 shows that sampled robust ABP minimizes ‖v − L̃v‖∞ or ‖v − L̄v‖∞,
depending on the samples used. It is then easy to derive sampling bounds that rely on the
sampling assumptions defined above.

Theorem 31. Let the optimal solutions to the sampled and precise Bellman residual min-
imization problems be:

v1 ∈ min
v∈M∩K

‖v − Lv‖∞ v2 ∈ min
v∈M∩K

‖v − L̄v‖∞ v3 ∈ min
v∈M∩K

‖v − L̃v‖∞

Value functions v1, v2, v3 correspond to solutions of instances of robust approximate bilinear
programs for the given samples. Also let v̂i = vπi, where πi is greedy with respect to vi. Then,
given Assumptions 10, 29, and 30, the following holds:

‖v∗ − v̂1‖∞ ≤
2

1− γ min
v∈M

‖v − Lv‖∞

‖v∗ − v̂2‖∞ ≤
2

1− γ

(
min
v∈M

‖v − Lv‖∞ + εp

)
‖v∗ − v̂3‖∞ ≤

2

1− γ

(
min
v∈M

‖v − Lv‖∞ + εp + 2εs

)
These bounds show that it is possible to bound policy loss due to incomplete samples.

As mentioned above, existing bounds on constraint violation in approximate linear pro-
gramming (de Farias and van Roy, 2004) typically do not easily lead to policy loss bounds.

Sampling guarantees for other bilinear program formulations are very similar. Because
they also rely on an approximation of the initial distribution and the policy loss, they require
additional assumptions on uniformity of state-samples.

Proof. We show bounds on ‖vi−Lvi‖∞; the remainder of the theorem follows directly from
Theorem 13. The second inequality follows from Assumption 29 and Lemma 36, as follows:

v2 − Lv2 ≤ v2 − L̄v2

≤ v1 − L̄v1

≤ v1 − Lv1 + εp1
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The second inequality follows from Assumptions 29, 30 and Lemma 36, as follows:

v3 − Lv3 ≤ v2 − L̄v2 + εp1

≤ v2 − L̃v2 + εs1 + εp1

≤ v1 − L̃v1 + εs1 + εp1

≤ v1 − Lv1 + 2εs1 + εp1

Here, we use the fact that vi ≥ Lvi and that vi’s minimize the corresponding Bellman
residuals.

To summarize, this section identifies basic assumptions on the sampling behavior and
shows that approximate bilinear programming scales well in the face of uncertainty caused
by incomplete sampling. More detailed analysis will need to focus on identifying problem-
specific assumptions and sampling modes that guarantee the basic conditions, namely sat-
isfying Assumption 30 and Assumption 29. Such analysis is beyond the scope of this paper.

7. Discussion and Related ADP Methods

This section describes connections between approximate bilinear programming and two
closely related approximate dynamic programming methods: ALP, and L∞-API, which are
commonly used to solve factored MDPs (Guestrin et al., 2003). Our analysis sheds light
on some of their observed properties and leads to a new convergent form of approximate
policy iteration.

Approximate bilinear programming addresses some important issues with ALP: 1) ALP
provides value function bounds with respect to L1 norm, which does not guarantee small
policy loss, 2) ALP’s solution quality depends significantly on the heuristically-chosen ob-
jective function c in (ALP–L1) (de Farias, 2002), 3) the performance bounds involve a
constant 1/(1 − γ) which can be very large when γ is close to 1 and 4) incomplete con-
straint samples in ALP easily lead to unbounded linear programs. The drawback of using
approximate bilinear programming, however, is the higher computational complexity.

The first and the second issue in ALP can be addressed by choosing a problem-specific
objective function c (de Farias, 2002). Unfortunately, all existing bounds require that
c is chosen based on the optimal ALP solution for c. This is impossible to compute in
practice. Heuristic values for c are used instead. Robust approximate bilinear program
(ABP–L∞), on the other hand, has no such parameters. On the other hand, the expected-
loss bilinear program (ABP–U) can be seen as a method for simultaneously optimizing c
and the approximate linear program.

The fourth issue in approximate linear programs arises when the constraints need to be
sampled. The ALP may become unbounded with incomplete samples because its objective
value is defined using the L1 norm on the value function, and the constraints are defined
using the L∞ norm of the Bellman residual. In approximate bilinear programs, the Bellman
residual is used in both the constraints and objective function. The objective function of
ABP is then bounded below by 0 for an arbitrarily small number of samples.

The NP-completeness of ABP compares unfavorably with the polynomial complexity
of ALP. However, most other approximate dynamic programming algorithms are not guar-
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anteed to converge to a solution in finite time. As we show below, the exponential time
complexity of ABP is unavoidable (unless P = NP).

