Skip to main content
A review of seabird energetics using the doubly labeled water method
. Comparative Biochemistry and Physiology 158: 315-322. (2011)
  • Scott A Shaffer, San Jose State University
The doubly labeled water (DLW) method has been essential for understanding animal energetics of free-ranging individuals. The first published studies on free-ranging seabirds were conducted on penguins in the early 1980s. Since then, nearly 50 seabird species with representatives from each major taxonomic order have been studied using DLW. Although the basic methodology has not changed, there are at least nine different equations, varying with respect to assumptions on fractionation and the total body water pool, to estimate field metabolic rate (FMR) from isotopic water turnover. In this review, I show that FMR can vary by as much as 45% depending on the equation used to calculate CO2 production in five albatross species. Energy budgets derived from DLW measurements are critical tools for understanding patterns of energy use and allocation in seabirds. However, they depend on accurate and representative measurements of FMR, so analyses that include greater partitioning of activity specific FMR yield more realistic cost estimates. I also show how the combined use of DLW and biologging methods can 1) provide greater clarity for explaining observed variation in FMR measurements within a species and 2) allow FMRs to be viewed in a wider physiological, behavioral, or ecological context. Finally, I update existing allometric equations with new FMR data. These updates reaffirm that albatrosses have the lowest at-sea FMRs per equivalent body mass and that individuals of other seabird orders have FMRs ranging between 1.39 and 2.24 times higher than albatrosses.
Publication Date
Publisher Statement
SJSU users: use the following link to login and access the article via SJSU databases.
Citation Information
Scott A Shaffer. "A review of seabird energetics using the doubly labeled water method" . Comparative Biochemistry and Physiology 158: 315-322. Vol. 158 (2011)
Available at: