Subband absolute moment block truncation coding

Kai-Kuang Ma, Nanyang Technological University
Sarah A. Rajala, North Carolina State University
Subband absolute moment block truncation coding

Kai-Kuang Ma
Nanyang Technological University
School of Electrical and Electronic Engineering
Nanyang Avenue
Singapore 639798, Republic of Singapore

Sarah A. Rajala
North Carolina State University
Department of Electrical and Computer Engineering
Raleigh, North Carolina 27695-7911

Abstract. In this paper, a new subband coding system called subband absolute moment block truncation coding (SAMBTC) is introduced to compress monochrome images and color images recorded in YIQ and L"u"v"u" uniform color spaces. The SAMBTC incorporates full-band absolute moment block truncation coding (AMBTC) into subbands along with a new subband dynamic bit allocation algorithm which is derived from the Shannon rate-distortion bound. Simulation results show that the proposed Shannon-bound-based bit allocation algorithm outperforms the commonly used standard-deviation-based bit allocation scheme. Compared with AMBTC, SAMBTC achieves superior imaging without blocking artifacts at low bit rates.

Subject terms: visual communication and image processing; image coding; subband coding; dynamic bit allocation; absolute moment block truncation coding; moment-preserving quantizer; uniform color space.

1 Introduction

The principle of subband coding1–3 is based on the decomposition of an input signal into narrow bands, called subbands, by a set of analysis filters at the encoder. Each subband is then maximally decimated and separately encoded according to a certain bit allocation criterion. At the decoder, the decimated and encoded subbands are decoded, interpolated, and filtered by another set of synthesis filters before being added together to reconstruct the original signal. Multidimensional subband analysis/synthesis theory was first introduced by Vetterli.4 Later, the first subband image coding results were presented by Woods and O’Neil.5 Since then, subband coding has been considered to be one of the major coding techniques for compressing images and video.

Subband coding is essentially a frequency-domain approach which consists of two subsystems: (1) subband analysis/synthesis (i.e., subband representation and decoder (i.e., codec) along with a subband dynamic bit allocation scheme. Notice that the subband representation provides a special way to represent the original source without any compression. The subband bit allocation algorithm dynamically decides how many bits to assign to each subband; it does not provide any compression. Only the codec performs compression and decompression functions, based on the bit allocation results. For example, Woods and O’Neil6 exploit differential pulse code modulation (DPCM) and its adaptive version to encode the individual subbands. Gharavi and Tabatabai7 adopt a hybrid approach using DPCM for the baseband and pulse code modulation (PCM) for the higher subbands. Westerink et al.7 apply vector quantization (VQ) to code the subbands. In contrast to these works,6–7 we exploit a special class of 1-bit (or two-level) moment preserving quantizers, called the absolute moment block truncation coding (AMBTC),8 as the codec for subbands in this paper.

Compared with many well-known coding schemes (e.g., discrete cosine transformation, DPCM, VQ),6–13 AMBTC provides fairly competitive image quality at medium to high bit rates6 and has a much simpler computational structure. However, we have shown that AMBTC has a bit rate lower bound of 1 bit per pixel and presents severe blocking artifacts on both monochrome and color images at low bit rates. To overcome these drawbacks while fully benefiting from the merits of AMBTC, a new subband coding system, called subband absolute moment block truncation coding (SAMBTC) is introduced in this paper. The SAMBTC system combines full-band AMBTC, subband analysis/synthesis, and a new subband dynamic bit allocation algorithm. For simulation purposes, two monochrome and two color digital images recorded in various color spaces are considered.

Section 2 describes how we decompose the source into multiple subbands. Section 3 summarizes the AMBTC algorithm that is used as the codec of the subband coding system. In Sec. 4, a new dynamic bit allocation algorithm is derived (called the direct form) subject to the Shannon rate-distortion relationship using a Lagrangian multiplier optimization technique. A sequential implementation form is then developed from the direct form in order to precisely match the bit rates of the available AMBTC windows. The new algorithm and the commonly used standard deviation bit allocation algorithm are both converted into the sequential implementation form for comparing their performance. In Sec. 5, the coding performance using the SAMBTC system is presented and compared with the one using AMBTC. Starting from Sec. 6, the development is extended to color images.
 recorded in conventional color space YIQ and uniform color space \(L^*a^*b^* \). Section 7 presents some new observations regarding the bit plane and the blocking artifacts while using AMBTC on color images. In Sec. 8, the developed new subband dynamic bit allocation algorithm for monochrome images is extended to color images. Some simulation results are presented in Sec. 9. Section 10 presents the conclusions.