The following theorem shows that the computational complexity of the ABP formulation
is asymptotically the same as the complexity of tightly approximating the value function.

Theorem 32. Assume 0 < γ < 1, and a given ε > 0. Then it is NP-complete to determine:

min
v∈K∩M

‖Lv − v‖∞ < ε min
v∈M

‖Lv − v‖∞ < ε.

The problem remains NP-complete when Assumption 10 is satisfied. It is also NP-complete
to determine:

min
v∈M

‖Lv − v‖∞ − ‖v∗ − v‖1,α < ε min
v∈M

‖Lv − v‖1,ū − ‖v∗ − v‖1,α < ε,

assuming that ū is defined as in Remark 18.

As the theorem states, the value function approximation does not become computation-
ally simpler even when Assumption 10 holds — a universal assumption in the paper. Notice
that ALP can determine whether minv∈K∩M ‖Lv − v‖∞ = 0 in polynomial time.

The proof of Theorem 32 is based on a reduction from SAT and can be found in Sec-
tion A.2. The policy in the reduction determines the true literal in each clause, and the
approximate value function corresponds to the truth value of the literals. The approxima-
tion basis forces literals that share the same variable to have consistent values.

Approximate bilinear programming can also improve on API with L∞ minimization
(L∞-API for short), which is a leading method for solving factored MDPs (Guestrin et al.,
2003). Minimizing the L∞ approximation error is theoretically preferable, since it is com-
patible with the existing bounds on policy loss (Guestrin et al., 2003). The bounds on value
function approximation in API are typically (Munos, 2003):

lim sup
k→∞

‖v∗ − v̂k‖∞ ≤
2γ

(1− γ)2
lim sup
k→∞

‖ṽk − vk‖∞.

These bounds are looser than the bounds on solutions of ABP by at least a factor of 1/(1−γ).
Often the difference may be up to 1/(1−γ)2 since the error ‖ṽk−vk‖∞ may be significantly
larger than ‖ṽk−Lṽk‖∞. Finally, the bounds cannot be easily used, because they only hold
in the limit.

We propose Optimistic Approximate Policy Iteration (OAPI), a modification of API.
OAPI is shown in algorithm 1, where Z(π) is calculated using the following program:

min
φ,v

φ

s.t. Av ≥ b (≡ (I− γPπ)v ≥ rπ ∀π ∈ Π)

−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(20)

In fact, OAPI corresponds to algorithm 2 applied to ABP because the linear program (20)
corresponds to (ABP–L∞) with a fixed π (see (8)). Then, using Proposition 23, we get the
following corollary.
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Corollary 33. Optimistic approximate policy iteration converges in finite time. In addition,
the Bellman residual of the generated value functions monotonically decreases.

OAPI differs from L∞-API in two ways: 1) OAPI constrains the Bellman residuals by 0
from below and by φ from above, and then it minimizes φ. L∞-API constrains the Bellman
residuals by φ from both above and below. 2) OAPI, like API, uses only the current policy
for the upper bound on the Bellman residual, but uses all the policies for the lower bound
on the Bellman residual.

L∞-API cannot return an approximate value function that has a lower Bellman residual
than ABP, given the optimality of ABP described in Theorem 13. However, even OAPI, an
approximate ABP algorithm, performs comparably to L∞-API, as the following theorem
states.

Theorem 34. Assume that L∞-API converges to a policy π and a value function v that
both satisfy: φ = ‖v − Lπv‖∞ = ‖v − Lv‖∞. Then

ṽ = v +
φ

1− γ1

is feasible in the bilinear program (ABP–L∞), and it is a fixed point of OAPI. In addition,
the greedy policies with respect to ṽ and v are identical.

Notice that while the optimistic and standard policy iterations can converge to the
same solutions, the steps in their computation may not be identical. The actual results will
depend on the initialization.

To prove the theorem, we first consider L∞-API2 as a modification of L∞-API. L∞-
API2 is shown in algorithm 1, where Z(π) is calculated using the following program:

min
φ,v

φ

s.t. (I− γPa)v + 1φ ≥ ra ∀a ∈ A
−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(21)

The difference between linear programs (4) and (27) is that (4) involves only the current
policy, while (27) bounds (I− γPa)v + 1φ ≥ ra from below for all policies. Linear program
(27) differs from linear program (20) by not bounding the Bellman residual from below by
0.

Proposition 35. L∞-API and L∞-API2 generate the same sequence of policies if the initial
policies and tie-breaking is the same.

