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ON DISCRETE-TIME SLIDING MODES

S. V. Drakunov and V. I. Utkin
Institute of Control Sciences, Moscow, USSR

Abstract. In the paper the problems of sliding modes simulation and
sliding mode digital control design are considered. The simulation
problem of the dynamic systems with discontinuous right-hand side is

a nontraditional one. The principle difficulty is in the fact that in
such systems there is a special kind of motions - sliding modes. For
the purposes of sliding mode simulations a definition of a discrete
sliding mode is introduced, which enables the design of discrete-time
control algorithms with properties similar to those in continuous time
systems with sliding-mode control algorithms.

Keywords. Sliding mode, abstract dynamic system, semigroup of operators,
iscrete-time system, discontinuous control algorithms.

INTRODUCTION

The sliding mode control algorithms are
an efficient tool to provide the invari-
ance of the closed loop systems to the
bounded noises and their robustness with
respect to parameter and structural dis-
turbances. In addition to invariance and
robustness the algorithms enable decoupl-
ing of the design problems into a set of
independent subproblems of lower dimen-
sions (Utkin, 1981).

Consider a continuous—-time system
- n m
oc={-’(m)u)qaceQ,ueR (1)

to demonstrate the design principle for
sliding mode control systems. The control
components “k; are discontinuous on the

surfaces in the system state space EYL =
=19 $:(x)=0}:

U (%), if 3;(x)>0 (2)
U (%), if 5,(x)<0, ist,..,m,

ol =
The functions U; ,U; end s; are chosen

in such a way that the system state rea-
ches the intersection of the discontinui-
ty surfaces ESL at some time T and then

state trajectories belong to this manifold.

Several problems arise when using a digi-
tal computer as a controller and simulat-
ing the continuous-time sliding modes.
They are caused by the possibility to
change the control signal only at the
gampling instants &.k (k = 0,1,2,...),
where 65 is a sampling period. This leads
to high frequency oscillations in the
neighbourhood of the sliding manifold
(socalled "zig-zag" mode).
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The paper treats discrete-time implement-
ation and simulation of sliding mode al-
gorithms. The concept "discrete-time sli-
ding mode" is introduced and the discrete
-time dynamic systems are designed with
the trajectories in the intersections of
discontinuity surfaces.

DISCRETE-TIME SLIDING MODE
DEFINITION

For mathematical description of continuo-
us time sliding modes different methods
of solution expantion within the set UGE
are used (Utkin, 1981). L

In real life systems this motion actually
takes place in some neighbourhood of Lj@‘i

and as a rule is characterized by higﬁ
frequency oscillations caused by different
nonidealities of the switching device
delays, histeresis, unmodelled dynamics
and so on. Such kind of motion is usually
called real-life sliding mode. Evidently
that "zig-zag" mode can be considered as

a real-life sliding mode. Increasing samp-
ling interval may lead to an inadmissibly
high amplitude of the high-frequency com-
ponent.

A class of discrete-time systems with con-
tinuous functions in motion equations is
known to have a manifold consisting of

the system trajectories with finite time
for the state to reach it from some neigh-
bourhood. (Generally speaking for conti-
nuous-time systems e manifold consisting
of state trajectories may be reached only
asymptotically with €t —oc© , Let's in-
troduce a following definition.

Definition. We say that in the discrete-
time dynamicel system

h
2 (ket)= Fx (k) xR 3
a discrete-time sliding mode (DSM) takes
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place on the subset Il of a manifold
A .
S={x:3E)=0}=Ns&,, seR" i}
L

there exists an open neighbourhood U of

this subset such that from oce U
lows F ()€ M-

From the first sight the definition seems
to be quite unnatural because the sliding
mode can exist in the systems with a cont-
inuous right hand side. But the properti-
es of that motion are similar to the sli-
ding mode in (1), (2).

it fol-

Suppose that the set MCG is the sliding
set for (1), (2) (Utkin, 1981), and the
expansion of the Cauchy problem solution
is unique in some neighbourhood Uo‘

Let x(k+1) be a solution value at the mo-
ment when the initial condition is
equal to x(k). Thus we have a discrete-
time system of the form (3) which corres-
ponds to (1), (2). Since the solution of
(1), (2) is a continuous function of its
initial values - the function F(x) is con-
tinuous ag well. Then as one can easily
see for sufficiently small in such
discrete-time system discrete-time sliding
mode takes place should & continuous-time
gliding mode occur in (1), (2).