2 Subband Filtering for Images

The theory and development of subband filtering can be found in numerous sources (e.g., Refs. 1, 2, 14, 15). In this paper, 2-D subband filtering for digital images is implemented by sequentially applying 1-D two-channel quadrature mirror filtering (QMF)\(^5,15-17\) to the source image in both horizontal and vertical directions (called 2-D separable filtering). There are many ways to split a source image into multiple subbands with equal or unequal bandwidths. As in Woods and O'Neill,\(^5\) the filter coefficients of the 1-D Johnston QMF filter (32D in Ref. 17) have been used to generate 16 equal-bandwidth subbands for each image. Through extensive simulations, the difference in coding performance using 16-tap and 32-tap QMF filters in the SAMBTC is fairly small and unnoticeable.

The boundary effects are ringing artifacts introduced in the finite impulse response (FIR) filtering of a 2-D digital image due to its finite region. In order to reduce the artifacts, both the symmetric extension method proposed by Smith and Eddins\(^18\) and the boundary replication method suggested by Vetterli\(^19\) have been evaluated. Vetterli’s boundary replication method\(^19\) is subjectively preferred and is used in this paper.

3 Absolute Moment Block Truncation Coding

3.1 Background

Consider an image divided into nonoverlapping squared blocks. Delp and Mitchell\(^20\) developed the block truncation coding (BTC) algorithm in which the local mean and variance of each block are preserved.\(^2\) The BTC has been applied to compress images\(^21,22\) and video.\(^23\) Halverson et al.\(^24\) generalized the BTC to preserve a family of moments, called the generalized BTC (or GBTC). They derived a closed-form solution of preserving \((n,2n)\) for the two-moment GBTC and \((n,2n,3n)\) for the three-moment GBTC (where \(n\) is an integer and \(n\) means low-order moment). Lema and Mitchell\(^8\) modified the constraints of BTC and developed a new algorithm called the AMBTC. For an extensive study of BTC, refer to a recent publication by Dasarathy.\(^25\)

Assume each block has a size of \(n \times n\). Let \(m = n^2\) be even and let \(X = [x_1, x_2, \ldots, x_m]^T\) be the vector of the gray level of the pixels in each block. In AMBTC, the block mean \(\eta\) and the first absolute central moment \(\alpha = \langle (l/m) \sum_{i=1}^{m} (x_i - \eta) \rangle = \langle \sqrt{2} - \eta^2 \rangle\) (rather than the sample variance \(\sigma^2 = \sum_{i=1}^{m} (x_i - \eta)^2\) in BTC) are preserved; where \(x_i\) and \(y_i\) are the gray level of input and output pixels, respectively. Like BTC and GBTC, AMBTC is also a 1-bit (or two-level) quantizer since only two quantization levels (denoted as \(a\) and \(b\)) are generated in each block. They all can be categorized into a class called the 1-bit moment-preserving quantizer (MPQ).\(^26\)

It is worth mentioning that there is another special type of two-level quantizer, called the 1-bit minimum mean-square error quantizer (MMSEQ). The 1-bit MMSEQ has the same algorithmic structure as the AMBTC but uses a different truncation threshold as follows. AMBTC uses the block mean while 1-bit MMSEQ requires an iterated search for the optimum [in the mean-square error (MSE) sense] threshold on each block. The 1-bit MPQ and the 1-bit MMSEQ can be categorized as 1-bit quantizers. Note that the MPQ preserves certain moments but may not achieve the minimum MSE. On the other hand, the 1-bit MMSEQ has a minimum MSE but may not preserve the moments. The reader is referred to Ref. 27 for a more detailed discussion.

The AMBTC is chosen among the 1-bit quantizers as the codec for subbands based on the following reasons. First, AMBTC has a smaller computational complexity than BTC. This can be easily justified from their algorithmic structures.\(^8,26\) Second, we have mathematically proved that AMBTC achieves the least MSE among the 1-bit quantizers subject to preserving the block moments.\(^28\) Third, we have shown that AMBTC is more practical to use than the 1-bit MMSEQ.\(^26\) This is because the images resulting from using these two algorithms are fairly close while the 1-bit MMSEQ’s computations are at least two times higher than that of the AMBTC’s. Fourth, Halverson et al.\(^24\) demonstrated that whether the GBTC outperforms the BTC (in terms of peak-to-peak signal-to-noise ratio, PSNR) depends on the image and the chosen model, two-moment or three-moment. They also pointed out that the computation of very high moments frequently leads to overflow and inferior performance. Finally, AMBTC is suitable for real-time application and is feasible to implement. A real-time implementation of the AMBTC using hardware only for the compression of the National Television Systems Committee (NTSC) television pictures has been reported by Ko and Lee.\(^29\) In addition, the VLSI implementation of the AMBTC algorithm for video signal processing has been recently documented by Chen et al.\(^30\)

3.2 The AMBTC Algorithm

An image is first divided into nonoverlapping blocks with size \(n \times n\) each (usually, \(n = 2^i\), where \(i\) is a positive integer). The AMBTC encoding process is independently applied to individual blocks as follows:

Step 1: For each block of pixels \(X = [x_1, x_2, \ldots, x_m]^T\), the mean value \(\eta = \langle \sum_{i=1}^{m} x_i \rangle / m\) is calculated and used as the block (or local) threshold.

Step 2: An \(n \times n\) block plane consisting only of \(1\)’s and \(0\)’s is generated from the original block by independently applying a 1-bit quantizer to each pixel in the block such that the quantizer output is 0 (if \(x_i \leq \eta\)) or 1 (if \(x_i > \eta\)), where \(1 \leq i \leq m\). This results in \((m - q)\) 0’s and \((q)\) 1’s in the bit plane.

Step 3: Two quantization levels \(a\) and \(b\) (generally assumed to be 8 bits each) are calculated using the following formulas:

\[
a = \eta - \frac{m \alpha}{2(m-q)} = \frac{1}{m-q} \left(\sum_{x_i = \eta} x_i \right),
\]

Note that the 1-bit quantizer can be used to maximally preserve three moments, called three-moment BTC.\(^29\) However, the BTC referred to in this paper implicitly means two-moment BTC.
Table 1 Bit rate contributions from levels in the AMBTC for various window sizes.

<table>
<thead>
<tr>
<th>Window Size</th>
<th>Bit Plane Rate (bpp)</th>
<th>Quant. Levels Rate (bpp)</th>
<th>Total Rate (bpp)</th>
<th>Bit Plane Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 2</td>
<td>4.0</td>
<td>5.0</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
<td>1.0</td>
<td>2.0</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>8 x 8</td>
<td>0.250</td>
<td>1.250</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>16 x 16</td>
<td>0.0250</td>
<td>2.0250</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>32 x 32</td>
<td>0.00166667</td>
<td>1.01666667</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>64 x 64</td>
<td>0.00039063</td>
<td>1.00039063</td>
<td>0.99%</td>
<td></td>
</tr>
</tbody>
</table>

That is, the combination of the two quantization levels \(a\) and \(b\) and the bit plane provides an approximate representation for each block. Thus, only the two quantization levels and the bit plane are transmitted and/or stored. For the decoding process, the 0's and 1's of the bit plane on each block are simply substituted by the quantization levels \(a\) and \(b\) of that block, respectively. Thus, the AMBTC codec is unsymmetrical due to its greatly reduced computational load at the decoder.

3.3 Fundamental Insights

In the following paragraphs, we provide several important insights on the AMBTC algorithm. The arguments are also applicable to the 1-bit MPQ. More properties of the AMBTC can be found in Refs. 27 and 28. Recently, Delp and Mitchell26 provided fundamental insights on the MPQ through the Gauss–Jacobi mechanical quadrature.

