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Abstract. In this paper, a new subband coding system called subband
absolute moment block truncation coding (SAMBTC) is introduced to
compress monochrome images and color images recorded in Y/a and
L*u*v* uniform color spaces. The SAMBTC incorporates full-band ab-
solute moment block truncation coding (AMBTC) into subbands along
with a new subband dynamic bit allocation algorithm which is derived
from the Shannon rate-distortion bound. Simulation results show that the
proposed Shannon-bound-based bit allocation algorithm outperforms the

commonly used standard-deviation-based bit allocation scheme. Com-
pared with AMBTC, SAMBTC achieves superior imaging without block-
ing artifacts at low bit rates.

Subject terms: visual communication and image processing; image coding; sub-
band coding; dynamic bit allocation; absolute moment block truncation coding;
moment-preserving quantizer; uniform color space.

1 Introduction

The principle of subband codingl-3 is based on the decom-
position of an input signal into narrow bands, called sub-
bands, by a set of analysis filters at the encoder. Each subband
is then maximally decimated and separately encoded ac-
cording to a certain bit allocation criterion. At the decoder,
the decimated and encoded subbands are decoded, interpo-
lated, and filtered by another set of synthesis filters before
being added together to reconstruct the original signal. Mul-
tidimensional subband analysislsynthesis theory was first in-
troduced by Vetterli.4 Later, the first subband image coding
results were presented by Woods and O’Neil.s Since then,
subband coding has been considered to be one of the major
coding techniques for compressing images and video.

Subband coding is essentially a frequency-domain ap-
proach which consists of two subsystems: (1) subband anal-
ysis/synthesis (i.e., subband representation) and (2) encoderl
decoder (i.e., codec) along with a subband dynamic bit al-
location scheme. Notice that the subband representation pro-
vides a special way to represent the original source without
any compression. The subband bit allocation algorithm dy -
namically decides how many bits to assign to each subband;
it does not provide any compression. Only the codec performs
compression and decompression functions, based on the bit
allocation results. For example, Woods and O’Neils exploit
differential pulse code modulation (DPCM) and its adaptive
version to encode the individual subbands. Gharavi and
Tabatabai6 adopt a hybrid approach using DPCM for the
baseband and pulse code modulation (PCM) for the higher
subbands. Westerink et al.7 apply vector quantization (VQ)

Optical Engineering 35(l), 273-231 (January 1996).

Poper VIS- 12 nxxiwd May 20, 1995: mviwl mmuvxipr rwxiwd Aug. 3 I. I995:
accepted for publication Sep. 3, 1995.
01996 Socic[y 01’PlmmOpLical I!lst,-,l,ncn(t[(it,,)Engimm. 0091 -3mY9(m.()().

to code the subbands. In contrast to these works, s-’ we exploit
a special class of 1-bit (or two-level) moment preserving
quantizes, called the abso(ure mommt b[cJck tiwwat[oiz CW[-

irrg (AMBTC),8 as the codec for subbands in this paper.
Compared with many well-known coding schemes (e.g.,

discrete cosine transformation, DPCM, VQ),[)-13 AMBTC
provides fairly competitive image quality at medium to high
bit ratesx and has a much simpler computational structure.
However, we have shown that AMBTC has a bit rate lower
bound of 1 bit per pixel and presents severe blocking artifacts
on both monochrome and color images at low bit rates. To
overcome these drawbacks while fully benefiting from the
merits of AMBTC, a new subband coding system, called
subbancl absolute moment block truncation codi)?g

(SAMBTC) is introduced in this paper. The SAMBTC system
combines full-band AMBTC, subband analysis/synthesis,
and a new subband dynamic bit allocation algorithm. For
simulation purposes, two monochrome and two color digital
images recorded in various color spaces are considered.

Section 2 describes how we decompose the source into
multiple subbands. Section 3 summarizes the AMBTC al-
gorithm that is used as the codec of the subband coding
system. In Sec. 4, a new dynamic bit allocation algorithm is
derived (called the direct form) subject to the Shannon rate-
distortion relationship using a Lagrangian multiplier opti-
mization technique. A sequential implementation form is then
developed from the direct form in order to precisely match
the bit rates of the available AMBTC windows. The new
algorithm and the commonly used standard deviation bit al-
location algorithm are both converted into the sequential im-
plementation form for comparing their performance. In
Sec. 5, the coding performance using the SAMBTC system
is presented and compared with the one using AMBTC. Start-
ing from Sec. 6, the development is extended to color images

OPTICAL ENGINEERING /January 1996 / Vol. 35 No. 1 / 213

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/27/2014 Terms of Use: http://spiedl.org/terms



MA and RAJALA

recorded unconventional color space YIQ and uniform color
space L*u *v*. Section 7 presents some new observations re-
garding the bit plane and the blocking artifacts while using
AMBTC on color images. In Sec. 8, the developed new sub-
band dynamic bit allocation algorithm for monochrome im-
ages is extended to color images. Some simulation tWLkS

are presented in Sec. 9. Section 10 presents the conclusions.

2 Subband Filtering for Images

The theory and development of subband filtering can be found
in numerous sources (e.g., Refs. 1, 2, 14, 15). In this paper,
2-D subband filtering for digital images is implemented by
sequentially applying 1-D two-channel quadrature mirror fil-
tering (QMF)S, t5-17 to the source image in both horizontal
and vertical directions (called 2-D separable ~ltering). There
are many ways to split a source image into multiple subbands
with equal or unequal bandwidths. As in Woods and O’Neil~
the filter coefficients of the 1-D Johnston QMF filter (32D
in Ref. 17) have been used to generate 16 equal-bandwidth
subbands for each image. Through extensive simulations, the
difference in coding performance using 16-tap and 32-tap
QMF filters in the SAMBTC is fairly small and unnoticeable.

The boundary effects are ringing artifacts introduced in
the finite impulse response (FIR) filtering of a 2-D digital
image due to its finite region. In order to reduce the artifacts,
both the symmetric extension method proposed by Smith and
Eddins18 and the boundary replication method suggested by
Vetterli 19have been evaluated. Vetterli’s boundary replica-
tion method’ 9 is subjectively preferred and is used in this
paper.

3 Absolute Moment Block Truncation Coding

3.1 Background

Consider an image divided into nonoverlapping squared
blocks. Delp and Mitchellzo developed the block truncation
coding (BTC) algorithm in which the local mean and variance
of each block are preserved. * The BTC has been applied to
compress imagesz~zz and video.zs Halverson et al.24 gen-
eralized the BTC to preserve a family of moments, called the
generalized BTC (or GBTC). They derived a closed-form
solution of preserving (n,2n) for the two-moment GBTC and
(n,2n,3n) for the three-moment GBTC (where n k an integer
and small n means low-order moment). Lema and Mitchells
modified the constraints of BTC and developed a new al-
gorithm called the AMBTC. For an extensive study of BTC,
refer to a recent publication by Dasarathy.25

Assume each block has a size of n X n. Let m = rz2be even
andletx =[.xl,+,.. ., a-,,,]~ be the vector of the gray level of
the pixels in each block. In AMBTC, the block mean -q and
the first absolute central moment a = ( lhn)~~~, Ixi– ~ I
= ( l/nz)Z~~, Iyi – q I (rather than the sample variance U2
= = – qz in BTC) are preserved; where xi and yl are the gray
level of input and output pixels, respectively. Like BTC and
GBTC, AMBTC is also a 1-bit (or two-level) quantizer since
only two quantization levels (denoted as a and b) are generated

“NoIe that the l-bit qoantimr can be used to maximally preserve three
moments, called f/Irt,(,-)rIOIIILJIIrBTC.2’)However, the BTC referred to in this
paper implicitly means two-moment BTC.

in each block. They all can be categorized into a class called
the l-bit moment-preserving quantizer (MPQ).26

It is worth mentioning that there is another special type of
two-level quantizer, called the 1-bit minimum mean-square
error quarztizer (MMSEQ). The 1-bit MMSEQ has the same
algorithmic structure as the AMBTC but uses a different trun-
cation threshold as follows. AMBTC uses the block mean
while 1-bit MMSEQ requires an iterated search for the opti-
mum [in the mean-square error (MSE) sense] threshold on
each block. The l-bit MPQ and the 1-bit MMSEQ can be
categorized as 1-bit quantizes. Note that the MPQ preserves
certain moments but may not achieve the minimum MSE. On
the other hand, the 1-bit MMSEQ has a minimum MSE but
may not preserve the moments. The reader is referred to Ref. 27
for a more detailed discussion.

The AMBTC is chosen among the 1-bit quantizes as the
codec for subbands based on the following reasons. First,
AMBTC has a smaller computational complexity than BTC.
This can be easily justified from their algorithmic structures.8,2(J
Second, we have mathematically proved that AMBTC
achieves the least MSE among the l-bit quantizes subject to
preserving the block moments.28 Third, we have shown that
AMBTC is more practical to use than the l-bit MMSEQ?8
This is because the images resulting from using these two
algorithms are fairly close while the 1-bit MMSEQ’S com-
putations are at least two times higher than that of the
AMBTC’s. Fourth, Halverson et al.24 demonstrated that
whether the GBTC outperforms the BTC (in terms of peak-
to-peak signal-to-noise ratio, PSNR) depends on the image
and the chosen model, two-moment or three-moment. They
also pointed out that the computation of very high moments
frequently leads to overflow and inferior performance. Finally,
AMBTC is suitable for real-time application and is feasible
to implement. A real-time implementation of the AMBTC
using hardware only for the compression of the National Tele-
vision Systems Committee (NTSC) television pictures has
been reported by Ko and Lee. 29 In addition, the VLSI imple-
mentation of the AMBTC algorithm for video signal pro-
cessing has been recently documented by Chen et als”

3.2 The AMBTC Algorithm

An image is first divided into nonoverlapping blocks with
size n X n each (usually, n = 2i, where i is a positive integer).
The AMBTC encoding process is independently applied to
individual blocks as follows:

Step 1: For each block of pixels x = [xl ,X2,. . . ,x,,, ]~, the
mean value q = (X,’:, xj)/m is calculated and used as the
block (or local) threshold.

Step 2: An n X n bit plane consisting only of 1‘s and O’s
is generated from the original block by independently ap-
plying a l-bit quantizer to each pixel in the block such that
the quantizer output is O (if xis~) or 1 (if Xi>q), where
I <i< m. This results in (m – q) O’s and (q) 1‘s in the bit
plane.

Step 3: Two quantization levels a and b (generally as-
sumed to be 8 bits each) are calculated using the following
formulas:

(1)
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b=rt+%=i
()2q q ,.,$>. ‘; “

(2)

That is, the combination of the two quantization levels a and
b and the bit plane provides an approximate representation
for each block. Thus, only the two quantization levels and
the bit plane are transmitted and/or stored. For the decoding
process, the O’s and 1‘s of the bit plane on each block are
simply substituted by the quantization levels a and b of that
block, respectively. Thus, the AMBTC codec is unsym-
metrical due to its greatly reduced computational load at the
decoder.

3.3 Fundamental Insights

In the following paragraphs, we provide several important
insights on the AMBTC algorithm. The arguments are also
applicable to the 1-bit MPQ. More properties of the AMBTC
can be found in Refs. 27 and 28. Recently, Delp and
Mitche1126 provided fundamental insights on the MPQ
through the Gauss–Jacobi mechanical quadrature.

3.3.1 Bit-rate lower bound-1 bitipixel

It can be shown that all the 1-bit moment-preserving quan-
tizes are bounded below by 1 bit/pixel. Let the window size
be n X n and let the number of bits representing levels a and
b be N. and Nb, respectively. The average bit rate for this
n X n block of pixels can be calculated as

R
n2+Na-+Nb

MPQ = nz ‘
(3)

Theoretically, when the window size approaches infinity, the
bit rate ~r@Q is 1 bit/pixel, which is the bit-rate lower bound
of the MPQ.

For those applications which require less than 1 bit/pixel,
all l-bit MPQs are not applicable unless some modifications
are applied, andlor additional compression techniques are
cascaded (e.g., entropy coding). However, the SAMBTC ap-
proach proposed in this paper is not constrained by this lower
bound. For example, the source image can be decomposed
into subbands through several levels of octave band splitting.
The higher subbands can be unconditionally discarded, lead-
ing to total bit rates for the reconstructed image that are less
than 1 bitipixel.

Table 1 summarizes the bit rate contributions from the bit
plane and the quantization levels in the AMBTC for various
window sizes. It is important to realize that the bit plane
always contributes 1 bit/pixel and is independent of the win-
dow size. Owing to the lower bound, the number of effective
AMBTC windows is small. For the simulations conducted
in this paper, we chose a set of windows as listed in Table

Table 1 Bit rate contributions from the bit plane and the quantization
levels in the AMBTC for various window sizes.

I Window I Bit F’kme I QwmL Leuek I Total I Bit Plane n
Size j Rate (bpp) / Rate (bpp) I Rate (bpp) I Percentage

~

64x64] 1 [ 0.0039063 I 1.0039063 I 99.6% I

I plus OX Oand 1 X 1 to denote
sion, ” respective] y.

3.3.2 Major artifacts

“discard” and “no compres-

Compared with other coding algorithms, AMBTC provides
fairly competitive compressed imagery quality at 2 bits/pixel
(equivalent to using a 4 X 4 window) or higher rates20 (i.e.,
using smaller windows). However, the AMBTC coding per-
formance quickly degrades at low bit rates (e.g., using an
8 X 8 or larger window). In particular, two major artifacts
occur: contouring artifacts and blocking artifacts.

With only two reconstruction levels, AMBTC intro-
duces jaggedness. For the flat areas in an image, the pixel
values vary slowly. As a result, the jaggedness would cause
contouring artifacts due to abrupt changes in the reconstruc-
tion values, Generally speaking, contouring artifacts are less
noticeable in the busy areas. Second, note that no matter what
the AMBTC window size is, there are only two quantization
levels. Therefore, for the large window sizes, another type
of distortion occurs, called blocking artifacts. This is because
an abrupt change in the reconstruction value occurs at block
boundaries. The larger the AMBTC window, the more dis-
tinct the blocking artifacts are. In summary, the contouring
artifacts are an intrablock distortion, and the blocking artifacts
are an interlock distortion.

