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ABSTRACT

Two methods for detecting dim, unresolved target tracks in infrared imagery are presented. Detecting such targets in
a sequence of noisy images is very challenging from the standpoint of algorithm design as well as detection performance
evaluation. Since the signal-to-noise ratio per pixel is very low (a dim target) and the target is unresolved (of spatial
extent less than a pixel), one must rely on integration over target tracks which span over many image frames. In
addition, since there is a large amount of uncertainty as to the pattern and location of target tracks, good algorithms
must consider a large number of possibilities. The first method is based on a generalization of the Hough transform-
based algorithm using the Radon transform. The second approach is an extension of a detection theory algorithm
to 3-D. Both algorithms use a 3-D volume of spatial-temporal data.

1. INTRODUCTION

The problem addressed in this paper is the detection of dim, unresolved target tracks in infrared imagery. In such
problems, two-dimensional digital image frames of the same field of view are collected at short, periodic intervals. A
target (if present) usually moves in a direction approximately perpendicular to the sensor line of sight (so its size is
constant) and moves through the field of view while the background stays relatively constant. If a target is in the
field of view, it appears in a succession of frames as it moves. In each frame in which a target appears, it shows up
in one or a few pixels, depending on its size, its speed, and the point spread function of the optics. The result is a
three-dimensional set of data containing noise and, if there is a target, a signal of constant or time-varying amplitude.
Detecting such targets in a sequence of noisy images is challenging from the standpoint of algorithm development as
well as detection performance evaluation. Since the signal-to-noise ratio (SNR) per pixel is very low (a dim target)
and the target is unresolved (of spatial extent less than a pixel) , one must rely on integration over target tracks which
span many image frames. In addition, since there is a large amount of uncertainty as to the pattern and location of
target tracks, good algorithms must consider a large number of possibilities.

During the last several years, the authors have participated in a joint effort to propose solutions to the problem of
detecting dim, unresolved target tracks. In the first phase, a Hough transform-based algorithm for extracting the
target tracks was developed and the results presented in [1]. The performance of the algorithm was evaluated using
data containing varying amounts of system noise, background clutter, and spacecraft jitter. The results show that
this algorithm performs well under a variety of conditions, but as the SNR is reduced significantly the performance
degrades rapidly. Later, the Hough transform-based algorithm was generalized to detect linear and curved tracks
[2]. In parallel with this effort, the track detection problem was reformulated as a two-hypothesis detection theory
problem. This reformulation provides alternative methods for evaluating algorithm performance (e.g., probability of
detection, probability of false alarm, and a posteriori probabilities) , an optimal algorithm for detecting and localizing
tracks, and incorporates, as a subset, the Hough transform algorithm [3], [4], [5]. Each of these algorithms has been
evaluated using sets of 2-D track map sequences. A track map sequence results from projecting a preprocessed
time sequence of image frames onto one 2-D track map image. The track map data may still contain some noise;
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Figure 1: Two—dimensional geometry of Radon-like forward parallel projection.

however, it is assumed that the remaining noise is white. The results show good performance for both the Hough
transform-based and the detection theory algorithms, with better performance from the detection theory algorithm
especially at low signal-to-noise ratios (SNRs).

There is a limitation, however, in overall performance when using temporal projection to create a 2-D track map
sequence from the original 3-D (space and time) image data, especially when the targets are dim. Even if the
projection is performed optimally, it causes a significant reduction in the effective SNR as compared to the SNR of
the original 3-D data. In this paper, two approaches for circumventing this problem will be presented. The first
approach is based on an extension of the Hough transform-based algorithm using the Radon transform. The second
appioach is an extension of the detection theory algorithm to 3-D.

2. PROJECTION-BASED HOUGH TRANSFORM

In this section a projection-based Hough transform algorithm derived from the Radon transform is presented. Here,
the Radon transform provides a mechanism for obtaining a set of projections at arbitrary angles. Computing the
Radon transform consists of computing the projections of an image along a particular pattern, e.g., a straight line.
Mathematically the problem can be stated as follows. Let T(x,y) represent a two-dimensional function. As shown
in Figure 1 , a line running through T(x,y) is called a ray. The integral of T(x,y) along a ray is called a ray iniegral,
and a set of ray integrals forms a projeciion.

The equation for an individual ray is given by

k = xsinq + yco$ (1)

where k is the perpendicular distance of the ray from the origin. The integral of the function T(x,y) along this ray
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may be expressed as

P(k) =
fray

T(x, y)d2r =f J T(x, y)6(xsin + ycos —k)dxdy. (2)

The function P(k) as a function of k (for a given value of ) is the parallel projection of T(x,y) for angle ç5. The
one-dimensional function P(k) is also called the Radon transform of T(x,y). A projection taken along a set of
parallel rays is called a parallel projeciion, an example of which is shown in Figure 2.