Proof. The proposition follows simply by induction from Lemma 39. The basic step follows
directly from the assumption. For the inductive step, let π1

i = π2
i , where π1 and π2 are

the policies with (4) and (27). Then from Lemma 39, we have that the corresponding
value functions v1

i = v2
i + c1. Because π1

i+1 and π2
i+1 are chosen greedily, we have that

π1
i+1 = π2

i+1.

The proof of Theorem 34 follows.
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Proof. The proof is based on two facts. First, ṽ is feasible with respect to the constraints in
(ABP–L∞). The Bellman residual changes for all the policies identically, since a constant
vector is added. Second, because Lπ is greedy with respect to ṽ, we have that ṽ ≥ Lπṽ ≥ Lṽ.
The value function ṽ is therefore transitive-feasible.

From Proposition 45, L∞-API can be replaced by L∞-API2, which will converge to the
same policy π. L∞-API2 will converge to the value function

ṽ = v +
φ

1− γ1.

From the constraints in (27) we have that ṽ ≥ Lπṽ. Then, since π is the greedy policy with
regard to this value function, we have that ṽ ≥ Lπṽ ≥ Lṽ. Thus ṽ is transitive-feasible
and feasible in (BP–m) according to Lemma 38. The theorem then follows from Lemma 39
and from the fact that the greedy policy minimizes the Bellman residual, as in the proof of
Lemma 16.

To summarize, OAPI guarantees convergence, while matching the performance of L∞-
API. The convergence of OAPI is achieved because given a non-negative Bellman residual,
the greedy policy also minimizes the Bellman residual. Because OAPI ensures that the
Bellman residual is always non-negative, it can progressively reduce it. In comparison,
the greedy policy in L∞-API does not minimize the Bellman residual, and therefore L∞-
API does not always reduce it. Theorem 34 also explains why API provides better solutions
than ALP, as observed in (Guestrin et al., 2003). From the discussion above, ALP can be
seen as an L1-norm approximation of a single iteration of OAPI. L∞-API, on the other
hand, performs many such ALP-like iterations.

8. Experimental Results

In this section, we validate the approach by applying it to simple reinforcement learning
benchmark problems. The focus of the paper is on the theoretical properties and the
experiments are intentionally designed to avoid interaction between the approximation in
the formulation and approximate solution methods. As Theorem 34 shows, even OAPI, the
very simple approximate algorithm for ABP, can perform as well as existing methods on
factored MDPs.

ABP is an off-policy approximation method, like LSPI (Lagoudakis and Parr, 2003) or
ALP. That means that the samples can be gathered independently of the control policy. It
is necessary, though, that multiple actions are sampled for each state to enable the selection
of different policies.

First, we demonstrate and analyze the properties of ABP on a simple chain problem
with 200 states, in which the transitions move to the right or left (2 actions) by one step
with a centered Gaussian noise of standard deviation 3. The rewards were set to sin(i/20)
for the right action and cos(i/20) for the left action, where i is the index of the state.
This problem is small enough to calculate the optimal value function and to control the
approximation features. The approximation basis in this problem is represented by piece-
wise linear features, of the form φ(si) = [i− c]+, for c from 1 to 200. The discount factor
in the experiments was γ = 0.95 and the initial distribution was α(130) = 1. We verified
that the solutions of the bilinear programs were always close to optimal, albeit suboptimal.
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Figure 1: L∞ Bellman residual for the chain problem

We experimented with the full state-action sample and randomly chose the features. All
results are averages over 50 runs with 15 features. In the results, we use ABP to denote a
close-to-optimal solution of robust ABP, ABPexp for the bilinear program (ABP–L1), and
ABPhyb for (ABP–h) with k = 5. API denotes approximate policy iteration that minimizes
the L2 norm.

Figure 1 shows the Bellman residual attained by the methods. It clearly shows that
the robust bilinear formulation most reliably minimizes the Bellman residual. The other
two bilinear formulations are not much worse. Notice also the higher standard deviation of
ALP and API. Figure 2 shows the expected policy loss, as specified in Definition 5, for the
calculated value functions. It confirms that the ABP formulation outperforms the robust
formulation, since its explicit objective is to minimize the expected loss. Similarly, Figure 3
shows the robust policy loss. As expected, it confirms the better performance of the robust
ABP formulation in this case.

Note that API and ALP may achieve lower policy loss on this particular domain than
ABP formulations, even though their Bellman residual is significantly higher. This is pos-
sible since ABP simply minimizes bounds on the policy loss. The analysis of tightness of
policy loss bounds is beyond the scope of this paper.

In the mountain-car benchmark, an underpowered car needs to climb a hill (Sutton
and Barto, 1998). To do so, it first needs to back up to an opposite hill to gain sufficient
momentum. The car receives a reward of 1 when it climbs the hill. The discount factor in
the experiments was γ = 0.99.

