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INTRODUCTION

Assessing distributional trends and spatial use pat-
terns is fundamental for uncovering many key as -
pects of population ecology and conservation. Spatial
analytics can inform predictors of habitat selection
(Shaffer et al. 2009, Louzao et al. 2011, Shaver et al.

2017), foraging strategies (Weimerskirch et al. 1997,
Phalan et al. 2007, Rodríguez et al. 2017), and areas
of significant biological importance across trophic
guilds (Bost et al. 2009, Block et al. 2011). This is
 particularly useful in complex environments with
hetero geneously available resources. The marine
environment is typically described as being dynamic,
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ABSTRACT: Identifying frequently complex and dynamic spatial distributions of marine predators
via the modeling of at-sea observations can be inherently challenging, especially when attempt-
ing to predict habitats of specific populations. Remotely-sensed tracking devices provide a viable
alternative way to gather this information. We collected fine-scale spatiotemporal movement data
for a small seabird, the rhinoceros auklet Cerorhinca monocerata, in the California Current
 System. Chick-brooding adults nesting on Southeast Farallon Island were outfitted with GPS log-
gers during the 2015 and 2016 breeding seasons (n = 15). Along with basic movement parameters,
kernel density and residence time analyses were conducted to characterize at-sea distribution and
identify areas of intensive use. Binomial generalized linear mixed modeling (GLMM) was used to
assess foraging habitat. We found a greater utilization of areas beyond the shelf break than pre-
dicted by previous distributional models based on at-sea censuses. Interannual variation was evi-
dent, with relatively more outer break foraging in 2015 and relatively more shelf and inner break
exploitation in 2016, although birds likely use the same habitat intrannually for self- and chick-
provisioning. Prey availability and local oceanographic conditions may have influenced foraging
decisions, with rockfish Sebastes spp. abundances and sub-mesoscale sea surface temperature
(SST) fronts potentially acting as mediating factors. Results of mixed modeling highlighted a com-
posite 3-way interaction between environmental variables facilitating auklet behavioral state
switching, with an additional non-linear SST term being significant. Overall, foraging effort
within the regional shelf break system appears to be variable at fine spatial scales depending on
concomitant oceanographic conditions and related resource dynamics.
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unpredictable, and hierarchically structured; there-
fore, characterizing the underlying spatial move-
ments of marine predators is essential for our under-
standing of biologically important oceanic processes
(Wakefield et al. 2009, Weimerskirch 2007). Spa-
tiotemporal information for higher trophic predatory
species can be especially useful for identifying spe-
cific mesoscale features which may be of elevated
importance in a given system and which may be
other wise difficult to isolate (Nel et al. 2001, Waugh
et al. 2002).

With the advent of biologging devices capable of
providing high resolution spatiotemporal informa-
tion, remote tracking techniques have emerged as a
primary tool to address these questions (Burger &
Shaffer 2008, Hays et al. 2016). While technology has
previously limited the scope of these studies to spe-
cies of suitable sizes for practical and ethical deploy-
ments of relatively large devices, the rapid scaling
down of commercially available units has opened up
avenues for researching smaller species (Rodríguez
et al. 2012, Hallworth & Marra 2015, Maxwell et al.
2016). Incorporating distributional information across
a wide range of predator guilds will help build
knowledge of drivers of movement at the ecosystem
level and aid in identifying broad-scale management
solutions (Block et al. 2016).

In addition to addressing the ecological drivers of
animal movement and preferred habitat of selected
species, tracking information can be used to imple-
ment, manage, and evaluate spatially-explicit con-
servation areas (Anderson et al. 2003, Redfern et al.
2006, Raymond et al. 2015, Young et al. 2015).
Protec ted waters surrounding important land-based
habitat, such as breeding colonies, must be ade-
quately sized to accommodate the movements of
potentially wide-ranging animals in order to maxi-
mize efficacy (Thaxter et al. 2012). Geographically
static marine protected areas may provide inade-
quate coverage when dynamic ocean processes are
taken into account; therefore spatial use assessments
can provide information on adequacy and efficiency
of bounded conservation areas (Studwell et al. 2017).

Here we characterize the fine scale movement pat-
terns of rhinoceros auklets Cerorhinca monocerata
(hereafter referred to as ‘auklets’), a small diving sea-
bird within the California Current System (CCS). The
CCS is a highly productive eastern boundary current
possessing seasonal upwelling that facilitates ele-
vated fecundity of predator species under favorable
conditions (Thayer & Sydeman 2007). Although auk-
lets are widely distributed along the western coast of
North America, populations in the central CCS re -

present the southern extent of their breeding range
(Ainley et al. 1994). The results of at-sea observations
of habitat use and connections to oceanographic vari-
ables for rhinoceros auklets in this region remain
equivocal. For example, McGowan et al. (2013) iden-
tified the shelf break (200 m isobath) as the most
prominent mesoscale feature that predicted auklet
presence during summer months, a critical reproduc-
tive period when adults are spatially limited by a cen-
tral place. In contrast, modeling efforts that re lated
predator distributions to micronekton abundances
across the same study region suggest that auklets are
principally oceanic and outer shelf foragers during
this time (Santora et al. 2012). Moreover, these analy-
ses did not delineate between active foraging, breed-
ing status, provenance of individuals, or movement
estimations. These factors may be particularly rele-
vant in the Gulf of the Farallones (offshore of San
Francisco, CA), where a sizeable year-round non-
breeding population of mature adult auklets may
exist due to competition for limited suitable nesting
space (Ainley & Boekelheide 1990). Thus, modeling
marine habitat use of a specific population is more in-
formed when including individuals of known breed-
ing status and specific behavioral state (e.g. foraging,
resting). Using accelero meters, Kato et al. (2003) ob-
tained information about auklet foraging behavior,
but lacked precise spatial or oceanographic correlates
necessary for habitat quantification.

