Skip to main content
Article
Polypropylene Modified with Elastomeric Metallocene-Catalyzed Polyolefin Blends: Fracture Behavior and Development of Damage Mechanisms
Journal of Polymer Science Part B: Polymer Physics
  • Laura A. Fasce
  • Patricia M. Frontini
  • Shing Chung Josh Wong, University of Akron Main Campus
  • Yiu-Wing Mai
Document Type
Article
Publication Date
2-2-2004
Abstract
The fracture behavior and deformation mechanisms of polypropylene modified by elastomeric metallocene-catalyzed polyolefin blends were investigated under both static and dynamic loading conditions. The fracture toughness was evaluated with the J integral approach. The development of damage mechanisms was studied by the examination of fracture surfaces with scanning electron microscopy and by the examination of single-edge, double-notch, four-point-bending or low-impact-energy fractured samples with optical microscopy. In addition, tensile dilatometry measurements were carried out to determine the nature of the deformation micromechanisms. The fracture behavior and the size and shape of the damage zones were drastically influenced by the elastomeric particles and the imposed constraint. The role of the elastomeric particles was different, depending on the strain rate. Under impact loading, particle pullout and crazing were responsible for the increased fracture toughness of polypropylene. Under quasistatic loading, stable fracture growth was caused by particle cavitation, which promoted ductile tearing of polypropylene before failure continued in an unstable fashion via crazing.
Citation Information
Laura A. Fasce, Patricia M. Frontini, Shing Chung Josh Wong and Yiu-Wing Mai. "Polypropylene Modified with Elastomeric Metallocene-Catalyzed Polyolefin Blends: Fracture Behavior and Development of Damage Mechanisms" Journal of Polymer Science Part B: Polymer Physics Vol. 42 Iss. 6 (2004) p. 1075 - 1089
Available at: http://works.bepress.com/shing-chung_wong/69/