The experiments are designed to determine whether OAPI reliably minimizes the Bell-
man residual in comparison with API and ALP. We use a uniformly-spaced linear spline
to approximate the value function. The constraints were based on 200 uniformly sampled
states with all 3 actions per state. We evaluated the methods with the number of the
approximation features 100 and 144, which corresponds to the number of linear segments.

The results of robust ABP (in particular OAPI), ALP, API with L2 minimization, and
LSPI are depicted in Table 1. The results are shown for both L∞ norm and uniformly-
weighted L2 norm. The run-times of all these methods are comparable, with ALP being
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Figure 2: Expected policy loss for the chain problem
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Figure 3: Robust policy loss for the chain problem

the fastest. Since API (LSPI) is not guaranteed to converge, we ran it for at most 20
iterations, which was an upper bound on the number of iterations of OAPI. The results
demonstrate that ABP minimizes the L∞ Bellman residual much more consistently than
the other methods. Note, however, that all the considered algorithms would perform sig-
nificantly better given a finer approximation.

9. Conclusion and Future Work

We proposed and analyzed approximate bilinear programming, a new value-function ap-
proximation method, which provably minimizes bounds on policy loss. ABP returns the
optimal approximate value function with respect to the Bellman residual bounds, despite
being formulated with regard to transitive-feasible value functions. We also showed that
there is no asymptotically simpler formulation, since finding the closest value function and
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(a) L∞ error of the Bellman residual

Features 100 144

OAPI 0.21 (0.23) 0.13 (0.1)
ALP 13. (13.) 3.6 (4.3)
LSPI 9. (14.) 3.9 (7.7)
API 0.46 (0.08) 0.86 (1.18)

(b) L2 error of the Bellman residual

Features 100 144

OAPI 0.2 (0.3) 0.1 (1.9)
ALP 9.5 (18.) 0.3 (0.4)
LSPI 1.2 (1.5) 0.9 (0.1)
API 0.04 (0.01) 0.08 (0.08)

Table 1: Bellman residual of the final value function. The values are averages over 5 exe-
cutions, with the standard deviations shown in parentheses.

solving a bilinear program are both NP-complete problems. Finally, the formulation leads
to the development of OAPI, a new convergent form of API which monotonically improves
the objective value function.

While we only discussed approximate solutions of the ABP, a deeper study of bilin-
ear solvers may render optimal solution methods feasible. ABPs have a small number of
essential variables (that determine the value function) and a large number of constraints,
which can be leveraged by the solvers (Petrik and Zilberstein, 2007). The L∞ error bound
provides good theoretical guarantees, but it may be too conservative in practice. A similar
formulation based on L2 norm minimization may be more practical.

We believe that the proposed formulation will help to deepen the understanding of
value function approximation and the characteristics of existing solution methods, and
potentially lead to the development of more robust and widely-applicable reinforcement
learning algorithms.
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Appendix A. Proofs

A.1 Properties of Transitive-Feasible Value Functions

Basic properties of the Bellman operator, which we often use without a reference are the
following.

Lemma 36. Let v be any value function and let c be a scalar. Then:

L(v + c1) = Lv + γc1.

Lemma 37 (Monotonicity). Let P be a stochastic matrix. Then both the linear operators
P and (I − γP )−1 are monotonous:

x ≥ y ⇒ Px ≥ Py
x ≥ y ⇒ (I − γP )−1x ≥ (I − γP )−1y

for all x and y.

Lemma 4. Transitive feasible value functions form an upper bound on the optimal value
function. If v ∈ K(ε) is an ε-transitive-feasible value function, then

v ≥ v∗ − ε

1− γ1.

Proof. Let P ∗ and r∗ be the transition matrix and the reward vector of the policy. Then,
we have using Lemma 37:

v ≥ Lv − ε1
v ≥ γP ∗v + r∗ − ε1

(I− γP ∗)v ≥ r∗ − ε1
v ≥ (I− γP ∗)−1 r∗ − ε

1− γ

Lemma 38. A value function v satisfies Av ≥ b if an only if v ≥ Lv. In addition, if v is
feasible in (ABP–L∞), then v ≥ v∗.

Proof. The backward implication of the first part of the lemma follows directly from the
definition. The forward implication follows by an existence of λ = 0, λ′ = ‖ [Av − r]+ ‖∞,
which satisfy the constraints. The constraints on π are independent and therefore can be
satisfied independently. The second part of the lemma also holds in ALPs (de Farias, 2002)
and is proven identically.
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The minimization minv∈M ‖Lv− v‖∞ for a policy π can be represented as the following
linear program.

min
φ,v

φ

s.t. (I− γPπ)v + 1φ ≥ rπ
−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(22)

Consider also the following linear program.

min
φ,v

φ

s.t. (I− γPπ)v ≥ rπ
−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(23)

Next we show that the optimal solutions of (22) and (23) are closely related.