To characterize the movement patterns and habitat
use of auklets in relation to oceanography, we de -
ployed high-resolution GPS data loggers on chick-
rearing individuals nesting on Southeast Farallon
Island (SEFI) during the 2015 and 2016 breeding sea-
sons. We predicted that proximity to the shelf break
would be a determinant factor influencing foraging
behavior for this population due to local upwelling
events. As auklets typically provision chicks noctur-
nally with a single bill load but forage diurnally, we
expected trip durations to remain relatively constant
(Bertram et al. 1991). However, trip distances were
predicted to be influenced by central place con-
straints under optimal foraging theory (Burke & Mon-
tevecchi 2009, Elliott et al. 2009). As the shelf break
was hypothesized to be the prime feature concentrat-
ing auklet foraging effort, extraneous movement
beyond these areas would be unexpected. In order to
test these predictions, locations of intensive use by
auklets were identified via residence time analysis
and matched to various environmental variables. We
also evaluated the coverage by regional marine sanc-
tuaries of the spatial extent of auklet foraging distri-
butions using estimates of home and core ranges,
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with the prediction that these areas are spatially ade-
quate to encompass the majority of auklet distribu-
tion. Finally, we attempted to describe the preferred
marine habitat of foraging auklets through behav-
ioral state modeling.

MATERIALS AND METHODS

Ethics statement

All animal use protocols were reviewed and ap -
proved by the Institutional Animal Care and Use
Committee at San José State University (#1032). Pro-
cedures were carried out under Farallon Islands
National Wildlife Refuge Research and Monitoring
Special Use Permit #81641-16-02 and United States
Geological Survey (USGS) Bird Banding Lab Permits
#09316 & 23411.

Study site

We tracked rhinoceros auklets breeding on SEFI
(37°42’ N, 123° 00’ W), part of the Farallon Islands
National Wildlife Refuge, California. SEFI is located
offshore approximately 42 km west of San Francisco
and 8 km east of the continental shelf break (200 m
isobath) (see Fig. 1). The largest seabird bree ding
colony in the contiguous USA, SEFI is surrounded

locally by the Southeast Farallon Island State Marine
Reserve (SFISMR) and the Southeast Farallon Island
State Marine Conservation Area (SFISMCA). These
2 Marine Protected Areas (MPAs) prohibit commer-
cial and recreational fishing over an area of 47.4 km2,
with the exception of salmon trol ling within
SFISMCA. Regionally, the Greater Farallones Natio -
nal Marine Sanctuary (GFNMS) encompasses the
Gulf of the Farallones, sharing a border with the
Cordell Bank National Marine Sanctuary (CBNMS)
to the northwest and with the Monterey Bay National
Marine Sanctuary (MBNMS) to the south (see Fig. 2).
These multi-use areas to gether cover 27648 km2 of
habitat within central California and place restric-
tions on a range of uses, including non-renewable
energy production and infrastructure development.
It should be noted, however, that they do not estab-
lish management of recreational or commercial fish-
ing, and are therefore differentiated from traditional
MPAs.

GPS tag deployments

Adult auklets were captured for deployment in
early July 2015 (n=7) and in late June to early July
2016 (n = 18) (Table 1). Deployments coincided with
the early chick-rearing phase of breeding (chicks
were downy and generally <150 g). In 2015, all birds
were captured by hand at pre-constructed nest boxes
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Year Ind. Sex Deployment Recovery No. of Mean (min.−max.) total Maximum distance
date date trips distance per trip (km) from SEFI (km)

2015 1 M 21 Jun 26 Jun 4 62.16 (21.41−102.96) 21.61
2015 2 F 21 Jun 26 Jun 4 87.60 (64.91−115.50) 31.91
2015 3 M 21 Jun 24 Jun 3 34.63 (29.84−38.76) 7.48
2015 4 M 21 Jun 24 Jun 3 44.86 (24.41−60.65) 25.27
2015 5 F 21 Jun 24 Jun 2 80.75 (68.29−93.20) 40.14
2015 6 M 21 Jun 24 Jun 3 61.46 (53.03−68.76) 27.46
2016 7 M 10 Jun 13 Jun 3 42.49 (40.33−46.46) 14.51
2016 8 M 12 Jun 15 Jun 3 37.83 (27.87−43.31) 7.86
2016 9 F 13 Jun 16 Jun 3 88.12 (45.36−112.27) 37.93
2016 10 F 16 Jun 18 Jun 2 98.03 (82.27−113.79) 40.96
2016 11 F 15 Jun 18 Jun 2 98.85 (76.62−121.09) 36.37
2016 12 M 15 Jun 19 Jun 3 128.40 (111.77−154.73) 33.65
2016 13 M 23 Jun 26 Jun 3 80.89 (62.83−96.74) 33.85
2016 14 M 28 Jun 1 Jul 2 53.52 (29.91−77.13) 26.01
2016 15 F 28 Jun 1 Jul 3 58.09 (39.78−71.90) 25.13

Mean − − − − 2.867 69.57 27.34 
(min.−max.) (21.41−154.73) (7.48−40.96)