Now let's look at the sliding modes from
the theory of abstract dynamic system po-
int of view. In order to include the sys-
tems with sliding modes to a class of dy-
namic ones the definition of a dynamic
system should be widened. Let's remind
this definition (Zubov V.I., 1973).

Definition. Let T be a numerical set such
that 0 € T (we associate it with a time
scale).

n
The dynamical system in R™ is a parame-
ter femily of operators F. (. ) in R"™,
t € T with the following properties

h n

a) for each xe R, t € T F;(X)ER
end P (x) =2 ;

b) the value of the operator Ft(x) is a

continuous function of (t,x) if t & T;

c) for every qc t
+ t2 CT

2 & T such that t1 +
and x € R"™

Ft%(Ft (x)) = Ft1 x) .

(
+ t2
Usuaelly it is assumed that T = R for the
continuous-time systems, and T = Z (the
set of integers) for the discrete-time
systems. Conditions a) and c¢) means that
Ft(x) is & parameter group of transforma-

tions R™ into itself.

This definition excludes the systems desc-
ribed by the equations of the type (1),
(2). Actually, as a rule solutions of the
systems with discontinuous right hand-side
do not admit time inversion (Fig. 1).

If we suppose that T = [0,S© ) then the
family of operators Fe( - 5 is a semigroup

rather than a group. Therefore to include
the systems with sliding modes into a
class of dynamic systems operators Ft(' )

should be supposed to constitute a semi-
group.

In the case of discrete-time sliding mo-
des we have the same situation. If DSM
exists the function Ft(x) is singular

hence it does not have the inverse. In
order to include such kind of systems into
a class of dynamic we should suppose that
T is a set of nonnegative integers (o, 1,
ee.) and Ft(') is a semigroup.

Ixample. Consider the discrete-time sys-

tem

o, (k+1) = 2, (k)

x, (k1) = u(k) . (1)
If u(k) = - ¢+ x,(k), where ¢ > 0 then

DSM exists on the surface s(x) = c - Xq+
+ X5 = 0 in R2. It follows from the fact

thet for every s (k) the value of s(k+1) =
= 0. We note that the system (4) is line-
ar and existence of DSM is equivalent to
the existence of a zero pole.

If in the system (4) u(k) = - P(c - x,(k)),

2, (f [2]l<mM
(70(2)= sign 2, it 12l=2M

the DSM also takes place on the surface
S=0C X+ Xy = O in the system with

bounded control |u|< M after finite num-
ber of steps.

SLIDING MODES SIMULATION

One of the aspects of our studies is the
problem of sliding modes simulation by
digital computers. We start with an ex~
ample to dermonstrate that the conventio-
nal methods may prove to be inefficient.

Consider the system of the form

X = -sign x + f, x (0) = x

(6)

where f = const, |f| <1 . When t;quL/ﬂ-HD

there exists sliding mode in (6) and
x () = o.

o 2

Using Euler procedure with the time step
to simulate a solution of (6) we ob-
tain a discrete-time system

x (k+1) = x (k) - §- sign x (k)+ S-¢.
€7)

The plot of one of the system solution is
in Fig. 2-3. It shows that the Euler pro-
cedure leads to oscillations in the orig-
in's neighbgurhood with amplitude propor-
tional to g .

We modify the procedure substituting
sign x(k+1) for sign x(k) in the right-
hand side of (7):

x(k+1) = x(k) - S sign x(k+1) + §.r.