Eq. 2 is generalized to a three-dimensional Radon transform as shown below

P(k,t) =f T(x, y,t)d3r = J J f T(x, y,t)(xsin + ycos — k)dxdydt. (3)
plane 00 00

The two-dimensional function P(k, i) as a function of k and t (for a given value of ç) is the surface integral of
T(x,y,t) over the plane for angle . The function P(k,t) is also called a three-dimensional Radon transform of
T(x,y,t).

Instead of using surface integration shown in Eq. 3, the maximum value projection method is to be applied in this
implementation as follows.

Pm(k,t) = Max'[T(x,y,i)6(xsinç + ycosç — k)] (4)

For a three-dimensional target trajectory T(x,y,t), Pm(kt) denotes a set of parallel projections taken along a series
of parallel planes defined by the Dirac delta function. The function Pm(k,t), as a function of k and t for a given
value of , is referred as the parallel projection of the three-dimensional target trajectory T(x,y,t) for angle çf'.

The number of projections is arbitrary. Theoretically, increasing the number of projections improves the performance
of the estimation, but increases the cost of computation. Assuming the number of projections is N, the angle increment
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Figure 3: Reconstruction using Radon-like parallel line back-projection.

between projections is =:• (5)

Thus, the projection angle is
ç=izqfori=O,1,...N—1. (6)

In this work, the projection angle is assumed to be within the range from O to 90" with respect to the x-axis.

Once a series of the parallel projections is obtained using the forward projection defined by Eq. 4, the target track line
parameters for each of the parallel projection frames are estimated by using the 2-D Hough transform equations. An
estimate of the target trajectory in 3-D is obtained by back-projecting the N sets of 2-D track parameter estimates
(pi, Oi)i=O,1,...N—1.

The back-projection shown in Figure 3 is defined as follows

T'(x,y,t) = flNl[/(k,t)(xsin+ yco$ —k), Vt]. (7)

where i) is the estimated two-dimensional target track function obtained by using the inverse Hough transform
and T'(x, y, 2) is the reconstructed three-dimensional target trajectory function using parallel back-projection along
a series of parallel back-projection planes defined by the Dirac delta function.

The accuracy of the three-dimensional target track estimation solution is limited by the input image frame signal-
to-noise ratio and the discretization errors (data sampling and quantization). Discretization errors occur when the
data is recorded discretely and when there is a projection onto a plane that is not parallel to one of the spatial or
temporal planes.
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2.1 Analytic Bounds on the Hough Space Errors

In the following, a derivation of the analytical bounds on the Hough space parameter errors that are introduced
by image space noise contamination is presented. This provides a mechanism for quantitatively assessing track
estimation performance of the projection-based algorithm. Assume a 3-D volume of image data is generated from
a time-sequence of 2-D image frames. A set of 2-D projection data is then generated from the 3-D volume. The
following analysis is applicable to the data contained in any 2-D ofthe projected frames. In this analysis the dominant
noise sources are assumed to be thermal noise and discretization (sampling and quantization) noise.

A target track (line) in a 2-D projected frame is modeled by:

pi = xi cos O + y sin O (8)

where x and y2 are the image domain coordinates for an arbitrary 2-D projection and p and 0, are the corresponding
Hough domain parameters. If the data are noisy, there will be errors in the estimates ofthe Hough domain parameters.
The objective of this section is to determine the bounds on the errors for p2 and 9.

An error in the estimate of the Hough parameters pi and O will result in an error in the estimated target track. An
estimated target track will fall within some neighborhood (noise strip) of the actual target track location. Here, it is
assumed that the sampling grid is rectangular in the image plane with the pixel dimensions given by Ex2 and iy1.

The estimate of an actual target point x1 and y2 is given by:

;-=+1 (9)

YiYi+f2 (10)

where e1 and E2 are assumed to be zero mean, additive white Gaussian noise. Suppose

Ifil $ KEix (11)

f21 KLy (12)

where K is a constant. The worst case estimates occur when O =45°, 135°, or 315°. (For this application, tracks
along 225° are not included because those correspond_to movement along a path backward in time.) For these cases,
the estimated track points could lie as far as Kzx+ away from the actual track point. In general, the
amount of error will depend on the geometry of the track.