Lemma 39. Assume Assumption 10 and a given policy π. Let φ1, v1 and φ2, v2 optimal
solutions of linear programs (22) and (23) respectively. Define:

v̄1 = v1 +
φ1

1− γ v̄2 = v1 −
φ2

2(1− γ)
1

Then:
1. 2φ1 = φ2

2. v̄1 is an optimal solution in (23).
3. v̄2 is an optimal solution in (22).
4. Greedy policies with respect to v1 and v̄1 are identical.
5. Greedy policies with respect to v2 and v̄2 are identical.

Proof. Let φ̄1 = 2φ1 and φ̄2 = φ2
2 . We first show φ̄1, v̄1 is feasible in (23). It is representable

since 1 ∈M and it is feasible by the following simple algebraic manipulation:

(I− γPπ)v̄1 = (I− γPπ)v1 + (I− γPπ)
φ1

1− γ1

= (I− γPπ)v1 + φ11

≥ −φ11 + rπ + φ11

= rπ

and

−(I− γPπ)v̄1 + φ̄11 = −(I− γPπ)v̄1 + 2φ11

= −(I− γPπ)v1 − (I− γPπ)
φ1

1− γ1 + 2φ11

= −(I− γPπ)v1 − φ11 + 2φ11

≥ −φ11− rπ + 2φ11

= −rπ
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Next we show that φ̄2, v̄2 is feasible in (22). This solution is representable, since 1 ∈M,
and it is feasible by the following simple algebraic manipulation:

(I− γPπ)v̄2 + φ̄21 = (I− γPπ)v2 − (I− γPπ)
φ2

2(1− γ)
1 +

φ2

2
1

= (I− γPπ)v2 −
φ2

2
1 +

1

2
φ̄21

= (I− γPπ)v2

≥ rπ
and

−(I− γPπ)v̄2 + φ̄21 = −(I− γPπ)v̄2 +
φ2

2
1

= −(I− γPπ)v2 − (I− γPπ)
φ2

1− γ1 +
φ2

2
1

= −(I− γPπ)v2 + φ21

≥ −rπ
It is now easy to shows that φ̄1, v̄1 is optimal by contradiction. Assume that there exists

a solution φ2 < φ̄1. But then:
2φ̄2 ≤ φ2 < φ̄1 ≤ 2φ1,

which is a contradiction with the optimality of φ1. The optimality of φ̄2, v̄2 can be shown
similarly.

Proposition 40. Assumption 10 implies that:

min
v∈M∩K

‖Lv − v‖∞ ≤ 2 min
v∈M

‖Lv − v‖∞.

Proof. Let v̂ be the minimizer of φ̂ = minv∈M ‖Lv − v‖∞, and let π̂ be a policy that is
greedy with respect to v̂. Define:

ṽ = v̂ +
φ̂

1− γ .

Then from Lemma 39:
1. Value function ṽ is an optimal solution of (23): ṽ ≥ Lπṽ
2. Policy π̂ is greedy with regard to ṽ: Lπ̂ṽ ≥ Lṽ
3. ‖Lπṽ − ṽ‖∞ = 2φ̂

Then using a simple algebraic manipulation:

ṽ ≥ Lπ̂ṽ = Lṽ

and the proposition follows from Lemma 38.

Proposition 41. Let ṽ be a solution of the approximate bilinear program (ABP–L∞) and
let:

v′ = v − 1/2

(1− γ)
‖Lv − v‖∞1.

Then:
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1. ‖Lv′ − v′‖∞ = ‖Lv−v‖∞
2 .

2. Greedy policies with respect to v and v′ are identical.

The proposition follows directly from Lemma 39.

Proposition 42. Assumption 10 implies that:

min
v∈M

‖Lv − v‖∞ ≤ (1 + γ) min
v∈M

‖v − v∗‖∞.

Proof. Assume that v̂ is the minimizer of minv∈M ‖v − v∗‖∞ ≤ ε. Then:

v∗ − ε1 ≤ v ≤ v∗ + ε1
Lv∗ − γε1 ≤ Lv ≤ Lv∗ + γε1

Lv∗ − γε1− v ≤ Lv − v ≤ Lv∗ + γε1− v
Lv∗ − v∗ − (1 + γ)ε1 ≤ Lv − v ≤ Lv∗ − v∗ + (1 + γ)ε1

−(1 + γ)ε1 ≤ Lv − v ≤ (1 + γ)ε1.