To demonstrate these artifacts, two monochrome images,
“Lena” and “House” (see Fig. 1), are used for the simu-
lations. Each image has a size of 256X 256 pixels with 8
bits/pixel. Four compressed images using the AMBTC 8 X 8
and 32x 32 for’ ‘Lena” and’ ‘House” are presented in Fig. 2.
These images will be compared with those (in Fig. 8) using
SAMBTC at the same bit rates. The MSE and PSNR mea-
surements can be found in Table 4 of Sec. 5.

4 Subband Dynamic Bit Allocation

4.1 Overview

Dynamic bit allocation is a major concern in coding systems
where a given number of bits must be efficiently distributed
among a number of sources. For subband dynamic bit allo-
cation, these sources are the decomposed subbands.

For vector source coding, Huang and Schultheiss31 first
recognized the issue of optimum bit allocation for transform
coding and derived an analytical expression for a number of
Gaussian sources. The standard-deviation-based dynamic bit
allocation algorithm described in Eq. (15) is a direct result
of their work and probably the most frequently used bit al-
location algorithm both in image (e.g., Ref. 5) and in speech
(e.g., Ref. 32) processing. However, the derivations were
based on an approximate relationship between the quantizer
distortion and the corresponding bit rate, which is only ac-
curate for high bit rates. Thus, the solution is approximate
and suboptimum. In addition, if the standard deviation of a
subband is small enough, the number of bits allocated for a
subband could be negative. In such a case, Huang et al.s 1
used a trial-and-error procedure for practical bit allocation.
Improvements to this method were proposed by Sega1133and
Ramstad.34

Segallqs assumed that the rate-distofiion function does not

have to be exponential and developed an optimal solution
for non-negative real-valued bit allocation. Ramstad14 de-
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(a) (b)

Fia.1 Twouncomcxessed monochrome imacres: (a) ’’Lena’’ and (b) ’’House,’’ Each image has a size
of>56x256 pixels’ with 8 bWpixeL

signed a practical bit allocation process which is an iterative
procedure and avoids negative bit assignment. Both Huang
et al.31 and Sega1133 assumed that all the quantizes were
identical. FOX,35on the other hand, removed this assumption
and proposed a new algorithm based on marginal return anal-
ysis but assumed that the rate-distortion function is strictly
convex.

Without assuming the nature of the quantizes, Shoham
and Gersho36 and Trushkin37,3g developed bit allocation al-
gorithms using a generalized Lagrangian multiplier method39
and dynamic programming, respectively. Instead of assuming
any mathematical relationship between rate and distortion,
they assumed that all the quantizes have already been de-
signed and consequently that all possible pairs of rate and
distortion are known. That is, for N subbands and M quan-
tizes, MN pairs must be computed in advance. The algorithm
then searches for the best combination of existing quantizes
to achieve the minimum distortion subject to a given total
bit rate. Westerink740 generalized Trushkin’s algorithm to
allow for real-valued bit rates. Instead of using dynamic pro-
gramming, Westerink applied a convex hull searching
technique 41 to imProve searching efficiency. However> these

methods tend to be computationally intensive and may not
be practical for real-time implementations.

4.2 Our Approach

In this paper, a new bit allocation algorithm is developed
from the foundation of Goodman42 and is compared with the
one presented by Huang and Schultheiss3 ] [Eq. (15)].

Goodman42 first considered the problem of optimally al-
locating the total available bit rate for encoding analog mes-
sages. Goodman began with a formula given by Sharmon43
which relates the rate and the mean-square error. He presented
closed forms for the optimum rate allocation and the mini-
mum total distortion but did not show the derivations or prove

whether the stationary point was a minimum or maximum.
In this paper, a Lagrangian multiplier optimization technique
is used to derive an optimum bit allocation algorithm subject
to the Shannon rate-distortion bound,43 Compared with
Goodman’s work, our additional contributions are as follows.
Complete mathematical proofs have been provided in Ref. 44
and show that the derived bit allocation algorithm achieves
the minimum distortion. Second, the whole derivation is then
extended for the development of equal-bandwidth subband
bit allocation. Third, the sequential form is developed to ef-
fectively solve the practical bit allocation concerns.

4.3 Shannon Bound Dynamic Bit Allocation—
The Direct Form

Shannon proved that the required bit rate W for any source
with zero mean and bandwidth W is bounded by43

(4)

where $?Paveis the average signal power of the source, and N
is the allowable mean-square error or noise power between
the original and recovered sources. The Shannon bound is
used to specify a relationship between the bit rate and the
distortion for each subband. A subband bit allocation algo-
rithm is then derived based on this bound using a Lagrangian
multiplier optimization technique. Given subband i with
bandwidth w; (bits/pixel) and average signal energy @i, the
bit rate bi (bits/pixel) and the resulting mean-square distortion
$3i is given by

9;= f!?i[2-@’’’’”)] . (5)

The quantity !?i for subband i (with the size of M X N) is
computed by:
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(a)

(c)

Fig.2 Thecompressed 256x256 ` L̀ena' 'and ` H̀ouse' 'images using full-band AMBTC at(a) and(b),
an 8x8window (i.e., l.250bits/pixel), and (c) and (d), a32x32window (i.e., l.015625 bits/pixel).

9,= AN:,,:,I’(m,}z) ,lH
(6)

where I(m,n) isthe gray-level intensity of thepixel(m,~t).
Let the total distortion of a compressed image be S5. Since

the subband synthesis is a linear process, it is assumed that
the total distortion &l is a sum of the individual subband’s
mean-square distortion QJi. That is,

2D=~9i=hPi2-(b,/’”,)
j=l j=l

(7)

subject to the constraints

K K

%=~17f, W=~pvj> i=l,..., K , (8)
i= 1 j=l

(b)

(d)

where $% and W are the given total bit rate and the total
bandwidth, respectively. Both have the dimension of bits/
pixel for K subbands. It is important to note that the subband
bit allocation algorithm essentially allocates the total number
of available bits among the subbands. However, the bit rate
(bits per pixel) is used in the discussion of dynamic bit al-
location. That is, if subbandj is assigned a bit rate r, it means
that subband j is allocated a fixed number of bits so that the
resulting bit rate is equal to r. Thus, ~ is the total bit rate
(i.e., bits per pixel per K subbands) distributed among K
subbands, and b is the average bit rate (%/K).

Let the bit allocation vector be denoted as b ~
[b1,b2,..., b~]=. That is, subbands 1,2, through K have been
separately allocated bit rates equal to bl, b’, . . . . and bK,

respectively. Let h be the Lagrangian multiplier, with the
Lagrangian (or Hamiltonian) defined as
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[1W(b,h)= ~9i2-(/’,/’”)+h !3&fbi.i=I i= I

(9)

To find the stationary point b* and to prove that it is a min-
imum point, the first and second derivatives were computed.44
It has been shown that the Hessian (or curvature) matrix is
positive definite. As a result, the optimum bit allocation for
any subband j with bandwidth Wjand average signal energy
~j is derived as (arbitrary bandwidth case):

(w);=1(3104%)b;= % %+~ (lo)

forj= 1,2, . . . . K. The minimum total distortion $3’Kcan be
obtained as:

(11)

When the subband bandwidths are equal [i.e., Wi=
(W/K) for all i], Eqs. (10) and ( 11) can be further simplified
as follows. Define the geometric mean of the average signal
energy of K subbands as

9<, ~ [rI: ,9’i](”~) . (12)

Then, Eq. (10) becomes

by=:+(:)104:)‘equa’bandwidthcase)
(13)

Note that by is the optimally allocated bit rate for the subband
j. From Eq. (11 ), the average minimum distortion per subband
(for the equal bandwidth case) is

= gx [’2 - Wt’)] (14)

which is the same formula as the Shannon rate-distortion
bound expressed in Eq. (5) except that Eq. (14) uses the total
information (Qx for Q?i, Q for bi, and Wfor Wi).