Denote x + S- sign x as a(x). The domain
of A (x) is R\{o} and correspondingly an
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inverse of oL (x) is the continuous func-
tion

%—S,if y >§
Bly)=1{ o, Iyl « &
g.pg’éf g<—-g

(Jj,(o((ﬂz))E ® . xe R~{o}).

Thus

x(e+1) = B (xt) + §-£).  (8)

Any solution x (k) of the discrete-time
system (8) with [f| <« 1 in a finite num-

ber of steps K reaches the origin and
then x (k) = 0 for k > K (Fig. 4-5).
According to the introduced above definit-

ion there exiists DSM in the system (8)
and the system is adequate to (6).

The simulation of multivariable systems
with scalar control does not differ es-
sentially from this example.

Let's consider & linear system in the cano-
nic form

Xy = X,
] 9)
*n-1 = *n
Xp =8, Xyt eee + 8, X+ bu + f
where u = - M-signs , s = CiXyt aoe +
+cx, (e, e RN{O} ).

Rewriting (9) with respect to variables
Xy eeey X, 4, 8) and applying the above

modified Euler procedure we obtain:
x1(k+1) = x1(k) + 5 xz(k)

e e e = .

x (ket)=2x,  (k)-5-(c,2  +

W=-1

e Yse, +5-sw)y/c.

S(k+d) = (1+8c..,/c.+Sa.)s (k)+
§((Co+ Cnl =C\ i €\ /Cn— AL C )T, ()
sus T (Beg + Cnlliy =C o fCw i )
2, (k)= 8C,6M8ign 3(krt) +  (10)
Sc.f, (c.=0),

Applying function /8 sgolve the last equa-
tion in (10) with respect to s (k+1):

s(k+1) = B(s(k)+ s. cpq/cpt ay)s(k) +
+ ((c°+cn- a,-c °1/Cn'en'%) x

/ (1)

n-1

2
x (k) +eeet (o o+ cpa c

n"n-1" * n-1

le -8y ~e 4 )x (k) + §c  £).

The first n-1 equations (10) and equation
(11) form & discrete-time system where
DSM takes place on the menifold s=0. Be-
gides the difference equations describing
this motion are exactly the Euler discre-
tization of the sliding equations obtain-
ing from (9) by means-of the equivalent
control method (Utkin, 1981).

DSM CONTROL ALGORITHMS

Let in the motion equation of a linear
time-invariant plant

X=A xe R%, uer! (12)

o o o’
a scalar control be bounded, [u[ < M and

a disturbance vector fo € sgpan bo.
Corresponding to (12) discrete-time sys-
tem (under the assumption that u is
constant in the intervals (k-§, (k+1)-8))
if of form

x(k+1) = A.x(k) + b-u(k) + f(k), (13)

A=exp({8.A,},
8. (1)

$
b =5<’-3¢P{A0' §}d§-b° - -F(k}:jexP{Ao' (S k+
© §ik
S-§)}-5 (5)els.

Similerly to continuous-time systems
(Utkin, 1981) let the surface s = ¢’ x =
= 0 be chosen such that the state trajec-
tories of (13) being confined to this sur-
face have degirable dynamic characteris-—
tics.

where

The control providing the motion in the
manifold s = 0 is of form:

M, Iif v(k) > M
u (k) =¢v(k), if |v(k)| <M
- M, if v(k) € M (14)

where v(k) is a solution of s (k+1) = 0O
with respect to u(k) on the trajectories
of system (13)

v(k) = - (¢ - (4 x(k) + £(k)). (15)

In the system (13), (14), (15) there is
DSM on the surface s=0. Note that due to
the lack of information on the disturbance
fowe have to use the control (14, 15) with
f=0, which of course leads to the devia-
tions from the surface s=0. These deviat-
ions are caused by the nature of discrete-
-time controls and can be considered as
real-life DSM, but what is important that
the motion is free of a high-frequency
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component. The solution of (12) under
piecewise constant controls (14, 15) tends
to the solution of the system with conti-
nuous—-time sliding mode on s=0 when

—> 0, which is invariant to disturban-

ces if the condition fo € span bo

fulfilled.

is
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