Proposition 24. Let ṽ1 and ṽ2 be feasible value functions in (ABP–L∞). Then the
value function

ṽ(s) = min{ṽ1(s), ṽ2(s)}
is also feasible in bilinear program (ABP–L∞). Therefore ṽ ≥ v∗ and

‖v∗ − ṽ‖∞ ≤ min {‖v∗ − ṽ1‖∞, ‖v∗ − ṽ2‖∞} .

Proof. Consider a state s and action a. Then from transitive feasibility of the value functions
ṽ1 and ṽ2 we have:

ṽ1(s) ≥ γ
∑
s′∈S

P (s′, a, a)ṽ1(s′) + r(s, a)

ṽ2(s) ≥ γ
∑
s′∈S

P (s′, a, a)ṽ2(s′) + r(s, a).

From the convexity of the min operator we have that:

min

{∑
s′∈S

P (s′, a, a)ṽ1,
∑
s′∈S

P (s′, a, a)ṽ2(s′)

}
≥
∑
s′∈S

P (s′, a, a) min{ṽ1(s′), ṽ2)(s′)}.

Then the proposition follows by the following simple algebraic manipulation:

ṽ = min{ṽ1(s), ṽ2(s)} ≥ γmin

{∑
s′∈S

P (s′, a, a)ṽ1,
∑
s′∈S

P (s′, a, a)ṽ2(s′)

}
+ r(s, a)

≥ γ
∑
s′∈S

P (s′, a, a) min{ṽ1(s′), ṽ2)(s′)}+ r(s, a)

= γ
∑
s′∈S

P (s′, a, a)ṽ(s) + r(s, a).
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Lemma 43. Let uπ be the state-action visitation frequency of policy π. Then:

1Tu =
1

1− γ .

Proof. Let ua(s) = uπ(s, π(s, a)) for all states s ∈ S and actions a ∈ A. The lemma follows
as: ∑

a∈A
uTa (I− γPa) = cT∑

a∈A
uTa (I− γPa)1 = cT1

(1− γ)
∑
a∈A

uTa1 = 1

uT1 =
1

1− γ .

A.2 NP-Completeness

Proposition 44 (e.g. (Mangasarian, 1995)). A bilinear program can be solved in NP time.

There is an optimal solution of the bilinear program such that the solutions of the
individual linear programs are basic feasible. The set of all basic feasible solutions is finite,
because the feasible regions of w, x and y, z are independent. The value of a basic feasible
solution can be calculated in polynomial time.
Theorem 32. Assume 0 < γ < 1, and a given ε > 0. Then it is NP-complete to
determine:

min
v∈K∩M

‖Lv − v‖∞ < ε min
v∈M

‖Lv − v‖∞ < ε.

The problem remains NP-complete when Assumption 10 is satisfied. It is also NP-complete
to determine:

min
v∈M

‖Lv − v‖∞ − ‖v∗ − v‖1,α < ε min
v∈M

‖Lv − v‖1,ū − ‖v∗ − v‖1,α < ε,

assuming that ū is defined as in Remark 18.

Proof. The membership in NP follows from Theorem 13 and Proposition 44. We show NP-
hardness by a reduction from the 3SAT problem. We first don’t assume Assumption 10.
We show the theorem for ε = 1. The appropriate ε can be obtained by simply scaling the
rewards in the MDP.

The main idea is to construct an MDP and an approximation basis, such that the
approximation error is small whenever the SAT is satisfiable. The value of the states will
correspond to the truth value of the literals and clauses. The approximation features φ
will be used to constraint the values of literals that share the same variable. The MDP
constructed from the SAT formula is depicted in Figure 4.
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a3
a2

a1 a3

a2
a1

s(C2)s(C1)

( l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23)

Figure 4: MDP constructed from the corresponding SAT formula.

Consider a SAT problem with clauses Ci:∧
i=1,...,n

Ci =
∧

i=1,...,n

(li1 ∨ li2 ∨ li3) ,

where lij are literals. A literal is a variable or a negation of a variable. The variables in
the SAT are x1 . . . xm. The corresponding MDP is constructed as follows. It has one state
s(lij) for every literal lij , one state s(Ci) for each clause Ci and an additional state s̄. That
is:

S = {s(Ci) i = 1, . . . , n} ∪ {s(lij) i = 1, . . . , n, j = 1, . . . , 3} ∪ {s̄}.
There are 3 actions available for each state s(Ci), which determine the true literal of the
clause. There is only a single action available in states s(lij) and s̄. All transitions in the
MDP are deterministic. The transition t(s, a) = (s′, r) is from the state s to s′, when action
a is taken, and the reward received is r. The transitions are the following:

t(s(Ci), aj) = (s(lij), 1− γ) (24)

t(s(lij), a) = (s(lij),−(1− γ)) (25)

t(s̄, a) = (s̄, 2− γ) (26)

Notice that the rewards depend on the discount factor γ, for notational convenience.
There is one approximation feature for every variable xk such that:

φk(s(Ci)) = 0

φk(s̄) = 0

φk(s(lij)) =

{
1 if lij = xk

−1 if lij = ¬xk
An additional feature in the problem φ̄ is defined as:

φ̄(s(Ci)) = 1

φ̄(s(lij)) = 0

φ̄(s̄) = 1.
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The purpose of state s̄ is to ensure that v(s(ci)) ≥ 2− γ, as we assume in the remainder of
the proof.