2.2 Error Bound on

A bound on the estimate of p2 can be specified as a function of O as follows:

(x I<zix)cosO +(yj —I(zy)sinO <ç< (x1 +(yj +KLy1)sinO1 (13)

where is the estimate of p2. Consider the problem geometry shown in Figure 4. Here

PiU upper bound of estimate

PiL lower bound of estimate

The bound on the estimate of p is derived as follows:

(1) For 0 <9 < :
PiU = (x + Kzx)cosO + (yj + Ky)sinO2 (14)

PiL = (x — KLx1) cos O + (yi — Kzy)sinG (15)
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Figure 4: Geometry associated with determining error bounds on p of target track.

and

PiL<PiU (16)
where

i=(x1+f1)cos01+(y1+E2)sin01 (17)

Then, _____
I = IP — iI = + e cos 01 — 450 (18)

and __________
lI c lp — ?FJJ = p1 — = KJzx + cos 0 — 5°I (19)

(2) For . < 0 <ir:
PiU = (x — Kix1) cos 0 + (y + KLy) sin O (20)

PiL = (x2 + I<zx1) cos 0 + (y — KLy1) sin O (21)
and __________

kpI + Ly cos 0 — 135° (22)

(3) For < 0 <2r:
PiU = (x1 + Kz.x1) cos 0 + (y — Ky1) sin 0 (23)
PIL = (x — Kx1) cos 0 + (y + Ky1)sin 01 (24)

and __________

IiI <KJi&x + i&y cos I0 — 315° I (25)
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Combining these three results, we can write:

I1piI � Ke+ecosII (26)

where,
I ei — 45° , forO < Oj

5 = ' Lii — 135°, fort < < (27)
I Gi — 315°, for-f < Ci < 2ir

If we assume e = ei = 2 KL\x = Kzy1 = K, (that is, ix = L1y1 = 1) then,

ILpiI � Kv"cosI6I (28)

If the track line is detectable in the noise strip and K = 0.5 and 0 < 9 -i., the worst case error in p1 is:

IJpiI � \/COS 145° — 45° I = v' (29)

Thus, - lies within a pixel strip. For K = 1.0,

kpI � 2V' (30)

and lies within a pixel strip.

2.3 Error Bound on

Assuming the length of the actual target track isL, determine the upper and lower estimation error bounds on
with 6 defined as in Eq. 27. The error bound for C can be expressed as follows:

IMI = Ii-I = -tan (cosII) (31)

Again consider the case when =e = e2 < I<Lx2 = KLy = K. Then,

= — tan1 ( 2L
(32)2

or
ir —( 2L '\

ILoi I � — — tan I I (33)2 \I<vcosl5IJ

A table of the worsl case errors for Gj is shown below for K =0.5 and K = 1. The results hold for O = 45° , 135° or
315°.

L

II K 5 10 15 20 3 40 fi
05 '15° 8° '5° 4° 3° 2°
1.0 29° 16° 11° 8° 5° -4°

2.4 Simulation Results

The 3-D data set that is composed of real infrared unclassified data provided by NRL (HiCamp) with a number of
simulated trajectories and various amounts of additive noise. The data set has a frame size of 32x32 pixels and up
to 45 frames in the temporal direction in order to accommodate the longest possible track of a target moving at a
speed of one pixel per frame. Simulations have been run to evaluate the performance of the algorithm at a number
of signal-to-noise ratios and projections. The results indicate good performance down to 0dB with 5-9 projections
and 15-20 frames of data. At low SNRS, performance degrades as the number of frames decrease and/or the number
of projections decrease.
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3. OPTIMAL 3-D DETECTION THEORY APPROACH

The 3-D detection theory algorithm is based on a binary hypothesis problem model. Once it has been decided that a
target is present in the field of view, a procedure for estimating the location of the trajectory based on a calculation
of the a poseriori probabilities of all possible trajectories is feasible. Here the solution is formulated so that multiple
parallel target trajectories can be detected. Although, the extension to 3-D has been previously dismissed as too
computation and memory intensive, recent advances in hardware capabilities now make it viable. The key to using
the 3-D algorithm in a computationally efficient manner is to calculate the a posieriori probabilities recursively from
the old a posleriori probabilities and the new frame of data. When a new frame is received, incomplete trajectories
are updated and complete trajectories are replaced by new trajectories following the same paths.

At any instant of time, in, the stack of observation data, Xm_L+1,..., rn , consists of L frames. The detection problem
can be set up as a binary hypothesis problem:

H0 : Xm_L+1 ,..,m Nm_L+1 Tn

H1 : X_L+1 Tn = i: S_L+1 m(pi,fj,0)+Nm_L+1
(p,,n)E1Z

A track in a stack of frames is characterized by (1) its spatial parameters, p and 0, and (2) the time it entered the
field of view, indicated by frame number n. p takes on the value 1 when a track is present at the ith value and
0 otherwise, and thus serves as an indicator for track locations in p space. 'IZ is the set of parameters, (Ps, 0, n1),
that indicates the set of trajectories present. Here >(pnj)E Sm_L+1 rn(Pi flj 9) is the signal in the stack of L
frames. The pixels corresponding to the trajectories in set R are equal to one with all other pixel values equal to
zero. Nm_L+1 Tn 5 a stack of frames representing the pixels of noise in the most recent L frames. The problem of
detection is to decide whether there is noise alone in the data, in which case hypothesis H0 is true, or there are one
or more tracks and noise in the data, in which case H1 will be true.