3.3.1 Bit-rate lower bound—1 bit/pixel

It can be shown that all the 1-bit moment-preserving quantizers are bounded below by 1 bit/pixel. Let the window size be \(n \times n\) and let the number of bits representing levels \(a\) and \(b\) be \(N_a\) and \(N_b\), respectively. The average bit rate for this \(n \times n\) block of pixels can be calculated as

\[
R_{MPQ} = \frac{n^2 + N_a + N_b}{n^2} \quad (3)
\]

Theoretically, when the window size approaches infinity, the bit rate \(R_{MPQ}\) is 1 bit/pixel, which is the bit-rate lower bound of the MPQ.

For those applications which require less than 1 bit/pixel, all 1-bit MPQs are not applicable unless some modifications are applied, and/or additional compression techniques are cascaded (e.g., entropy coding). However, the SAMBTC approach proposed in this paper is not constrained by this lower bound. For example, the source image can be decomposed into subbands through several levels of octave band splitting. The higher subbands can be unconditionally discarded, leading to total bit rates for the reconstructed image that are less than 1 bit/pixel.

Table 1 summarizes the bit rate contributions from the bit plane and the quantization levels in the AMBTC for various window sizes. It is important to realize that the bit plane always contributes 1 bit/pixel and is independent of the window size. Owing to the lower bound, the number of effective AMBTC windows is small. For the simulations conducted in this paper, we chose a set of windows as listed in Table 1 plus 0 x 0 and 1 x 1 to denote “discard” and “no compression,” respectively.

3.3.2 Major artifacts

Compared with other coding algorithms, AMBTC provides fairly competitive compressed imagery quality at 2 bits/pixel (equivalent to using a 4 x 4 window) or higher rates20 (i.e., using smaller windows). However, the AMBTC coding performance quickly degrades at low bit rates (e.g., using an 8 x 8 or larger window). In particular, two major artifacts occur: contouring artifacts and blocking artifacts.

With only two reconstruction levels, AMBTC introduces jaggedness. For the flat areas in an image, the pixel values vary slowly. As a result, the jaggedness would cause contouring artifacts due to abrupt changes in the reconstruction values. Generally speaking, contouring artifacts are less noticeable in the busy areas. Second, note that no matter what the AMBTC window size is, there are only two quantization levels. Therefore, for the large window sizes, another type of distortion occurs, called blocking artifacts. This is because an abrupt change in the reconstruction value occurs at block boundaries. The larger the AMBTC window, the more distinct the blocking artifacts are. In summary, the contouring artifacts are an intrablock distortion, and the blocking artifacts are an interblock distortion.

To demonstrate these artifacts, two monochrome images, “Lena” and “House” (see Fig. 1), are used for the simulations. Each image has a size of 256 x 256 pixels with 8 bits/pixel. Four compressed images using the AMBTC 8 x 8 and 32 x 32 for “Lena” and “House” are presented in Fig. 2. These images will be compared with those (in Fig. 8) using SAMBTC at the same bit rates. The MSE and PSNR measurements can be found in Table 4 of Sec. 5.

4 Subband Dynamic Bit Allocation

4.1 Overview

Dynamic bit allocation is a major concern in coding systems where a given number of bits must be efficiently distributed among a number of sources. For subband dynamic bit allocation, these sources are the decomposed subbands.

For vector source coding, Huang and Schultheiss31 first recognized the issue of optimum bit allocation for transform coding and derived an analytical expression for a number of Gaussian sources. The standard-deviation-based dynamic bit allocation algorithm described in Eq. (15) is a direct result of their work and probably the most frequently used bit allocation algorithm both in image (e.g., Ref. 5) and in speech (e.g., Ref. 32) processing. However, the derivations were based on an approximate relationship between the quantizer distortion and the corresponding bit rate, which is only accurate for high bit rates. Thus, the solution is approximate and suboptimum. In addition, if the standard deviation of a subband is small enough, the number of bits allocated for a subband could be negative. In such a case, Huang et al.31 used a trial-and-error procedure for practical bit allocation. Improvements to this method were proposed by Segall33 and Ramstad.34

Segall33 assumed that the rate-distortion function does not have to be exponential and developed an optimal solution for non-negative real-valued bit allocation. Ramstad34 de-
signed a practical bit allocation process which is an iterative procedure and avoids negative bit assignment. Both Huang et al.31 and Segall33 assumed that all the quantizers were identical. Fox35 on the other hand, removed this assumption and proposed a new algorithm based on marginal return analysis but assumed that the rate-distortion function is strictly convex.