Table 1. Individual summary statistics describing movement parameters for 15 chick-rearing adult rhinoceros auklets tracked
from Southeast Farallon Island (SEFI) in the Californian Current System in 2015 and 2016. Sex was determined using mole-

cular methods in 2016; validating morphometric methods used in 2015
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placed by researchers and monitored for ongoing
population studies. In 2016, 11 birds were captured
at nest boxes while the remainder were captured uti-
lizing either natural burrows or within boxes no
longer monitored for long-term demographic studies.
Upon capture, unbanded individuals were given an
incoloy identification band (USGS Bird Banding Lab)
on the right tarsus. GPS tags (i-gotU GT-120, Mobile-
Action Technology) were attached to several large
feathers on the back, 2 to 3 cm above the preening
gland, using Tesa tape. Preceding deployment, GPS
units were removed from their plastic encasing and
re-sealed using heat-shrink tubing. This provided
waterproofing and size reduction with a focus on de -
creasing unit weight and hydrodynamic profile.
Waterproofed tags weighed ~19 g, approximately
3.7% of the average body mass of instrumented birds
(513.7 g, range 462 to 600 g). GPS loggers were pro-
grammed to sample a positional fix every 120 s and
deployment durations ranged from 2 to 5 d depend-
ing on recovery success. Logger recovery efforts
 typically commenced after 3 d, with nest checks
occurring a maximum of 3 times per night until in -
strumented birds were recaptured. The logger was
then removed and the bird released back to the nest.
In both years, morphometric measurements of mass,
bill depth, and wing cord were recorded. A small
(~0.25 ml) blood sample was collected on filter paper
(Whatman) from the webbing of the right foot (using
a 25 gauge needle to puncture a blood vessel) for
molecular sexing (Fridolfsson & Ellegren 1999) in
2016 only. Sexing of auklets tracked in 2015 was
completed using a linear discriminant analysis based
on morphometric measurements (mass, bill depth,
and wing cord) validated with molecularly sex-deter-
mined individuals. Total handling time for each log-
ger deployment/ retrieval event was <10 min.

Track analyses

To delineate individual trips for each deployment
track, a 1 km buffer around the colony was used as
a threshold beyond which trips were identified. A
speed filter of 80 km h−1 was also applied to each trip.
This value allowed for track speeds up to 1.25 times
greater than hypothesized auklet flight speeds
derived from related species (Kato et al. 2003). Trips
were also analyzed for temporal regularity. Given the
relatively high degree of sampling rate (90% of
points taken every 120 ± 30 s) tracks were not re-dis-
cretized. Descriptive movement para meters such as
total trip distance, maximum straight-line distance

from the colony, and trip duration were calculated for
each completed excursion away from the colony. All
analyses were conducted using custom routines in R
version 3.3.2 (R Core Team 2016). Mean values are
reported with standard deviation (mean ± SD).

Residence time analysis

To determine locations most likely associated with
active foraging, we applied residence time analy -
ses as described in Barraquand & Benhamou (2008)
using functions in the R package adehabitatLT (Ca -
lenge 2006). Only complete foraging trips were con-
sidered. Residence time identifies areas of high use
by imposing a virtual circle of user-defined ra dius
over each consecutive positional fix in a trip and
summing the time spent within that circle, both
backwards and forwards. In addition, this metric
allows the user to set a time value allowed outside
the virtual circle before re-entry will no longer be
considered. As auklets engaged in bouts of active
foraging are anticipated to modify their behavior
and increase search effort within a discrete spatial
area, locations of elevated occupancy are expected
to correspond with prey searching behavior (Fritz et
al. 2003). We therefore predicted that areas of
increased prey availability for foraging auklets will
be represented by increased time of utilization. As
auklets conduct trips of relatively short distance
from the colony compared to more wide-ranging
seabirds (average maximum distance per trip was
21.4 ± 10.6 km), a circle of radius 300 m was chosen.
Impacts of variable radii on subsequent model
selection were further explored through a post-hoc
sensitivity analysis. Radii (100, 300, 650, 1000, and
2000 m) were selected based upon auklet−prey
association scales recorded during ‘typical’ years as
reported in Davoren (2000). The threshold of allow-
able time outside the circle prior to re-entry was set
to 1 h. This value was chosen to reflect a relatively
high degree of bout specificity given reported mean
dive bout durations of 15.4 and 31.8 min and a
reported mean interbout interval of 50.3 min (Kato
et al. 2003, Kuroki et al. 2003). Locations of likely
foraging were identified as the upper 25% quartile
of residence times per trip following Torres et al.
(2011). In addition, only those points of elevated res-
idence time occurring between civil dawn and civil
dusk (both occurring when the solar angle is 6°
below horizon) were considered as prob able forag-
ing locations. This is based on prior evidence indi-
cating that rhinoceros auklets are visually-based
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foragers requiring diurnal conditions for successful
prey capture (Melvin et al. 1999, Takahashi et al.
1999). We therefore made the conservative as -
sumption that any locations of high residence time
occurring nocturnally were likely to be rafting be -
havior, as auklets are known to wait offshore close
to the island before returning in complete darkness
back to the nest. Additionally, anecdotal evidence of
nocturnal foraging in this population indicates that
it is a very rare phenomenon and not well under-
stood (P. Warzybok pers. obs.).

Foraging bearings

Directional bearings from SEFI to the first bout of
foraging as identified by the residence time analysis
were calculated for each trip, as were the bearings
from SEFI to the final bout of foraging. As auklet trip
durations roughly approximate day length (17.1 ±
3.0 h) and foraging points were filtered to occur be -
tween civil dawn and civil dusk, we identified the
first foraging bout of the day as a proxy for self-feed-
ing areas and the final foraging bout of the day as a
proxy for chick-feeding areas. This is because chick-
brooding adults, returning to sea after spending the
duration of the night on island with the chick, are
likely to spend the first daily bouts of foraging re -
plenishing their own body condition. Conversely, the
final daily bouts of foraging are likely to be used for
gathering resources for the chick, as single bill-load-
ing species are unlikely to hold valuable resources
for long durations due to risk of resource loss, inter-
ference with additional foraging, or prey dehydration
(Davoren & Burger 1999). Previous studies that char-
acterized foraging behavior using accelerometers
also support this hypothesis (Kato et al. 2003).