It is well known that thresholding the likelihood ratio of the received data provides optimal detection performance.
The likelihood ratio is the ratio of the probability density functions of the data under the hypothesis H1 and H0,
that is,

p(Xm+L+1 I'1i)A(X+L+1 ) = (VPV'm+L+1 m
Using the law of total probability for a discrete case this can be expanded for all possible patterns of parallel target
trajectories as,

A(X+L+l m) A(Xm+L+l (34)

The problem with parallel multiple trajectories whose number is not known is that the number of patterns of possible
parallel trajectories is immense. For example, in a data consisting of a stack of 20 frames each with 33 x 33 pixels
the number of possible patterns of parallel trajectories in each direction is approximately equal to 233>((33+20). This
is the number of terms in the summation in equation (34). This complexity can be greatly reduced if we assume
that the parallel target trajectories are independent of each other, a reasonable assumption to make if we exclude
the possibility of trajectories overlapping each other.

Let P(p1 = 1O, H1) = p,, be the a priori probability of a trajectory being present at p = p for a given 0. Similarly,
let P(n = lfG, H1) = Pn be the a priori probability that a trajectory enters the field of view at frame n2 . Based on
the independence of p2 and the frame number n,we can write the following joint probabilities

P((p2,n,)= 1IG,H1) = P(p2 = 1,n,j = 1IO,H1)=p
P((p, n,) = Ole, H1) = P(p = 1, n3 = O9,H1) + P(p1 = O,n = 110, Hi)

+P(p =O,nj =OI0,Hi)
= 1—ppxpn
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The above arguments can be used to greatly reduce the complexity of equation (34). After some algebraic manipu-
lation, this equation can be written as a sum of products of (N x R) factors

A(X) = P(9IHi)flÜA(xlni,pj,o)P((ni,pj) = 1I9,Hi)+P((n,pj) = OIO,H1)1 (35)
8 i=lj=1

Since the parameters p and n are independent of each other, the above expression can be written as

A(X) = P(OIH1)fl [ñAxIflPoPP 1IO,Hi)+P(p =
OfOH1)J]

P(n = 1IO,Hi)
8 i=1 j=1

+P(n1 = 010, H1)

= P(OIHi) 1I9,Hi)+P(nj,= 0lOHi)J] P(p = 1IO,Hi)
8 j=1 i=1

+P(p = Ole, Hi)

The conditional likelihood ratios A(XInj, 0), A(X(p3 0) and A(XlO) are then defined as,

A(XInj, 0) = fl[A(Xln,p , 0)P(p = 10, H1) + P(p = 00,H1)] (36)

A(XJp,0) = fl[A(XInj,pj,O)P(nj,= 1IO,Hi) + P(n1,= 0IO,Hi)] (37)

and

A(XI6) = ft [A(Xjn,p,O)P((n,p) = 1l0,H1) +P((n,p) = 0I9,H1)] (38)
i=lj=1

= ll{A(XInj, 9)P(n1 = 1O, H1) + P(n = 010, H1) (39)

= ll[A(XIpj,O)P(pj = 1I9,H1)+P(p = 0IO,H1) (40)

It is seen from the above formulation that the conditional likelihood ratio A(Xn,p1, 0) is the basic building block
for computing all other likelihood ratios, conditional or otherwise. In fact, the 3-D Hough transforms are embedded
in this term. Also, this algorithm can be computed recursively following the procedure given by Hunt et al. [3].

3.1 3-D Track Location Estimation

Once the tracks are detected, the problem of estimating the parameters that characterize these tracks remains to
be solved. Given a data set, using the Bayesian framework for estimation, determine the a posieriori probabilities
of the parameters (pi, 0, ni). The estimation problem is developed in two stages. In the first stage, the a poserzori
probabilities conditional to the angle of orientation, 0, are computed. In the second stage, the a posieriori probability
of the angle, 0, is computed.

Assume that the presence or absence of a track at each possible position j, for a target that entered the field of view
at frame n conditional to a given 0, is statistically independent a priori. The a priori probability for any pattern
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4. CONCLUSIONS

In this paper two methods for tracking dim, unresolved target tracks were presented. In the first case, a projection-
based Hough transform algorithm was developed. This algorithm processes a set of 2-D projected frames of data to
obtain the estimates of the track parameters. In the second case, a signal detection/estimation theory technique was
developed. The detection algorithm decides between noise alone and the presence of multiple parallel trajectories in
noise. The estimation algorithm determines the location of the detected parallel tracks. A mix of uncertainties in
orientation, location and the number of parallel tracks in the image was considered. The relationship between both
the structure and performance of optimal a posiemori probability algorithms and the Hough transform was obtained.
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