Without assuming the nature of the quantizers, Shoham and Gersho36 and Trushkin37,38 developed bit allocation algorithms using a generalized Lagrangian multiplier method39 and dynamic programming, respectively. Instead of assuming any mathematical relationship between rate and distortion, they assumed that all the quantizers have already been designed and consequently that all possible pairs of rate and distortion are known. That is, for \(N \) subbands and \(M \) quantizers, \(MN \) pairs must be computed in advance. The algorithm then searches for the best combination of existing quantizers to achieve the minimum distortion subject to a given total bit rate. Westerink740 generalized Trushkin's algorithm to allow for real-valued bit rates. Instead of using dynamic programming, Westerink applied a convex hull searching technique41 to improve searching efficiency. However, these methods tend to be computationally intensive and may not be practical for real-time implementations.

4.2 Our Approach

In this paper, a new bit allocation algorithm is developed from the foundation of Goodman42 and is compared with the one presented by Huang and Schultheiss31 [Eq. (15)].

Goodman42 first considered the problem of optimally allocating the total available bit rate for encoding analog messages. Goodman began with a formula given by Shannon43 which relates the rate and the mean-square error. He presented closed forms for the optimum rate allocation and the minimum total distortion but did not show the derivations or prove whether the stationary point was a minimum or maximum. In this paper, a Lagrangian multiplier optimization technique is used to derive an optimum bit allocation algorithm subject to the Shannon rate-distortion bound.43 Compared with Goodman's work, our additional contributions are as follows. Complete mathematical proofs have been provided in Ref. 44 and show that the derived bit allocation algorithm achieves the minimum distortion. Second, the whole derivation is then extended for the development of equal-bandwidth subband bit allocation. Third, the sequential form is developed to effectively solve the practical bit allocation concerns.

4.3 Shannon Bound Dynamic Bit Allocation—The Direct Form

Shannon proved that the required bit rate \(R \) for any source with zero mean and bandwidth \(W \) is bounded by43

\[
R \leq W \log_2 \left(\frac{P_{ave}}{N} \right),
\]

(4)

where \(P_{ave} \) is the average signal power of the source, and \(N \) is the allowable mean-square error or noise power between the original and recovered sources. The Shannon bound is used to specify a relationship between the bit rate and the distortion for each subband. A subband bit allocation algorithm is then derived based on this bound using a Lagrangian multiplier optimization technique. Given subband \(i \) with bandwidth \(w_i \) (bits/pixel) and average signal energy \(P_i \), the bit rate \(b_i \) (bits/pixel) and the resulting mean-square distortion \(D_i \) is given by

\[
D_i = P_i \left(2^{-b_i / w_i} \right).
\]

(5)

The quantity \(P_i \) for subband \(i \) (with the size of \(M \times N \)) is computed by:
Fig. 2 The compressed 256 x 256 "Lena" and "House" images using full-band AMBTC at (a) and (b),
an 8 x 8 window (i.e., 1.250 bits/pixel), and (c) and (d), a 32 x 32 window (i.e., 1.015625 bits/pixel).

\[P_i = \frac{1}{M \times N} \sum_{m=1}^{M} \sum_{n=1}^{N} I^2(m,n) , \]

where \(I(m,n) \) is the gray-level intensity of the pixel \((m,n)\).

Let the total distortion of a compressed image be \(D \). Since
the subband synthesis is a linear process, it is assumed that
the total distortion \(D \) is a sum of the individual subband's
mean-square distortion \(D_i \). That is,

\[D = \sum_{i=1}^{K} D_i = \sum_{i=1}^{K} P_i \ 2^{-(b_i/W)} \]

subject to the constraints

\[\sum_{i=1}^{K} b_i = \mathcal{B}, \quad W = \sum_{i=1}^{K} w_i, \quad i = 1, \ldots, K, \]

where \(\mathcal{B} \) and \(W \) are the given total bit rate and the total
bandwidth, respectively. Both have the dimension of bits/
pixel for \(K \) subbands. It is important to note that the subband
bit allocation algorithm essentially allocates the total number
of available bits among the subbands. However, the bit rate
(bits per pixel) is used in the discussion of dynamic bit al-
location. That is, if subband \(j \) is assigned a bit rate \(r \), it means
that subband \(j \) is allocated a fixed number of bits so that the
resulting bit rate is equal to \(r \). Thus, \(\mathcal{B} \) is the total bit rate
(i.e., bits per pixel per \(K \) subbands) distributed among \(K
\) subbands, and \(b \) is the average bit rate \((\mathcal{B}/K)\).

