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Abstract 
A prime gap is the difference between two successive prime numbers. Prime gaps are 
casually thought to occur randomly. However, the “k-tuple conjecture” suggests that 
prime gaps are non-random by estimating how often pairs, triples and larger group-
ings of primes will appear. The k-tuple conjecture is yet to be proven, but a very re-
cent work presents a result that contributes to a confirmation of the k-tuple conjec-
ture by finding unexpected biases in the distribution of consecutive primes. Here, we 
present another contribution to confirmation of the k-tuple conjecture based on sta-
tistical physics. The pattern we find comes in the form of a power law in the distribu-
tion of prime gaps. We find that prime gaps are proportional to the inverse of the 
chance of a number to be prime. 
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1. Introduction 

Prime numbers are divisible only by themselves and 1. Primes are the building blocks 
of the entire number line because all the other numbers are created by multiplying 
primes together. Thus, primes are the core of arithmetic. 

Whether a number is prime or not is pre-determined, as evidenced by innumerous 
laws already proven. For instance, the prime number theorem states that the average 
length of the gap between a prime p  and the next prime is ln p . Such prime gaps 
have been extensively studied; however many questions and conjectures remain un-
answered. In particular, there is no way to predict with certainty which numbers are 
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prime and so, for practical purposes, prime gaps are considered to occur randomly. 
Actually, the “k-tuple conjecture” [1] allows for a non-random explanation by estimat-
ing how often pairs, triples and larger groupings of primes will appear. The k-tuple 
conjecture is yet to be proven, but a very recent work [2], however, presents a result 
that contributes to a confirmation of the k-tuple conjecture by finding unexpected bi-
ases in the distribution of consecutive primes. 

Apart from 2 and 5, all prime numbers end in 1, 3, 7 or 9, and each of the four end-
ings is supposedly equally likely. But the authors in Ref. [2] find that primes ending in 1 
were less likely to be followed by another prime ending in 1. That is unexpected if the 
primes are truly random. The authors [2] find that in the first hundred million primes, 
a prime ending in 1 is followed by another ending in 1 just 18.5 percent of the time. 
(Incidentally, we confirmed this pattern using a sample of 50,000 prime numbers, but 
found 15.8 percent of the time instead. Perhaps the difference can be explained by our 
smaller sample, or perhaps we are right after all and 18.5 is just a typo.) If the primes 
were distributed randomly, the authors argue that one would expect to see two 1 s next 
to each other 25 percent of the time. Primes ending in 3 and 7 follow a 1 about 30 per-
cent of the time, while a 9 follows a 1 around 22 percent of instances. 

The authors then show that the last-digit pattern can be explained by the groupings 
given by the k-tuple conjecture. However, as the primes tend to infinity, the pattern va-
nishes and the primes become genuinely random. Here, we contribute to the literature 
by presenting further evidence that the k-tuple conjecture can be true. In line with the 
authors in Ref. [2] we also find unexpected biases in the distribution of consecutive 
primes. However, we adopt a statistical physics perspective. The patterns we show to 
occur come in the form of power laws in the distribution of prime gaps. 

There is already substantial literature on primes adopting the statistical physics pers-
pective. In line with our finding, the histograms in the distribution of gaps between 
primes divided into “congruence families” are shown to be scale invariant [3]. A theory 
to explain the origin of the unexpected periodic behavior of gaps between primes has 
been linked to the k-tuple conjecture, the statistical mechanics of spin systems and the 
Sierpinski fractal [4]. Higher-order gaps between the primes have been analyzed by 
Fourier decomposition to show patterns in the resulting power spectra [5]. The gaps 
between primes have been shown to exhibit a period six oscillation [6]. The histogram 
of the increments (the difference between two consecutive gaps between primes) has 
been shown to follow an exponential distribution with superposed periodic behavior of 
period three [7]. Rather than prime gaps, for the distribution of primes themselves there 
have been claims of self-similarity [8], small world networks [9] and even chaos [10]. 

2. Power Law Pattern 

As the authors in Ref. [2], we investigate whether all the prime numbers ending in 1, 3, 
7 or 9 are equally likely. First, we transform the sequence of 50,000 numbers of such 
four endings into a binary sequence, as in Table 1. 