Home range estimation

Home range analyses were undertaken using the
R package adehabitatHR (Calenge 2006) to examine
the total area used by auklets while at sea. All trips
were included in the estimation of home range,
regardless of completeness. In addition, the 1 km
buffer used to delineate individual trips was also
applied to avoid introducing a bias towards time
spent at or near the colony. A fixed kernel density
estimation function (number of grid intervals = 300,
cell size = 0.05°, reference bandwidth = 0.019°) was
used to determine 25, 50, 75, and 95% utilization
 distributions (UD).

Efficacy of national marine sanctuary (NMS) 
spatial coverage

The spatial adequacy of regional NMSs was asses -
sed in terms of both range matching and intensive
habitat use. Home (95% UD) and core (50% UD)
ranges were overlaid with boun daries of GFNMS,
CBNMS, and MBNMS derived from shapefiles
down  loaded from the National  Marine Sanctuaries
Geographic Information System Dataset (http://
sanctuaries. noaa.gov/library/imast_gis. html, acces -
sed 23 November 2016). Foraging use was assessed
via percentage of intensive-use points occurring
within each boundary. Local areas SFISMR and
SFISMCA were excluded from analysis as the 1 km
buffer imposed during data filtering significantly
altered estimates of use in these areas.

Environmental variables

Remotely-sensed satellite data were obtained for
pertinent oceanographic variables in order to charac-
terize auklet foraging habitat. Environmental pre -
dictors were chosen to match those of McGowan et
al. (2013), excluding long-range climactic indices.
Sea surface temperature (SST) and chlorophyll a
concentrations (chl a) were obtained from the moder-
ate resolution imaging spectroradiometer (MODIS)
Aqua satellite utilizing the xtractomatic package in
R (http:// coastwatch.pfel.noaa.gov/xtracto/, accessed
8 February 2017). Datasets were agglomerated as 3 d
composites with a gridded spatial resolution of
0.0125° (~1.47 km). Bathymetric information was
obtained via the NOAA National Centers for Envi-
ronmental Information 3 arc-second Coastal Relief
Mo del (https://www.ngdc.noaa.gov/mgg/coastal/ crm.
html). An additional 10 m contour (40 to 200 m)
shapefile specific to the Gulf of the Farallones was
downloaded from the USGS Woods Hole Science
Center for increased precision in identifying the
200 m isobath (https://pubs.usgs.gov/of/2004/1082/).
Distances from positional fixes to both the shelf break
and the breeding colony were calculated in R.

Habitat model variable selection

We used generalized linear mixed models
(GLMMs) to examine habitat characteristics associ-
ated with intensive auklet use. Utilizing the results
from the residence time analysis, each locational fix
was categorized as either ‘foraging’ or ‘non-forag-
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ing’. We then modeled the ‘foraging’ behavioral res -
ponse as a function of remotely-sensed oceano-
graphic variables. Prior to model exploration, chl a
was log-transformed and bathymetry was square-
root transformed to increase normality. All potential
predictor variables were then standardized. Correla-
tion was assessed among all potential predictor vari-
ables via estimations from pairwise Spearman rank
correlation coefficients (|rs| < 0.5). Highly correlated
predictor variables were examined in conjunction,
with those explaining less deviance removed. Addi-
tionally, a generalized linear model with binomial
response and logit link function containing all
remaining explanatory variables was fitted to auklet
behavioral state. Variance inflation factors for the fit-
ted model were then examined for values ≥10 to
mini mize introduced collinearity following Studwell
et al. (2017).

Model generation

A null GLMM with logit link binomial error distri-
bution was fit to auklet behavioral state using the R
function glmer in package lme4 (Bates et al. 2015).
Two behavioral states were considered; ‘foraging’
and ‘non-foraging’, identified using the upper quar-
tile residence time analysis. GLMMs were then con-
structed starting with the most highly parameterized
linear combinations of predictor variables. Quadratic
terms for SST and bathymetry were also included to
account for the possibility of non-linear responses.
Individual identity and year were both incorporated
as random effects. Variables (random and fixed)
were sequentially removed and evaluated via an in -
formation theoretic approach based on Akaike infor-
mation criterion (AIC) values (Burnham & Anderson
2002).

Model selection and fit

Competing models were assessed using a combi-
nation of AIC values and Akaike weights. As the
highest-performing model (lowest AIC) was associ-
ated with a weighted confidence >0.9, a best single
model approach was taken for evaluating model ade-
quacy. Best-fit models were also assessed post-hoc
for each chosen residence time radius metric (100,
300, 650, 1000, and 2000 m) and compared for model
agreement. Model fit assessment was conducted on
the single highest performing model through logistic
regression, quantile-quantile and partial residual

plots. Residuals from the fitted model were compared
to simulated residuals and evaluated for linearity.

RESULTS

Data were successfully obtained from 6 (86%) data
loggers in 2015 and 10 (56%) data loggers in 2016. Of
these, 1 logger from 2016 recorded incomplete tracks
and was therefore excluded from descriptive and res-
idence time analyses. Tag recovery failure across
both years included an inability to relocate the bird
(24% of all deployments) and/or premature logger
detachment (12% of all deployments). Each deploy-
ment recorded an average of 2.9 ± 0.6 complete trips
(n = 43 trips).

Foraging distribution

Auklets were distributed broadly near the western
edge of the Gulf of the Farallones, rarely making
trips to more centrally located inshore waters. Activ-
ity was largely concentrated within an area ranging
from the North Farallon Islands to the Gumdrop
Seamount and Pioneer Canyon (Fig. 1). Auklets dis-
persed from and returned to a central place (SEFI)
daily, with a majority of trips focusing on areas to the
southwest of the colony. Significant movements to
the north and east were uncommon. Distribution
there fore did not reflect influence from coastal sys-
tems but remained in strictly pelagic zones through-
out the tracking period.