First, we show that if the SAT problem is satisfiable, then minv∈M∩K ‖Lv − v‖∞ < 1.
The value function ṽ ∈ K is constructed as a linear sum of the features as: v = Φy, where
y = (y1, . . . , ym, ȳ). Here yk corresponds to φk and ȳ corresponds to φ̄. The coefficients yk
are constructed from the truth value of the variables as follows:

yk =

{
γ if xk = true

−γ if xk = false

ȳ = 2− γ.
Now define the deterministic policy π as:

π(s(Ci)) = aj where lij = true .

The true literals are guaranteed to exist from the satisfiability. This policy is greedy with
respect to ṽ and satisfies that ‖Lπṽ − ṽ‖∞ ≤ 1− γ2.

The Bellman residuals for all actions and states, given a value function v, are defined
as:

v(s)− γv(s′)− r,
where t(s, a) = (s′, r). Given the value function ṽ, the residual values are:

t(s(Ci), aj) = (s(lij), 1− γ) :

{
2− γ − γ2 + (1− γ) = 1− γ2 if lij = true

2− γ + γ2 + (1− γ) = 1 + γ2 if lij = false

t(s(lij), a) = (s(lij), (1− γ)) :

{
γ − γ2 + 1− γ = 1− γ2 if lij = true

−γ + γ2 + 1− γ = (1− γ)2 > 0 if lij = false

t(s̄, a) = (s̄, 1− γ) : (1− γ) + γ − 1 = 0

It is now clear that π is greedy and that:

‖Lṽ − ṽ‖∞ = 1− γ2 < 1.

We now show that if the SAT problem is not satisfiable then minv∈K∩M ‖Lv − v‖∞ ≥
1 − γ2

2 . Now, given a value function v, there are two possible cases for each v(s(lij)): 1) a
positive value, 2) a non-positive value. Two literals that share the same variable will have
the same sign, since there is only one feature per each variable.

Assume now that there is a value function ṽ. There are two possible cases we analyze:
1) all transitions of a greedy policy are to states with positive value, and 2) there is at least
one transition to a state with a non-positive value. In the first case, we have that

∀i ∃j, ṽ(s(lij)) > 0.

That is, there is a function q(i), which returns the positive literal for the clause j. Now,
create a satisfiable assignment of the SAT as follows:

xk =

{
true if liq(i) = xk

false if liq(i) = ¬xk
,
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with other variables assigned arbitrary values. Given this assignment, all literals with
states that have a positive value will be also positive. Since every clause contains at least
one positive literal, the SAT is satisfiable, which is a contradiction with the assumption.
Therefore, there is at least one transition to a state with a non-positive value.

Let C1 represent the clause with a transition to a literal l11 with a non-positive value,
without loss of generality. The Bellman residuals at the transitions from these states will
be:

b1 = ṽ(s(l11))− γṽ(s(l11)) + (1− γ) ≥ 0− 0 + (1− γ) = 1− γ
b1 = ṽ(s(C1))− γṽ(s(l11))− (1− γ) ≥ 2− γ − 0− 1 + γ = 1

Therefore, the Bellman residual ṽ is bounded as:

‖Lṽ − ṽ‖∞ ≥ max{b1, b2} ≥ 1.

Since we did not make any assumptions on ṽ, the claim holds for all representable and
transitive-feasible value functions. Therefore, minv∈M∩K ‖Lv− v‖∞ ≤ 1− γ2 is and only if
the 3-SAT problem is feasible.

It remains to show that the problem remains NP-complete even when Assumption 10
holds. Define a new state s̄1 with the following transition:

t(s̄2, a) = (s̄2,−
γ

2
).

All previously introduced features φ are zero on the new state. That is φk(s̄1) = φ̄(s̄1) = 0.
The new constant feature is: φ̂(s) = 1 for all states s ∈ S, and the matching coefficient is
denoted as ȳ1. When the formula is satisfiable, then clearly minv∈M∩K ‖Lv− v‖∞ ≤ 1− γ2

since the basis is now richer and the Bellman error on the new transition is less than 1− γ2

when ȳ1 = 0.
Now we show that when the formula is not satisfiable, then:

min
v∈M∩K

‖Lv − v‖∞ ≥ 1− γ2

2
.