Note that Eq. (13) has a similar form as the commonly
used standard deviation+ dynamic bit allocation algorithm,31
except for the factor of (W/K):

(15)

where Ug is the geometric mean of the standard deviations
of the K subbands,

U$4(rIi’l ~U;)(”K) . (16)

“%quation ( 15) shoold be precisely called a standard-deviation-based bit
allocation. For the variance-breed algorithm, ~q. ( 15) should be rewritten
as b,= (WK) + ( 1/2) Iogz (a} /0~ ); where o,:= ( FI,!. , u,? )( ‘lK) is [he geo-
metric mean of the variances of the K subbands.

It is important to bear in mind that Eq. (15) is not optimum
since an approximation has been used in the development.
Although Eq. (13) is derived without any approximation, it
has an undesired phenomenon in bit allocation as described
later.

Refer to Eqs. (13) and (15); note that the first term
(~/K) is the average bit rate, which is a positive constant for
a given ~ and K. Only the logarithmic terms may have neg-
ative values and could cause b} to be negative as a result.
The multiplicative factor (W/K) of Eq. (13) is a positive
number and equal to the pixel depth (usually 8 bits/pixel for
monochrome images and 10 bits/pixel for medical images).
Therefore, if the logarithmic term is negative, the factor
(W/K) further amplifies the negative values and increases
the possibility of bJ* being negative. [Note that given a
set of decomposed subbands, the terms logl (9j/9~ ) or
log2(Uj/U~ ) are fixed regardless of 93.1 As expected, through
simulations, about half of the subbands (on average) have
negative bit allocations due to the existence of this factor. In
addition, when the AMBTC quantizes are exploited in sub-
bands, the resulting so-called total unassigned bit rate (dis-
cussed in Sec. 4.4) is extremely large and unacceptable.
Hence, the factor (W/K) causes a higher degree of bit-rate
fluctuations and should be discarded for a more stable and
robust bit assignment. It is highly important to note that dis-
carding the factor (W/K) from Eq. (13) still meets the fun-
damental constraint specified by Eq. (8). Indeed, it can be
easily shown that X,&, b; = 93. Note that only the summation
of logarithmic terms turns out to be zero.

Based on these justifications, the factor (W/K) of Eq. ( 13)
is discarded and Eq. (13) becomes

(17)

Now Eqs. (17) and (15) have the same direct form except
that the Shannon-bound-based algorithm uses the subband
mean energy while the standard-deviation-based algorithm
uses the subband standard deviation. $It would be quite mean-
ingful and interesting to see how each subband signal char-
acteristic contributes to the bit allocation process and compare
their resulting coding performance.

The Shannon-bound and standard-deviation bit allocation
algorithms, that is, Eqs. (15) and (17), are referred to as direct
bit allocation algorithms for discussion in the following par-
agraphs.

4.4 The Sequential Form

It is important to note that the dynamic bit allocation process
does not perform any compression but only serves as a mech-
anism for assigning the proper number of bits to each sub-
band. Based on the bit allocation results, an appropriate quan-
tizer is then independently applied to an individual subband.
Hence, a dynamic bit allocation process must be incorporated
with quantizes which may have a fixed bit rate. If the two
are mismatched, then poor coding performance may occur.
The “mismatch” here means that the results calculated using

$Fora zero-mean source, these two quantities have the same value, However,
the meanintensityof each subbandimagek usuattynot zero.
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Eqs. (15) and (17) (which could be any real numbers) are
different from the quantizes’ bit rates (which are always
positive and possibly constant). In practice, the quantizer with
a bit rate closest to but less than the allocated bit rate for the
subband is used as its quantizer. Thus, the difference between
the two is the unassigned bit rate. The sum of the unassigned
bit rates from all the subbands (called the toted unassigned
bit rate) can be quite large, and the resulting image quality
is unacceptable. Hence, a new implementation algorithm
called sequential dynamic bit allocation is developed from
the direct form, which is similar to Ramstad’s work.34

The sequential form is an iterative implementation of the
direct form (see Fig. 3). For the sequential form of the
standard-deviation-based algorithm, only the subband mean
energy in Fig. 3 needs to be changed to the subband standard
deviation. The sequential algorithm works as follows. As-
sume a total bit rate of 93 and that each subband initially
starts with O bits. The total bit rate 93 is gradually distributed
to the subbands through the iterations. At each iteration, only
the subband with the largest signal energy can be assigned
a portion of the bit rate. The amount assigned to this subband
depends on three factors: (1) its current window size, (2) the
required incremental for changing to the next smaller win-
dow, and (3) the remaining total bit rate. If the subband starts
with O bits, then it will be assigned a number of bits which
has a bit rate equivalent to using the largest available window,
i.e., window 64 X 64 (see the table of AMBTC quantizes in
Fig. 3). For a successful bit rate assignment at each iteration,

the window size changes to the next smaller one for the
assigned subband; the energy of this subband is divided by
a factor 9 = 2“ (this condition will be derived later), and the
total bit rate 93 is reduced by the amount of bit rate assigned
at that iteration. Owing to the energy reduction factor %, a
subband has multiple chances for bit rate allocations (as de-
scribed earlier) and is gradually moved from a larger window
to a smaller one (i.e., from a coarser quantization to a finer
quantization). The iterative bit allocation process ends when
either the total bit rate 93 is entirely assigned or the remaining
unassigned bit rate is too small to let any subband change its
current window size to the next smaller one (thus the cor-
responding subband flag is set for each subband succes-
sively).

In Fig. 3, the key parameter which assures the bit allo-
cation is optimum in each sequential step is the reduction
factor %, which is derived from the direct form as follows.
Assume that subband i has the highest average energy among
all the available subbands in any given iteration. If the sub-
band i is assigned an additional bit rate r, the total bit rate is
reduced to (93 – r). Thus, the average energy of subband i is
divided by a factor %. For the bit allocation in the next it-
eration, Eq. (17) becomes

~,=%–r

()

?7
J —+ log2 +

K ~g
j=l, . . ..K.

4
Set the flag for each subband to “O”

I
4._

Search for the subband with M
the largest mean energy

AMBTC Quantlzers 1

64X64 1.X139063 10039063 ~o

32X 32 1.0156250 0.0117187 Look up the step sizer for moving
16x 16 1.06250 00468750 into its next smaller window

I

Allocate bit rate r to this subband and
divide its mean energy by a factor Y

!a(O

Y.
Calculate unassignedbh rate

(18)

Fig. 3 The flowchart for the Shannon-bound sequential dynamic bit allocation algorithm, where ~ =2’.
For the standard-deviation-based algorithm, the term mean energy is changed to sfandard deviation.