Foraging behavior

There was a tendency for auklets to both initiate
and terminate foraging trips within 1 h of civil dawn
and civil dusk, respectively (51% of trips). However,
variation was present in both departure and arrival
times, and in some cases adults delayed their return
to the nest for several hours and approached land
only under advanced darkness (n = 12). Trip dura-
tions (range 12.43 to 26.87 h) also reflected this
trend, as 63% of trips were within 2 h of an aver-
aged daylight length of 14.75 h. As predicted, there
was only a weak relationship between trip duration
and total distance traveled (least squares linear
regression, F1,41 = 9.75, p < 0.01, R2 = 0.192). In
addition, the relationship between trip duration and
maximum distance from the colony was weakly sig-
nificant (F1,41 = 5.79, p < 0.05, R2 = 0.123). Con-
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versely, maximum distance from the colony was a
much better predictor of total distance traveled
(F1,41 = 110, p < 0.001, R2 = 0.728). Despite the shelf
break being located only 8 km from SFI, maximum
straight line distances from the colony were rou-
tinely twice that amount (65% of all trips) (Table 1).
Indeed, mean maximum distance achieved per trip
was 2.7 times further than the minimum distance
required to reach the break (21.4 ± 10.6 km). In ad -
dition, total trip distances (69.6 ± 31.9 km) were
greater than would be expected for flights simply
occurring to the shelf break and returning to the
colony. This was further supported by the residence
time analysis, which delineated  foraging points
throughout the study area. This in cluded foraging
effort in waters over the continental shelf, within the
break region, and in deeper semi-pelagic waters.
Although the most significant cluster of  foraging
points was located in shallow (0 to 200 m) continental
waters to the southwest of SEFI, a secondary cluster
of activity was located over the outer shelf corre-
sponding to bathymetric values between 1000 and

2000 m. This distribution of intensive use areas was
confirmed by the kernel density analysis, which pro-
duced separate core ranges (50% UD) centered over
these respective marine sectors (Fig. 2).

There was a consistent directional bearing associ-
ated with the shelf break for both initial and final for-
aging bouts (Fig. 3). This bearing is consistent with
the most expedient line of travel to and from the shelf
break (221 ± 62°) from SEFI, despite potential for -
aging efforts significantly beyond the immediate
200 m isobath. To test for environmental differences
between the first and last foraging bout locations,
oceanographic variables between initial and final
intensive use points were compared using boots -
trapped 2-sample Kolmogorov−Smirnov tests (1000
iterations). We found that differences in SST (D =
0.233, p > 0.05), log-transformed chl a (D = 0.186,
p > 0.05), square-root transformed bathymetry (D =
0.209, p > 0.05), distance to the shelf break (D =
0.116, p > 0.05), and distance to the colony (D = 0.186,
p > 0.05) were not significant between the first and
last daily foraging bouts across trips.

217

Fig. 1. Movements of chick-rearing adult rhinoceros auklets Cerorhinca monocerata breeding on Southeast Farallon Island 
tracked by GPS data loggers in the Californian Current System in 2015 and 2016
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Overlap with marine sanctuaries

Kernel density estimation of home range (95% UD)
indicated that the majority of auklet habitat was en -
compassed by a spatially-explicit conservation area
(Fig. 2). For example, GFNMS encompassed 68% or
greater of the total locations, foraging locations,

home range distribution, and core range distribution.
MBNMS was only marginally used, with <15% cov-
erage in all categories. There was a complete ab -
sence of auklet locations within CBNMS although its
border was approached on 2 separate trips. The re -
mainder of positional fixes, particularly for foraging
points and home range distribution, overlapped with
waters outside of the marine sanctuaries (Table 2).

Comparison of oceanography

Habitat modelling indicated complex interactions of
oceanographic variables for predicting behavioral
changes in foraging auklets. During variable selection,
distance to colony was removed due to high absolute
value correlation coefficients with all other input pre-
dictors (0.86, 0.48, 0.48 and 0.47 for bathy metry,
log[chl a], SST and distance to shelf, respectively).
Due to limited fixed effects and |rs| values below or
near 0.5, all remaining predictor variables were in-
cluded in model generation. Sensitivity ana lyses re-
vealed strong model agreement at scales of 100, 300,
and 650 m residence time radii. Best candidate
models generated at these 3 radii all contained the
same 3-way interaction, although differences arose in
the quadratic term (SST2 was missing in one of 2 top
candidate models at 100 m, and replaced by bathy -
metry2 in the lone top model at 650 m) (Table 3). The
best candidate model generated at a 1000 m scale in-
cluded a separate 3-way interaction and both quad-
ratic terms as significant. Finally, residence times
generated at 2000 m scales indicated foraging bouts
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Fig. 2. Kernel density plot of all foraging trips recorded by
adult rhinoceros auklets breeding on Southeast Farallon Is-
land (white circle) in 2015 and 2016, in relation to surround-
ing marine sanctuaries. Core and home ranges are re pre -
sen ted by the 50% and 95% utilization distributions (UD),
res pectively. The full extent of central Californian marine
sanctuaries is shown in the inset map. GFNMS: Greater
 Farallones National Marine Sanctuary; CBNMS: Cordell
Bank National Marine Sanctuary; MBNMS: Monterey Bay 
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Fig. 3. (A) Bearings from Southeast Farallon Island (SEFI) to the first identified point of intensive use in each foraging trip by
adult rhinoceros auklets tracked in 2015 and 2016, a proxy for probable locations of self-foraging behavior. (B) Bearings from 

SFI to the final point of intensive use in each trip, a proxy for probable locations of chick-foraging behavior
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of unrealistic duration and homogenization (i.e. one
very long foraging bout per trip) and so were not mod-
eled. Given the high agreement be tween models gen-
erated at local scales (100, 300, and 650 m), we elec ted
the median scale of 300 m as most appropriate
(Table 3). The highest performing model included
a three-way interaction between distance to shelf,
log (chl a), and bathymetry along with a quadratic

SST term and individual identity as a random effect
(ΔAIC = 16.9) (Table 3). Akaike weights (w) indicated
this model to be significantly more likely to be the
best model for explaining auklet behavioral state over
other candidate models (n = 25) (w = 0.99). Lo gistic re-
gression and partial residual plots indicated no major
departures from model assumptions, and that appro-
priate model fit was achieved (Table 4).