This can be scaled to an appropriate ε by scaling the rewards. Notice that

0 ≤ ȳ1 ≤
γ

2
.

When ȳ1 < 0, the Bellman residual on transitions s(Ci) → s(lij) may be decreased by
increasing ȳ1 while adjusting other coefficients to ensure that v(s(Ci)) = 2 − γ. When

ȳ1 > γ
2 then the Bellman residual from the state s̄1 is greater than 1 − γ2

2 . Given the
bounds on ȳ1, the argument for yk = 0 holds and the minimal Bellman residual is achieved
when:

v(s(Ci))− γv(s(lij))− (1− γ) = v(s(s̄1))− γv(s(s̄1)) +
γ

2

2− γ − γȳ1 − (1− γ) = ȳ1 − γȳ1 +
γ

2

ȳ1 =
γ

2
.
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Therefore, when the SAT is unsatisfiable, the Bellman residual is at least 1− γ2

2 .
The NP-completeness of minv∈M ‖Lv − v‖∞ < ε follows trivially from Proposition 40.

The proof for ‖v − Lv‖∞ − αTv is almost identical. The difference is a new state ŝ, such
that φ(ŝ) = 1 and α(ŝ) = 1. In that case αTv = 1 for all v ∈M. The additional term thus
has no effect on the optimization.

The proof can be similarly extended to the minimization of ‖v−Lv‖1,ū. Define ū(Ci) =
1/n and ū(lij) = 0. Then the SAT problem is satisfiable if an only if ‖v − Lv‖1,ū = 1− γ2.
Note that ū, as defined above, is not an upper bound on the visitation frequencies uπ. It is
likely that the proof could be extended to cover the case ū ≥ uπ by more carefully designing
the transitions from Ci. In particular, there needs to be high probability of returning to Ci
and ū(lij > 0.

A.3 Equivalence of OAPI and API

We first consider L∞-API2 as a modification of L∞-API. L∞-API2 is shown in algorithm 1,
where f(π) is calculated using the following program:

min
φ,v

φ

s.t. (I− γPπ)v + 1φ ≥ rπ
−(I− γPπ)v + 1φ ≥ −rπ
v ∈M

(27)

Proposition 45. L∞-API and L∞-API2 generate the same sequence of policies if the initial
policies and tie-breaking is the same.

Proof. The proposition follows simply by induction from Lemma 39. The basic step follows
directly from the assumption. For the inductive step, let π1

i = π2
i , where π1 and π2 are

the policies with (4) and (27). Then from Lemma 39, we have that the corresponding
value functions v1

i = v2
i + c1. Because π1

i+1 and π2
i+1 are chosen greedily, we have that

π1
i+1 = π2

i+1.

We are ready now to prove the theorem.
Theorem 34. Assume that L∞-API converges to a policy π and a value function v that
both satisfy: φ = ‖v − Lπv‖∞ = ‖v − Lv‖∞. Then

ṽ = v +
φ

1− γ1

is feasible in the bilinear program (ABP–L∞), and it is a fixed point of OAPI. In addition,
the greedy policies with respect to ṽ and v are identical.

Proof. From Proposition 45, L∞-API can be replaced by L∞-API2, which will converge to
the same policy π. L∞-API2 will converge to the value function

ṽ = v +
φ

1− γ1.
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From the constraints in (27) we have that:

ṽ ≥ Lπṽ.

Then, since π is the greedy policy with regard to this value function, we have that:

ṽ ≥ Lπṽ ≥ Lṽ.

Thus ṽ is transitive-feasible and feasible in (BP–m) according to Lemma 38. The theorem
then follows from Lemma 39 and from the fact that the greedy policy minimizes the Bellman
residual, as in the proof of Lemma 16.

Notice that while the optimistic and standard policy iterations can converge to the
same solutions, the steps in their computation may not be identical. The actual results will
depend on the initialization.

41


	University of Massachusetts Amherst
	From the SelectedWorks of Shlomo Zilberstein
	June 14, 2010

	Global Optimization for Value Function Approximation
	1 Motivation
	2 Framework and Notation
	3 Value Function Approximation
	4 Bilinear Program Formulations
	4.1 Robust Policy Loss
	4.2 Expected Policy Loss
	4.3 Hybrid Formulation

	5 Solving Bilinear Programs
	6 Sampling Guarantees
	7 Discussion and Related ADP Methods
	8 Experimental Results
	9 Conclusion and Future Work
	A Proofs
	A.1 Properties of Transitive-Feasible Value Functions
	A.2 NP-Completeness
	A.3 Equivalence of OAPI and API