OPTICAL ENGINEERING / January 1996 /Vol. 35 No. 1 / 219

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/27/2014 Terms of Use: http://spiedl.org/terms



MAand RAJALA

Hence,

93

-{ } (3Log21w”q +Iogz
KK

(19)

To maintain the optimum bit allocation in each iteration, the
~erm in braces in Eq. (19) is required to be zero; thus,
b,=b/ and

7=2’” (equal bandwidthcase) (20)

To compare the total unassigned bit rates using both direct
and sequential forms, simulations (using the “Lena” image)
are performed for both Shannon-bound-based and standard
deviation-based bit allocation algorithms at various ~. The
results are documentedin Fig.4. Note that in the sequential
form, only in the krstiteration might a small amount ofun-
assigncd bit rate occur for the total K subbands, and this is
much less than that produced in the direct algorithm (see the
vertical scales of Fig. 4). Thus the sequential form effectively
reduces the total unassigned bit rate when the quantizes have
a fixed bit rate.

4.5 Shannon Bound Versus Standard Deviation

The coding performance of SAMBTC with the Shannon
bound or standard deviation sequential dynamic bit allocation
algorithms are compared at various bit rates. Images “Lena”

and <‘House” are used as real data for simulations. Both
images are decomposed into 16 equal-bandwidth subbands.
The total bit rate % is varied with a unit integer increment,
from 12 to 32 bits/pixel, for 16 subbands (i.e., the average
bit rate varies from 0.75 to 2 bits/pixel). The sequential ver-
sions of the Shannon-bound and the standard-deviation bit
allocation algorithms are applied to both images at each given
%. To compare the distribution of windows among the sub-
bands and their sizes. it has been noted that the standard
deviation sequential bit allocation tends to use larger win-
dows (i.e., coarser quantization) and more subbands. On the
contrarv. the Shannon-bound sequential bit allocation tends. . .
to select a smaller number of subbands with finer quantization
on these bands using smaller windows.

After the bit allocation process is applied and the window
size for each subband is determined, quantization using
AMBTC is independently performed on each subband. The
final compressed image is obtained by combining the com-
pressed subbands through subband reconstruction. Each com-
pressed image ~ (m,n) is then compared against the original
source image .Y(m,n). The PSNR curves of compressed
“Lena” and “House” are plotted in Fig. 5. The PSNR is
defined as:

(255)’
PSNR~ 10 logl(J—

MSE ‘B ‘
(21)

where MSE~(l/MN) ~:~= , X:= , [x(m,n) –; (m,n) 12 per
pixel, and h’ and N are the number of rows and columns in
a digital image, respectively. The Shannon-bound sequential
dynamic bit allocation consistently outperforms the standard-
deviation sequential algorithm. In addition, the reconstructed
image quality has been compared at each bit rate. The Shan-
non bound algorithm is clearly superior.

14
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15 20 25 30
TotalBit Rates, B (for 16 Subbands)

(a)

(b)

Fig. 4 Comparison of the total unassigned bit rates in (a) the direct
form and (b) the sequential form. Each subplot has two curves for
Shannon-bound-based (denoted by “o”) and standard-deviation-
based (denoted by “ x”) algorithms.
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Fig. 5 The peak-to-peak signal-to-noise ratio comparison between
the Shannon-bound (denoted by “o”) and standard-deviation (de-
noted by “ x”) sequential dynamic bit allocation algorithms using
images (a) ‘rLena” and (b) “House”.
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(a)

(c)

Fig.6 Comparison between the Shannon bound [(a) and(b) ]andthe standard deviation [(c)and(d)]
dynamic bit allocation algorithms using “Lena” and “House.” Each compressed 256x256 ‘rLena”
image has l.5625 bits/pixel (= Wb=25/16).

To illustrate, a set of compressed “Lena” and “House”
images arepresented in Fig. 6, for both algorithmsat 1.5625
bits/pixel (i.e., 93= 25). Their bit allocation results in terms
of the AMBTC window assignment are listed in Table2
where the numbers (1 through 16) in the table heading are
the subband labels. For the subband labeling, see Fig. 7 where
subband 1 represents the baseband. The number in the entry
of Table 2 is the chosen window size for that band. For ex-
ample, an 8 X 8 AMBTC window was used to compress sub-
band 5 in image (a). For the chosen AMBTC windows and
their corresponding bit rate see the table in Fig. 3. In addition,
we used OX O and 1 X 1 to denote “discard” and “no
compression, ” respectively.

Based on the simulation results shown in Fig. 4, it is in-
teresting to note that on average the standard deviation al-

(b)

(d)

gorithm has a lower unassigned bit rate than that using the
Shannon bound algorithm. From this standpoint, the standard
deviation algorithm is more efficient than the Shannon bound
algorithm in allocating bits among subbands and is expected
to perform better. On the contrary, the signal characteristic
used in these two algorithms makes the bit allocation results

w681416

571315

241012

13911

Fig. 7 A notation for 16 equal-bandwidth subbands.
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(b)

(c)

Fig. 8 The compressed 256x256 “Lena” and “House” images using SAMBTC with the Shannon-
bound sequential dynamic bit allocation algorithm at 1.250 bits/pixel in (a) and (b); and at 1.015625
bits/pixel in (c) and “(d).

quite different and causes the Shannon bound algorithm to
have superior imagery at low bit rates. This reveals that the
subband mean energy is more effective for use in the bit
allocation process than the subband standard deviation (or
variance) in SAMBTC. This might also be true for other

Table 2 Subband bit allocation results in terms of the AMBTC win-
dow assignment for the images in Fig. 6. For each case, from (a) to
(d), the total unassigned bit rate is 0.0313, 0.0039,0.0039, and 0.0
bits/pixel respectively.

Fig.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) 1 2 4 2 8 4 0 8 0 0 0 0 0 0 0 0
(b) 1 2 2 8 16 3 0 16 16 0 8 0 0 0 0 0

(c) 2 2 4 4 8 4 16 4 0 0 16 8 0 0 16 8

(d) 2 2 4 8 8 4 32 16 16 32 8 16 0 0 32 32

(d)

subband coding algorithms andlor signal sources (e.g., speech
signal).

5 Coding Performance

5.1 SAMBTC Versus AMBTC

Reconstructed “Lena” and “House” images using the
SAMBTC approach with the Shannon-bound-based sequen-
tial dynamic bit allocation are presented in Fig. 8. Comparing
Figs. 8 and 2, SAMBTC clearly outperforms the AMBTC in
every case by effectively reducing the blocking artifact and
significantly improving the image quality.

The corresponding window assignments for the subbands
are listed in Table 3. Performance comparisons in terms of
the MSE and PSNR are shown in Table 4 for both AMBTC
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Table3 Window assignment for the 16equal-bandwidth subbands
of (a) “Lena” and (b) “House” using the Shannon-bound sequential
dynamic bit allocation algorithm. For the total bit rate?l at 32, 20,
17, and 16.25bits/pixel, thecorresponding total unassigned bit rate
is 0.0156, 0.0313, 0.0156, and 0,0625 biffpixel for “Lena” and
0.0078,0.0,0.0, and O.Obit/pixel for’’House,’’ respectively.