DISCUSSION

Foraging rhinoceros auklets brood -
ing chicks at Southeast Farallon
Island are able to exploit multiple
marine habitats ranging from the
continental shelf to outer break
domains. Despite variable fine-scale
ha bitat choices, the shelf break sys-
tem at large appears to be the most
fundamentally important mesoscale
feature in the region influencing auk-
let behavior. Local foraging decisions
nested within this system appear to
be modulated by complex interac-
tions of oceanography (primarily
among bathymetry, prima ry produc-

219

Residence time          Model fixed effects                                                                                 Model random               AIC 
radius (m)                                                                                                                                            effect                     weight

100                              Dist. to shelf × log(chl a) × Bathymetry + SST                                          Individual                   0.63
100                              Dist. to shelf × log(chl a) × Bathymetry + SST + SST2                                            Individual                   0.37
300                              Dist. to shelf × log(chl a) × Bathymetry + SST + SST2                                            Individual                   0.99
650                              Dist. to shelf × log(chl a) × Bathymetry + SST + Bathymetry2                 Individual                   0.99

Model parameter Coefficient Z-score p-value
Estimate SE

Intercept* −1.506 0.198 −7.621 <0.001
Dist. to shelf −0.040 0.046 −0.870 0.384
Log(chl a)* −0.310 0.046 −6.778 <0.001
Bathymetry* −0.321 0.037 −8.684 <0.001
SST* 0.205 0.041 5.047 <0.001
Log(chl a) × Dist. to shelf −0.160 0.087 −1.850 0.064
Bathymetry × Dist. to shelf* 0.144 0.042 3.398 <0.001
Log (chl a) × Bathymetry 0.021 0.051 0.402 0.688
Log (chl a) × Dist. to shelf × Bathymetry* 0.493 0.105 4.681 <0.001
SST2* 0.148 0.028 5.207 <0.001

Table 4. Summary statistics for the highest performing single model of rhino -
ceros auklet foraging behavior in the Gulf of the Farallones (Californian Current
System) using a 300 m residence time radius metric. Highly significant terms
(p < 0.001) are denoted with an asterisk. Note that while not all covariates or
 interactions were significant, the 3-way interaction term contributed heavily to
the model. All model parameters have been standardized for comparative 

purposes

Marine No. of locations % locations No. of foraging % foraging % home range % core range 
sanctuary in boundary in boundary points in points in in boundary in boundary 

boundary boundary (95% UD) (50% UD)

GFNMS 15 252 81.56 2775 73.20 68.61 95.22
MBNMS 1144 6.12 296 7.81 13.33 0
CBNMS 0 0 0 0 0 0
Unprotected 2305 12.32 720 18.99 18.06 4.78

Total 18 701 − 3791 − − −

Table 2. Regional marine sanctuary use by foraging adult rhinoceros auklets tracked from Southeast Farallon Island (SEFI) in
the Californian Current System in 2015 and 2016. GFNMS: Greater Farallones National Marine Sanctuary; CBNMS: Cordell 

Bank National Marine Sanctuary; MBNMS: Monterey Bay National Marine Sanctuary. UD: utilization distribution

Table 3. Highest-performing models based on Akaike information criterion (AIC) of the be havioral state of chick-rearing rhi-
noceros auklets in the Gulf of the Farallones (Californian Current System). Models were  generated at a range of residence
time radii (100−650 m). High concordance among models indicates a significant relationship between auklet behavioral state
and a 3-way interaction of distance to shelf, log (chl a), and bathymetry. A non-linear relationship with SST also occurred in 

half of the top models, indicating likely importance across smaller radii
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tivity, and distance from the shelf). In addition, there
exists a significant non-linear relationship with local
SST. Despite a separation of core use areas between
inner-shelf and outer-shelf domains, we were unable
to find evidence supporting a separation of self- and
chick-provisioning habitats. The majority of this
habitat is distributed within NMS boundaries, with
significant departures to the unprotected outer
break.

Modeling marine predator distributions through
at-sea observational data can be an effective method
for quantifying space use across wide geographic
bounds (Vilchis et al. 2006, Panigada et al. 2008,
Keller et al. 2012). However, model outputs can be
influenced by predictor variable selection, analytic
methodology, and observer biases. In addition, infor-
mation on individual origin, behavioral state, move-
ment parameters, and spatial dynamism is often
missing. These issues can lead to misclassifications of
habitat when applied to specific populations. For
example, observational summertime modeling ef -
forts produced equivocal results for rhinoceros auk-
lets in the Gulf of the Farallones despite the presence
of a breeding colony on SEFI (Santora et al. 2012,
McGowan et al. 2013).

Though prior models were complementary in
nature, model discre pancy may have resulted from
differing input variables, model design, varying
data sources, or temporal mismatch. The addition of
fine-scale move ment data for individual auklets
should therefore be included when assessing the
ecological requirements of regionally based breed-
ing populations (e.g. Yamamoto et al. 2015). Our
analysis suggests an elevated dependence on outer
shelf waters for chick-rearing auklets breeding in
the Farallon Is lands, the major colony for the
species in the central CCS.  Residence time analysis
of individual foraging trips showed clusters of high-
intensity use in both near-island and shallower shelf
waters, and in semi-pelagic oceanic sectors beyond
the 200 m isobath. It seems likely that auklets bene-
fit from ex ploiting upwelling-driven areas responsi-
ble for concentrating resources, and that the shelf
break system at large is the primary mesoscale fea-
ture utilized by foraging adults. The prediction
regarding the importance of this feature was, there-
fore, only partially accurate. While largely influen-
tial on a distributional scale, auklets often exploit
multiple habitats within this system.