Let the bit allocation vector be denoted as \(\mathbf{b} \triangleq
(b_1, b_2, \ldots, b_K)^T \). That is, subbands 1, 2, through \(K \)
have been separately allocated bit rates equal to \(b_1, b_2, \ldots \),
and \(b_K \), respectively. Let \(\lambda \) be the Lagrangian multiplier, with the
Lagrangian (or Hamiltonian) defined as
The geometric mean of the average signal energy of the k subbands is given by

\[U_g = \left(\prod_{k=1}^{K} U_j^j \right)^{1/K}. \]

Then, Eq. (10) becomes

\[b_j^* = \frac{B}{K} + \left(\frac{W}{W_j} \right) \log_2 \left(\frac{P_j}{P_g} \right). \]

Note that this is the optimally allocated bit rate for the subband j. From Eq. (11), the average minimum distortion per subband is

\[D_j^{ave} = \frac{B^*}{K} \left[2^{-(\beta_j/W_j)} \sum_{k=1}^{K} \left(\frac{P_j}{P_g} \right)^{1/K} \right] \]

\[= \frac{B}{K} \left[2^{-(\beta_j/W_j)} \right], \]

which is the same formula as the Shannon rate-distortion bound expressed in Eq. (5) except that Eq. (14) uses the total information (P_g) for P_j, B for b_j^*, and W for w_j.

Note that Eq. (13) has a similar form as the commonly used standard deviation-based dynamic bit allocation algorithm,51 except for the factor of (W/K):

\[b_j^* = \frac{B}{K} + \log_2 \left(\frac{\sigma_j}{\sigma_g} \right), \]

where σ_g is the geometric mean of the standard deviations of the K subbands.

\[\sigma_g = \left(\prod_{k=1}^{K} \sigma_j^j \right)^{1/K}. \]

It is important to bear in mind that Eq. (15) is not optimum since an approximation has been used in the development. Although Eq. (13) is derived without any approximation, it has an undesirable phenomenon in bit allocation as described later.

Refer to Eqs. (13) and (15); note that the first term (B/K) is the average bit rate, which is a positive constant for a given B and K. Only the logarithmic terms may have negative values and could cause b_j^* to be negative as a result. The multiplicative factor (W/K) of Eq. (13) is a positive number and equal to the pixel depth (usually 8 bits/pixel for monochrome images and 10 bits/pixel for medical images). Therefore, if the logarithmic term is negative, the factor (W/K) further amplifies the negative values and increases the possibility of b_j^* being negative. [Note that given a set of decomposed subbands, the terms $\log_2 (P_j/P_g)$ or $\log_2 (\sigma_j/\sigma_g)$ are fixed regardless of B.] As expected, through simulations, about half of the subbands (on average) have negative bit allocations due to the existence of this factor. In addition, when the AMBTC quantizers are exploited in subbands, the resulting so-called total unassigned bit rate (discussed in Sec. 4.4) is extremely large and unacceptable. Hence, the factor (W/K) causes a higher degree of bit-rate fluctuations and should be discarded for a more stable and robust bit assignment. It is highly important to note that discarding the factor (W/K) from Eq. (13) still meets the fundamental constraint specified by Eq. (8). Indeed, it can be easily shown that $\sum_{k=1}^{K} b_j^* = B$. Note that only the summation of logarithmic terms turns out to be zero.

Based on these justifications, the factor (W/K) of Eq. (13) is discarded and Eq. (13) becomes

\[b_j^* = \frac{B}{K} + \log_2 \left(\frac{P_j}{P_g} \right). \]

Now Eqs. (17) and (15) have the same direct form except that the Shannon-bound-based algorithm uses the subband mean energy while the standard-deviation-based algorithm uses the subband standard deviation.51 It would be quite meaningful and interesting to see how each subband signal characteristic contributes to the bit allocation process and compare their resulting coding performance.