(a). LENA Shannon-Bound Sequential Bit Allocation
Bit Rate, (bpp) for the 16 Equal-Bandwidth Subbands
B b= L3/16 1 2 3 4 5 6 7 8 9++11 12 13+.+16

32 2.0 1 2 2 2 8 2 0 $ 0 8 1)
20 1.25 1 2 4 4 0 8 0 8 0 0 0
17 1.0625 1 2 8 8 0 8 0 0 0 0 0
16,25 1.015625 1 2 16 16 0 16 0 0 0 0 0

~E Shannon-Bound Sequential Bit Allocation
Bit Rate, (bpp) for the 16 Equal-Bandwidth Subbands

B b = B/16 1 2 3 4++6 7 8,9 10 11 12 13!-+15 16

32 2.0 1 2 2 4 16 8 0 4 8 0 16
20 1.25 1 2 4 8 0 0 0 8 0 0 0
17 1.0625 1 4 4 8 0 0 0 8 0 0 0
16.25 1.015625 1 4 4 16 0 0 0 16 0 0 0

and SAMBTC. Notice that the lower the bit rates, the greater
the gain in PSNR by using SAMBTC.

5.2 SMMSEQ Versus l-bit MMSEQ

In Section 3.1, we provided justifications about why AMBTC
is the best among the 1-bit quantizes to exploit as the codec.
To further demonstrate this, we replaced the AMBTC of the
SAMBTC algorithm by the 1-bit MMSEQ and called this
.wbbund MMSEQ (SMMSEQ). Simulations with results doc-
umented in Table 4 for the AMBTC and the SAMBTC are
independently conducted for the MMSEQ and the SMMSEQ
at the same bit rates.

Comparisons are independently made at each bit rate for
(1) full-band case—AMBTC versus MMSEQ and (2) sub-
band case—SAMBTC versus SMMSEQ. The results show
that the images are perceptually (almost) unnoticeable in the
full-band case and even smaller in the subband counterpart.
In terms of the PSNR, the 1-bit MMSEQ only outperforms
(on average) the AMBTC by 0.66 dB for “Lena” and 0.42
dB for “House” in the full-band case and by 0.22 dB for
“Lena” and 0.26 dB for “House” in the subband case.zs
However, the computational complexity of the l-bit MMSEQ
is about 2 to 7 times that using the AMBTC in both full-band
and subband cases.27,44 In the rest of the paper, the SAMBTC
system is extended to compress color images recorded in
various color spaces.

6 Color Images and Spaces

In general, an uncompressed color image is commonly rep-
resented with 24 bits/pixel—8 bits/pixel for each of the three
uncompressed color component images. Two 256 X 256
color images with 24 bits/pixel, ‘‘Girl” and ‘‘Doll” [see
Figs. 9(a) and 9(b) in Color Plate 1, respectively], are used
for the simulations in this paper. The ‘‘Girl” includes a facial
image with flesh tones, highly important for television and
visual communication. The “Doll” contains highly saturated
areas. Together, these two images cover a wide range of
chrominance information and have been recorded in the Com-
mission International de l’Eclairage (CIE) standard ob-
server, XYZ color space.45q7 Usually, a color space trans-
formation from the XYZ to another space is performed before
compression begins.

Table 4 Comparison between the SAMBTC and the full-band
AMBTC at various bit rates using (a) “Lena” and (b) “House.” In the
full-band AMBTC case, the bit rate b corresponds to use of 4 x 4,
8 x 8, 16x 16, and 32x 32 windows, respectively.

(a). LENA
AMBTC

Bit Rate, (bpp)
SAMBTC

B b= Bf16 MSE (/pel) PSNR (dB) MSE (/pel) PSNR (dB)
32 2.0 63.941 30.073 50.582 31.091
20 1.25 134.931 26.830 71.742 29.573
17 1.0625 229.466 24.524 81.768 29.005
16.25 1.015625 374.059 22.401 87.720 28,700

(b). HOUSE
AMBTC SAMBTC

Bit Rate, (bpp)

B b = B/16 MSE (/pel) PSNR (dB) MSE (/pel) PSNR (dB)
32 2.0 90.528 28.563 82.994 28.940
20 1.25 168.017 25.877 130.873 26.962
17 1.0625 251.807 24.120 148.456 26.415
16,25 1.015625 409.908 22.004 155.042 26.226

The impact of applying SAMBTC in two different color
spaces is investigated. Two important categories of color
spaces are considered: (1) television color spaces (i.e., YIQ
and YUV), through linear transformation from XYZ, and
(2) perceptually uniform color spaces (i.e., L*u*v* and
L*a*b*), through nonlinear transformation from XYZ.45q7
The main objective of the transformation is to reduce the
covariances among the three component images, and the en-
ergy and variance distributions are more compact (e.g., see
Table 5 for “Girl”).

Note that the Ycomponents in YIQ, YUV, and XYZ are all
identical where Y is the luminance. The I and Q in the Y{Q
space and the U and V in the YUV space are the chrominance
signals. The coordinates of (I, Q) and (U, V) have a 33-deg
phase difference. As a result, the coding performance con-
ducted on these spaces is fairly close judging from the per-
spectives of imaging quality and compressibility. The major
difference is their transmission format. Therefore, to dem-
onstrate the coding performance of the SAMBTC in category
(1), YIQ is chosen for simulations. For category (2), L*u*v*
is used to represent color images because the Z,*U*V* space
has been used in television while the .L*a *b* space is used
by the colorant industries (Ref. 47, p. 69 and Ref. 48, p. 19).

To view a color image recorded in any color space, the
image must be transformed into XYZ space first, followed by
linear transformation from XYZ to RGB space along with
proper gamma corrections. Denote this space as display RGB
in order to distinguish it from the transmission RGB space.

7 Observations on Applying AMBTC to
Color Images

7.1 AMBTC Bit Planes for Color Images

Recall that any compressed monochrome image using the
AMBTC method generates at most two quantization levels
for each block in the image. However, this is often not true
for color images. When AMBTC is applied to a block in a
color image, each color component of this block indepen-
dently generates its own bit plane. Thus, each color block is
represented by more than two quantization levels provided
that the bit planes from the three component images at the
same block position are not identical.
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Fig. 10 The rate distortion curves for “Girl” and “Doll” in the Y/Q
[(a) and (b)] and in the L’u*v* [(c) and (d)], respectively. In (a) and
(b), legends “+”, “x”, and “o” denote the MSE of components Y,
/, and Q, individually. In (c) and (d), legends “+”, “x”, and “o”
denote the MSE of components L*, u*, and v’, individually. The
additional legend “*” denotes the total MSE, AE:~.

Consider, for example, a 2 x 2 AMBTC window applied
to a color image represented in L*L1 *v* space. Assume the
three bit planes of components L*, u*, and V*at a particular
block position are

[~ !7[:T and[:!
respectively. The O’s and 1‘s in each bit plane correspond to
the two quantization levels aL, and bL, for component L*,
a,,. and b,,. for component u*, and a,., and b,,. for component
v*. Thus, the three component blocks of the decoded image
at this particular position are:

[:: :] [:: ::;] and [:; ::] ~

In order to display the block on a CRT monitor, these
three component blocks must be converted into display RGB

with gamma correction. Let the combination of the trans-
formations be denoted as T(-). Then, this block in display
RGB space is expressed as:

[

T(bL,,bl,, ,a,,.,) T(aL.,a,,. ,a.*)

1T (bL., a,,+,b,,. ) T (bL~,b,,-, b,,, )

In this example, each pixel may display a different color since
all the arguments of T(.) are different.