Evidence from foraging bearings (Fig. 3) together
with remotely sensed oceanographic data also sug-
gest that self-provisioning habitat and chick-provi-
sioning habitat are not significantly different for

prey- searching auklets on an intra-annual basis. As
discrete foraging areas for initial and final daily bouts
should have produced differing habitat profiles, the
environmental similarity indicates that auklets do not
discriminate between resource gathering areas for
self and for offspring. This lends support to prior prey
selection and stable isotope analyses which con-
cluded that adults and chicks shared similar diets (Ito
et al. 2009, Carle et al. 2015).

Interestingly, foraging adult auklets in 2015 show -
ed a stronger specificity to the outer shelf break
region (1000 to 1500 m) than birds in 2016, which
had more uniformly distributed foraging locations
(Fig. 4). We believe this trend may have been driven
in part by local SSTs during the tracking period.
Remotely sensed oceanographic data indicated that
there was a strong temperature gradient present
along the outer break during the first year of this
study, which was consistent with locations of inten-
sive auklet use identified by the residence time
analysis (Fig. 5). In contrast, oceanographic condi-
tions the following year were more homogeneous;
SSTs were warmer throughout both inner and outer
break domains. In addition to a decreased depend-
ence on the outer shelf break in 2016, track bearings
of auklets appeared more dispersive. We posit that
auklets tracked in 2016 searched more radially from
SEFI for sub-mesoscale temperature fronts to exploit
or potentially limited their foraging effort to trips
within the inner shelf, which contained relatively
lower SSTs than the outer break. It should be noted
however that these 2 hypotheses are not mutually
exclusive, and that different strategies may have
been used by different individuals. We therefore sug-
gest that both inner and outer break habitats can be
exploited by foraging auklets, but that local SST is an
important factor mediating this habitat selection,
reflected in the non-linear relationship apparent
in behavioral state modeling. More data collected
across additional years are needed to fully address
the mechanisms that drive these differences.

Foraging auklets also appear to respond to indices
of primary productivity (chl a) variably, depending
upon shelf break-associated habitat. Examining
inter action trends between distance from the shelf,
bathymetry, and primary productivity on behavioral
state revealed 2 similar groupings (Fig. 6). When in
semi-pelagic offshore (deep water, far from the shelf
break) and inner shelf break (shallow water, close to
the shelf break) habitats, auklets showed a positive
trend in switching to a foraging behavioral state with
increasing primary productivity. In continental shelf
(shallow water, far from the break) and outer shelf
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break (deep water, close to the break) habitats,
model results indicated a negative behavioral state
switching trend in the presence of elevated primary
productivity. These groupings also appear reflected
in the foraging tracks. As regionally elevated chl a
concentrations during both years were predomi-
nantly distributed inside the 200 m isobath, levels of
primary productivity at inner versus outer shelf break
habitats may have been highly divergent (Fig. 5).
This break-associated contrast may have con-
tributed, along with effects of SST, to the relative
paucity of foraging points just beyond the shelf break
in 2015. In addition, auklets appeared to select for
relatively high levels of primary productivity when in
semi-pelagic offshore habitats compared to the sur-
rounding seascape during both years. While also
likely influenced by sub-mesoscale SST fronts, auk-
lets may therefore prefer to forage in local patches of
elevated primary productivity away from the conti-
nental shelf.

Temporally matched dietary samples collected on
SEFI in 2015 and 2016 from a random sample of
 provisioning adult auklets also indicated a putative
switch in foraging strategies between years. Diet
samples were dominated by northern anchovy En -

graulis mordax and juvenile rockfish Sebastes spp.
(primarily S. jordani), characteristic species of the
regionally available marine prey assemblage (Miller
& Sydeman 2004, Elliott et al. 2015). However, the
percentage of anchovy occurrence decreased be -
tween years (from 62% in 2015 to 22% in 2016) while
juvenile rockfish occurrence increased (from 29% in
2015 to 63% in 2016) (Point Blue Conservation Sci-
ence, unpubl. data). Although prey assemblages are
similar between shelf break domains, juvenile rock-
fish abundances have been found to de crea se in the
outer mid-break region (Santora et al. 2012). This
may be exacerbated by possible population trends in
regional rockfish stocks shifting to more nearshore-
dominant species (Elliott et al. 2015). It therefore
seems likely that the increased importance of an -
chovy in 2015 reflected the greater use in that year of
the outer shelf break, where rockfish are  generally
less abundant. Correspondingly, the de creased sig-
nificance of this sector in 2016, when there was more
inner break and shelf foraging, is indicated by a
greater occurrence of rockfish in the diet for that
year.

Prey availability is also known to be modulated by
longer-term indices (Suryan et al. 2006, Ancona et al.
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Fig. 4. Density plots of intensive use locations for adult rhinoceros auklets tracked in the Californian Current System in 2015
and 2016 in relation to modeled oceanographic variables. Notice the bimodal selection of intensive use locations in 2015 at
 bathymetries between 1000 and 1500 m, in addition to shelf foraging, as well as the generally cooler SSTs in 2015 compared to
2016. This is further illustrated in the distances to shelf, with 2016 foraging locations generally being located closer to 

the 200 m isobath
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2012). For example, during years of strong late winter
upwelling and generally lower SSTs, rockfish abun-
dances increase near SEFI (Miller & Sydeman 2004,
Black et al. 2010). This has been determined by sci-
entific trawls and occurrence in auklet diets, which
show a strong correlation (Thayer & Sydeman 2007).
Anchovy, however, appear more behaviorally plastic
and able to buffer anomalous environmental condi-
tions (Robinson 2004). During years of weak up -
welling, anchovy tend to dominate the available prey
assemblage (Wells et al. 2017). Despite local SST
conditions being cooler during the auklet chick-rear-
ing period, rockfish abundances were generally de -
pressed in 2015 following a very warm water event
the previous winter, as evidenced by trawl data and
diet indices (Point Blue Conservation Science, un -

publ. data). Winter conditions in 2016, however, were
slightly more favorable and may have allowed for
increased rockfish recruitment.

