Skip to main content
Presentation
Use of a onedimensional link-node model to develop total maximum daily load strategies for the San Joaquin River Estuary
International Environmental Modelling and Software Society (iEMSs)
  • Mary Kay Camarillo, University of the Pacific
  • William T. Stringfellow, University of the Pacific
  • Joel Herr, Systech Water Resources
  • Scott Sheeder, Systech Water Resources
  • Gregory Weissmann, University of the Pacific
  • Shelly Gulati, University of the Pacific
  • Ashley Stubblefield, University of the Pacific
ORCiD
Mary Kay Camarillo: 0000-0002-9522-5127
Document Type
Conference Presentation
Department
Civil Engineering
Location
San Diego, CA
Conference Dates
June 15-19, 2014
Date of Presentation
6-15-2014
Disciplines
Abstract

A one-dimensional link-node model was used to simulate water quality conditions in the tidallyinfluenced, deep water ship channel (DWSC) of the San Joaquin River located in Central California. The DWSC has been plagued with low dissolved oxygen (DO) conditions for decades and is currently a focus of restoration efforts. The model was calibrated using a six-year flow and water quality data set. Model simulations were run by removing the mass loads of each of the following major sources of oxygen depletion to determine the effects: elimination of the deepened ship channel (i.e., restore to its preexisting depth), elimination of import of oxygen-demanding substances (ODS) from the San Joaquin River watershed, elimination of import of ODS from the urban tributaries, and elimination of discharge of ODS from the City of Stockton regional wastewater control facility. The model results suggest that elimination of the deepened ship channel resulted in the best projected improvement relative to the modelled baseline with a predicted 55% improvement, while reducing ODS from the watershed would likely cause a 44% improvement. These results demonstrate that there are multiple contributing factors causing low DO in the DWSC and that removal or elimination of any single variable will not result in a complete resolution of low DO events.

Creative Commons License
Creative Commons Attribution 4.0 International
Citation Information
Mary Kay Camarillo, William T. Stringfellow, Joel Herr, Scott Sheeder, et al.. "Use of a onedimensional link-node model to develop total maximum daily load strategies for the San Joaquin River Estuary" International Environmental Modelling and Software Society (iEMSs) (2014)
Available at: http://works.bepress.com/shelly-gulati/39/