7.2 AMBTC Color Blocking Artifacts

Recall that the full-band AMBTC introduced blocking arti-
facts in monochrome images at low bit rates. For color im-

Table 5 Covariance matrices, energy distribution, and variance dis-
tribution in various color spaces using the color image “Girl.”

jpace I Covariance Matrix I Average Energy Variance
x I 1.0000 0.9964 0.9231 I 349.6W I ~~07% 179.0159 30.45%

,,.. , --.33% 220.1113 37.44%
z 0.9231 0.9347 1.0000 302.5155I 28.60% 188.7695 32.11%
R I 1.0000 0.9657 0.8513 I 414.476qI 38.34% 200.4518 33.77%

-.. . .
Y I 0.9964 1.0000 0.9347 I 405.37aK1‘Q

G 0.9657 1.0000 0.9256
R 0.8513 0.9256 1.0000 -

I \ 0.1409 1.0000 -0.2087]~
.. . . - ..

u -0.6999 1.0000 -0.2387
v -0.3210 -0.2387 1.0000 m

~
1.0000 -0.1752 0.3834 3899.3662 87.

557. I 967.611214425%1

ages, two aspects regarding the severeness of blocking ar-

tifacts have been studied as follows

7.2.1 Blocking artifacts in YIQ and L*u*v*

AMBTC windows with size 2; X 2i for i = 1,2,. ..,6 are chosen
for the simulations. For each size, the full-band AMBTC is
applied to each component image of <‘Girl” and “Doll”
represented in the YIQ and L*u*v* color spaces. The com-
pressed component images are then transformed into the dis-
play RGB space with gamma correction. The simulation re-
sults show that the severeness of blocking artifacts in the YIQ
and L*L{ *v * color spaces is about the same. In particular, the
difference of the color blocking artifacts presented in the YIQ
and L*u *v* spaces is not noticeable when using a window
size smaller than or equal to 16X 16. For window sizes greater
than 16X 16, the resulting image difference between these
two spaces is quite small.

To demonstrate the blocking artifacts exploiting the
AMBTC algorithm at low bit rates, the compressed images
using a 32X 32 AMBTC window to “Girl” and “Doll” in
the L*u *v* space are presented in Figs. 9(c) and 9(d) in Color
Plate 1, respectively.

7.2.2 Blocking artifacts within the color components

To investigate the severeness of the blocking artifacts present
in each component image, a set of five compressed images
in the L*U *v* color space is generated for each AMBTC
window (from 2 X 2 to 64 X 64). For example, using a 32 X 32
AMBTC window, five images are generated as follows: (1)
A 32X 32 window is independently applied to all three com-
ponent images, i.e., L*, Lt*, and v*; (2) a 32X 32 window is
applied to the luminance L* only; (3) a 32X 32 window is
separately applied to the two chrominance signals Li*and v*;
(4) a 32 X 32 window is applied to the chrominance u * only;
and (5) a 32X 32 window is applied to the chrominance v’!
only. The compressed images have a bit rate of 3.046875
bits/pixel for experiment (1), 17.015625 bits/pixel for ex-
periments (2), (4), and (5), and 10.03125 bits/pixel for ex-
periment (3). Although the resulting bit rates are not identical,
this is not a concern in this particular experiment. The block-
ing artifacts due to experiment (1) are shown in Figs. 9(c)
and 9(d). Comparing the compressed images of experiments
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tively. Hence, an additional algorithm called intercomponent
unassigned bit rate reduction is developed as follows.

Based on our simulation studies, the severeness of the
color blocking artifacts in each color component at the same
bit rates is ranked as V*< U*< L* in the L*u *v* space. Thus,
the Shannon bound sequential dynamic bit allocation algo-
rithm is initially performed for the component V* based on
93V,. Any unassigned bit rate 8,,. from component v* will be
unconditionally added to 93,,,,.The Shannon bound sequential
dynamic bit allocation algorithm is then performed on com-
ponent U* based on (~,,. + &,,~). Similarly, any unassigned
bit rate s,,. from component U* will be unconditionally al-
lotted to 93~.. Thus, the bit allocation algorithm for com-
ponent L* is based on (93~*+ &,,.). As a result, the total un-
assigned bit rate e~,,,~u~( = &~,+ EL(. + E,,. ) might be reduced
further provided that not both c,,. and s,,. are zero.

All the simulations have shown that the intercomponent
unassigned bit rate algorithm consistently reduces the total
unassigned bit rate ec~l,.,,. and thus improves the image qual-
ity. For the YIQ space, the Shannon bound sequential dynamic
bit allocation is performed in the following sequence: Q, 1,
and Y. The same arguments and simulations can be applied
to the YIQ space. The intercomponent unassigned bit rate
algorithm is also consistently effective in the YIQ space.

Finally, it is important to observe that the quota ratio
(4: 1:1) may be changed after adding the 8,,* (to !%~.) or E,,.
(to %,,. ), assuming that 8,,. or q,. is nonzero. However, since
the quantities 8,,. and e,,. are quite small, the actual ratio is
still close to (4:1: 1).

9 Color Rate-Distortion Performance

9.1 Simulation

To conduct extensive experiments, a set of 14 bit rates ranging
from 2.4 to 0.75 bits/pixel was chosen for each of the four
cases (’‘Girl” and “Doll” in the YIQ and L*u *v* spaces,
combined) to evaluate the color rate-distortion performance
of the SAMBTC. Given a total bit rate (?h,a proper AMBTC
window is decided upon for each subband based on the bit
allocation result. The chosen AMBTC window is indepen-
dently applied to tbe subband as its quantizer. After AMBTC
decoding, the subband synthesis is performed independently
for each color cornpo~ent bas~d on its quantized subbands.
The synthesized L*, u*, and V* are the reconstructed com-
ponents (with distortions) of the original L*, u*, and v*,
respectively.

To display the~o~pressed color image on a CRT monitor,
the compressed L*, u*, and v~ are then transformed into the
CIE XYZ space followed by the conversion from the XYZ
space to the display RGB space with gamma correction. Sim-
ilarly, the same subband synthesis procedures are also ap-
plicable to the compressed subband images for each com-
ponent in the YIQ space.

9.2 Rate-Distortion Measurement

The distortion in a compressed monochrome image can be
measured in terms of mean-square error and peak-to-peak
signal-to-noise ratio. Since a compressed color image in-
volves three compressed component images, the total dis-
tortion is thus a function of the distortion in each component.
For the YIQ space, this function is unknown. Therefore, the
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(l) and (2), they are perceptually identical. On the other hand,
the compressed images from experiments (3), (4), and (5)
are almost identical to the original images in Figs. 9(a) and
9(b).

The identical experiments described above were also ap-
plied to color images recorded in the Y[Q space. The same
conclusion is also drawn. This indicates that the luminance
has much more severe blocking artifacts than the chromi-
nance at the same bit rate.

8 Dynamic Bit Allocation for Color Images

Unlike the monochrome image, each color image has three
color component images. Since each component image is
decomposed into 16 equal-bandwidth subbands in this paper,
a given total bit rate 93 must be distributed among the 48
subbands. Thus, the Shannon-bound sequential dynamic bit
allocation algorithm developed for monochrome images ear-
lier is exploited with two additional algorithms: (1) quota-
ratio division and (2) intercomponent unassigned bit rate re-
duction.