Underlying prey availability, in conjunction with
local spatiotemporal oceanographic conditions, may
therefore have influenced auklet foraging decisions
between the 2 years of our study. It should be
noted, however, that these characterizations should
be interpreted with caution. Our results may have
arisen from spatially autocorrelated hierarchies or
individual preference between years, given the
small sample size and limited study duration.
In addition, the underlying causal relationships
between environmental conditions and prey avail-
ability remain complex and unclear (Hyrenbach
& Veit 2003, Ainley & Hyrenbach 2010, Santora et
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Fig. 5. Tracked locations of foraging adult rhinoceros auklets in the Californian Current System relative to remotely-sensed
oceanographic variables in 2015 (left panels) and 2016 (right panels). The breeding site on Southeast Farallon Island is repre-
sented by a white marker. Locations of intensive use are identified by red dots. Maps of SST (top) and log(chl a) (middle)
were generated using Aqua MODIS data agglomerated as 8 d composites centered on the median tracking day per year with
a  gridded spatial resolution of 0.0125° (~1.47 km). In the bathymetry plots (bottom) 10 m contour lines to 200 m are shown to 

highlight the position of the shelf break
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al. 2014). However, our results are consistent with
previous ecological as sessments.

Evaluation of regional conservation zones with
auklet movement data indicated a relatively robust
spatial overlap between adult distribution and na tio -
nal marine sanctuaries (Fig. 2). As expected, GFNMS
provided the greatest overlap in coverage of auklet
habitat use at sea (Table 2). Given that SEFI is located
centrally within the borders of this NMS, the main
concern was not presence of protection per se but
rather the spatial efficacy of the existing protection.
We determined that while auklets typically re mained
within sanctuary zones possessing limited protective
management, significant foraging did oc cur outside
of sanctuary waters. These departures from regional
NMSs were characterized by outer-break foraging
that typically occurred at maximal distances from the
colo ny. In contrast, the overall use of MBNMS for for-
aging was nearly half that of the home range
estimate. While MBNMS waters may be used as
probable resting, transit, or ex plo ratory areas, the po-
tential benefit to foraging activities ap pears to be of

on ly marginal importance for this pop -
ulation. The absence in habitat use by
auklets in the CBNMS is most likely
influenced by the position of the shelf
break relative to SEFI. Given that the
most direct line of travel to the break
is achieved by following a southwest-
erly bearing, it is unlikely that prey-
searching auklets would venture
greater distances to the northwest. As
current NMS boun daries tend to favor
shelf habitats over break systems, ex -
tending protections to encapsulate
distal outer zones may benefit oceanic
and semi-oceanic organisms through -
out the region. In addition, although
NMS designation confers protection
against development and infrastruc-
ture, it does not confer regulatory
management of commercial or recre-
ational fisheries. Stocks of im portant
forage fish must therefore be in de -
pen dently monitored to prevent de -
pletion. While the local SFISMR and
SFISMCA do prohibit most fishery ac-
tivities, given their relatively small
spatial area and proximity to the colo -
ny, protection of these areas likely of-
fers negligible benefits to foraging
auklets.

CONCLUSION

We have shown, through our use of fine-scale GPS
tracking, that adult auklets rearing chicks at SEFI
target the shelf and the outer break oceanic zones
when foraging. Local environmental conditions like -
ly modulate foraging strategy during this period, as
well as interannual variations in resource compo -
sition, availability, or abundance. These findings,
though broad, fit theoretical models of generalist
predator species (Harcourt et al. 2002, Matich et al.
2011). Despite potential interannual variation, we
provide further evidence supporting the conclusion
that adults utilize the same habitat for self- and
chick-provisioning throughout the chick-rearing pe -
riod. Modeling efforts underscored the complexity of
environmental cues influencing foraging behavior,
with multiple oceanographic interactions likely con-
tributing to utilization distributions. Long-term track-
ing studies of this species, combined with environ-
mental data and diet composition, would greatly

Fig. 6. Modeled influence of 3-way interaction of bathymetry, distance to
shelf, and log (chl a) on behavioral state of foraging adult rhinoceros auklets
tracked in the Californian Current System in 2015 and 2016. Shelf break
 associated habitats were categorized as semi-pelagic offshore (deep water,
far from shelf break), outer shelf break (deep water, close to shelf break), in-
ner shelf break (shallow water, close to shelf break), and continental shelf
(shallow water, far from shelf break). Probability of foraging increased with
chl a in semi-pelagic offshore and inner shelf break habitats, but decreased as 

chl a increased in outer shelf break and continental shelf habitats
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expand our understanding of these factors. Finally,
marine sanctuaries at the regional scale ap pear ade-
quate for containing much of the distribution of for-
aging auklets despite favoring shelf waters. How-
ever, auklets may demonstrate an expansion in range
during incubation or late chick-rearing, common in
similar species (Ito et al. 2010, Shoji et al. 2016). In
addition, recent investigations into non-breeding
movement patterns of auklets elsewhere in the
Pacific indicate complex migratory patterns (Taka -
hashi et al. 2015), and current boundaries should be
evaluated at other stages of life history as well.
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