Then we let nP  be the relative frequency of a number n  to be prime. After, we 
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Table 1. Binary transform of the sequence of numbers ending in 1, 
3, 7 or 9. 

Number n Prime? 0 = no, 1 = yes 

1 0 

3 1 

7 1 

9 0 

11 1 

13 1 

17 1 

19 1 

21 0 

23 1 

27 0 

29 1 

31 1 

33 0 

37 1 

… … 

 
consider a Bernoulli random variable nX  such that 1nX =  if n  is prime and 

0nX =  otherwise. Our aim is to find the functional form of the relative frequency 
( )1n nP P X= = . We could observe the occurrences of 1nX =  tend to decrease as n  

grows. This pattern cannot be easily visualized considering a plot of nX  against n  
due to the very fact that our series is a sequence of 0 s and 1 s. 

To overcome this difficulty, we devised the following: Assume nX  is a nonstatio-
nary Bernoulli process, where the probability of success ( )1n nP P X= =  is not con-
stant. Such a probability can be estimated using a nonlinear Kalman filter [11], which 
linearizes an estimate of the current mean and covariance. Figure 1 (top) shows the es-
timates of ln nP  versus ln ln n , and the bottom shows the adjusted straight line for 

500n >  in red font. It is implied that 

ln 1.25 ln ln .nP n≈ −                          (1) 

Thus, for 500n >  the probability nP  behaves according to a power law that takes 
the form: 

3.5
lnnP

n
≈ .                             (2) 

This power law can be translated in terms of prime gaps, as in Table 2. First note 
that the prime gap distribution is approximately geometric. 

Then, let nY  be a geometric random variable with probability of success nP . Tenta-
tively consider that “success” is the occurrence of a prime number 1nX =  and that the  
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Figure 1. Estimations using a nonlinear Kalman filter show the chances of a number to be prime 
follows a power law (red font). 

 
Table 2. Prime numbers and prime gaps. 

Prime number Prime gap 

2 2 

3 1 

5 2 

7 2 

11 4 

13 2 

17 4 

19 2 

23 4 

29 6 

... ... 

 
successive Bernoulli trials are independent. Thus, the expected number of trials until 
the occurrence of a subsequent prime is given by: 

[ ] 1
n n

n

E Y
p

τ = = .                          (3) 

However, because our Bernoulli process is nonstationary and the Bernoulli trials are 
not independent, one cannot expect an analytic solution such as that provided by Equa-
tion (3) to hold true. But one can empirically determine an analogous substitute for 
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Equation (3) by considering estimates of nτ  on the basis of the prime gaps shown in 
Table 2. 

Using the nonlinear Kalman filter for this geometric process, Figure 2 shows the 
dispersion of estimates of nτ  (considering a geometric process) and estimates of 1 nP   

(considering a Bernoulli process). As can be seen, 1
n

nP
τ   as expected for a typical 

geometric process. However, the adjusted straight line (in red font) presents the form: 

10.2876 1n
nP

τ
 

≈ + 
 

.                         (4) 

Therefore, prime gaps are proportional to the inverse of the chance of a number to 
be prime. 

Alternatively, consideration of the power law in Equation (2) yields: 

ln0.2876 1
3.5n

nτ  ≈ + 
 

.                        (5) 

3. Conclusion 
Although the difference between two successive prime numbers is casually considered 
random, the k-tuple conjecture casts doubt on that. The k-tuple conjecture is yet to be 

 

 
Figure 2. Estimations using a nonlinear Kalman filter show prime gaps follow a power law (red 
font). 
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proven, but finding unexpected biases in the distribution of consecutive primes pro-
vides confirmation of the k-tuple conjecture. Motivated by a recent mathematical study 
[2], we explain departures from randomness in prime gaps from a statistical physics 
perspective. The pattern we find that challenges the hypothesis of the genuine random 
behavior of prime gaps comes in the form of a power law. We find that prime gaps are 
proportional to the inverse of the chance of a number to be prime. 
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