8.1 Quota-Ratio Division

Let a quota ratio be denoted as (ql :q2: q3 ). The numbers

q 1, %, and qs correspond to the proportion of the total bit
rate ~ allocated to components L*, u * and V*in the L* LL*v*
space (or for components Y, 1, and Q in the YIQ space),
respectively. The coding performance of the Shannon bound
sequential dynamic bit allocation algorithm is evaluated with
or without a quota ratio, individually. Without using a quota,
simulation results show that the image quality is poor, even
at medium to high bit rates.

With a quota (q,: qz: q~ ), the total bit rate ~ is partitioned
into three unequal parts. This can be justified from the per-
ceptual and numerical viewpoints. From the perceptual view-
point, it is well known that the human visual system (HVS)
perceives luminance and chrominance differently, and the
HVS is much less sensitive to the errors that occur in chrom-
inance than in luminance.45J7 From a numerical viewpoint,
the luminance and chrominance of a color space may have
different numerical ranges depending on the chosen color
space. For example, component L* has a fixed range (between
O and 100) of value while components U* and V* can have
negative values. Therefore, it is not appropriate to treat the
three components in a color space equally.

The HVS-based (4:1:1) ratio47 [also used by the source
input format (SIF) of the Motion Picture Experts Group
(MPEG)49] is chosen. That is, the total bit rate %1is partitioned
into three parts: QL. = (2/3)93 and 93,,+= !?i3L,e= (1/6)93 for
the L*L1*v* space and %Y= (2/3)93 and %1= %~ = (1/6)~ for
the YIQ space. Using a (4:1:1) quota, simulation results ob-
tained at various bit rates show that the images are greatly
superior to those without quota division.

8.2 Irrtercomponent Unassigned Bit Rate Reduction

For ease of discussion, let us consider the bit allocation in
the L*u *v* space. After independently applying the Shannon
bound sequential dynamic bit allocation algorithm to each
color component plane based on %~., 93,,., and 93V,, a small
number of total unassigned bit rates (possibly zero) may result
at the end of the process on each component image—denoted
as &[,,, EL(., and 8,,. for components L*, u*, and v*, respec-



SUBBAND ABSOLUTE MOMENT BLOCK TRUNCATION CODING

tot+ MSE and PSNR measurements cannot be computed.
Instead, the resulting rate-distortion curves are presented for
each component space in Figs. 1()(a) and 10(b) for “Girl”
and ‘‘Doll, ” respectively.

On the other hand, it is well known that the color difference
between two color images recorded in the CIE perceptually
uniform color space can be expressed in terms of their com-
ponent differences. 4547 ‘fhat is, for the L*u *v* Sp?lCe,

AE:, = [(L= – L*)2 + (Lfi– U:F)2+ (vT– v*)a](”2)
= [(A~:<)~+ (A@)Z + (Avx)z](ilz) , (22)

where AL*, Au*, and Av:k are color component differences
between two images and independently computed for each
component on a pixel-by-pixel basis. We can utilize this
formula and take a square on both sides to obtain the MSE
measurement, AE,fi? = (AL*)Z + (Au*)Z + (Av*)2, in the
L*L{ *v* space. Hence, an additional rate-distortion curve
based on the A E~~ is presented in Figs. 10(c) and 10(d) for
<‘Girl” and “Doll,” respectively.

Compared with the full-band AMBTC, the simulation re-
sults show that the SAMBTC has constantly achieved greatly
superior imaging quality and is free from blocking artifacts
at low bit rates. In the appendix, AMBTC window assign-
ments for luminance and chrominance subbands are shown
for certain bit rates to seethe overall trend of the bit allocation
results in each case. To illustrate the compressed image qual-
ity, two bit rates are chosen. They are 2.4 (i,e., 10:1) and
0.75 bits/pixel (i.e., 32: 1). These eight color images are shown
in Fig. 11 (see Color Plate 2) for “Girl” and Fig. 12 (see
Color Plate 3) for “Doll, ‘‘ in both YIQ and L% *v* spaces.
Note that the luminance and chrominance information in
these images and all other compressed images between these
two bit rates is very well preserved and consistent when
viewed on the monitor.

10 Conclusions

In this paper, a new subband coding system caIled subband

absolute moment block truncation coding is presented for
digital image compression. The SAMBTC combines full-
band AMBTC and subb?nd coding with a new subband dy-
namic bit allocation scheme that is derived from the Shannon
rate-distortion bound.~s In summary, the proposed SAMBTC
has the following system merits: (1) unsymmetrical codec
with nonparametric encoding and fast decoding, (2) un-
bounded bit rate lower bound (while AMBTC is bounded by
1 bit/pixel), (3) robust 1-bit moment-preserving quantizer,
(4) unnoticeable blocking artifacts at low bit rates, (5) con-
sistent and stable coding performance, and (6) suitable for
progressive transmission and real-time implementation.

The derived Shannon-bound-based bit allocation algo-
rithm indicates that subband mean energy could be more
appropriate to use for allocating bits than the subband stan-
dard deviation (as used in the standard-deviation-based al-
gorithms 1Thus, other subband coding algorithms, transform
coding schemes, and/or signal sources might also benefit from
the use of the Shannon-bound-based algorithm for bit allo-
cation.

For future work, the SAMBTC system can be incorporated
with other lossy and lossless coding schemes to achieve a
lower bit rate. In addition, the proposed SAMBTC can be
applied to video compression. Recently, Webb and Munsonso

applied an error diffusion technique of digital halftoning to
effectively smooth out blocking artifacts. Their findings can
be exploited in SAMBTC presented here to further improve
imaging quality.

Finally, a VLSI realization of AMBTC codec for video
signal processing has been reported in Ref. 30. With attractive
performance and system merits, a VLSI implementation of
the SAMBTC system for multimedia applications is sug-
gested.

11 Appendix

The following tables show some subband bit allocation re-
sults in terms of AMBTC window assignment for the sub-
bands of color images “Girl” and “Doll” (see Fig. 7 for
subband labeling). The total unassigned bit rates for each
case are fairly small and insignificant (on average, 0.0067
bit/pixel per subband). Therefore, they are not listed here,
but are available in Ref. 44.

1 Bit Rate (bpp) II 4:1:1 II (a). The .L.minanceof GIRL in YIQ
U for lb=(~)x311 B. = Component Y 1,.., “

48 bands [+ Ratio) 5X ; 1 2 3 4 5 6 7-10 11 12*16
12 0,75 (32:1) 8.000 1 0 0 0 0 0 0 0 0
16 1.00 (24:1) 10.667 1 4 4 0 0 0 0 0 0
24 1.50 (16:1) 16.000 1 4 2 0 0 0 0 0 0
32 2.00 (12:1) 21.333 1 2 2 4 0 0 0 0 0

38.4 2.40 (10:1) 25.600 1 2 1 4 0 8 0 8 0

u Bit Rate (bpp) II 41:1 \j(b). The C/mominanceof GIRL in YIQ 1

1 . . ,.,

12 0.75 (s2:1) 2.000
16 1.00 (24:1) 2.667 ,., .
24 1.50 (16:1) 4.nno II 4 I o

32 2.00 (12:1) 5.
38,4 2.40 (10:1) 6. . . . ,, .,.,., . ,, .,., u

410 0 0 4 0 0
4[0 o 0 4 0 0

I 4 0 4 4 0
.333 II 210 0 0 2 0 0
Ann l~ln 8 0 2 8 n
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