The Shannon-bound and standard-deviation bit allocation algorithms, that is, Eqs. (15) and (17), are referred to as direct bit allocation algorithms for discussion in the following paragraphs.

4.4 The Sequential Form

It is important to note that the dynamic bit allocation process does not perform any compression but only serves as a mechanism for assigning the proper number of bits to each subband. Based on the bit allocation results, an appropriate quantizer is then independently applied to an individual subband. Hence, a dynamic bit allocation process must be incorporated with quantizers which may have a fixed bit rate. If the two are mismatched, then poor coding performance may occur. The "mismatch" here means that the results calculated using

\[\text{for } j=1,2,\ldots,K. \]

The minimum total distortion D^* can be obtained as:

\[D^* = 2^{-(\beta_j/W_j)} \sum_{j=1}^{K} \left(\frac{P_j}{P_g} \right)^{1/K}. \]

When the subband bandwidths are equal [i.e., $w_j = (W/K)$ for all i], Eqs. (10) and (11) can be further simplified as follows. Define the geometric mean of the average signal energy of the K subbands as

\[U_g = \left(\prod_{k=1}^{K} U_j^j \right)^{1/K}. \]

It has been shown that the Hessian (or curvature) matrix is positive definite. As a result, the optimum bit allocation for any subband j with bandwidth W_j and average signal energy P_j is derived as (arbitrary bandwidth case):

\[b_j^* = \frac{B}{K} + \left(\frac{w_j}{W} \right) \log_2 \left(\frac{P_j}{P_g} \right) \log_2 \left(\frac{P_j}{P_g} \right). \]

for $j=1,2,\ldots,K$. The minimum total distortion D^* can be obtained as:

\[D^* = 2^{-(\beta_j/W_j)} \sum_{j=1}^{K} \left(\frac{P_j}{P_g} \right)^{1/K}. \]

When the subband bandwidths are equal [i.e., $w_j = (W/K)$ for all i], Eqs. (10) and (11) can be further simplified as follows. Define the geometric mean of the average signal energy of the K subbands as

\[U_g = \left(\prod_{k=1}^{K} U_j^j \right)^{1/K}. \]

Then, Eq. (10) becomes

\[b_j^* = \frac{B}{K} + \left(\frac{w_j}{W} \right) \log_2 \left(\frac{P_j}{P_g} \right) \left(\text{equal bandwidth case} \right). \]

Note that b_j^* is the optimally allocated bit rate for the subband j. From Eq. (11), the average minimum distortion per subband (for the equal bandwidth case) is

\[D_j^{ave} = \frac{B^*}{K} \left[2^{-(\beta_j/W_j)} \sum_{j=1}^{K} \left(\frac{P_j}{P_g} \right)^{1/K} \right] \]

\[= \frac{B}{K} \left[2^{-(\beta_j/W_j)} \right], \]

which is the same formula as the Shannon rate-distortion bound expressed in Eq. (5) except that Eq. (14) uses the total information (P_g) for P_j, B for b_j^*, and W for w_j.

Note that Eq. (13) has a similar form as the commonly used standard deviation-based dynamic bit allocation algorithm,51 except for the factor of (W/K):

\[b_j^* = \frac{B}{K} + \log_2 \left(\frac{\sigma_j}{\sigma_g} \right), \]

where σ_g is the geometric mean of the standard deviations of the K subbands.

\[\sigma_g = \left(\prod_{k=1}^{K} \sigma_j^j \right)^{1/K}. \]

\[\text{for a zero-mean source, these two quantities have the same value. However, the mean intensity of each subband image is usually not zero.} \]
Eqs. (15) and (17) (which could be any real numbers) are different from the quantizers’ bit rates (which are always positive and possibly constant). In practice, the quantizer with a bit rate closest to but less than the allocated bit rate for the subband is used as its quantizer. Thus, the difference between the two is the unassigned bit rate. The sum of the unassigned bit rates from all the subbands (called the total unassigned bit rate) can be quite large, and the resulting image quality is unacceptable. Hence, a new implementation algorithm called sequential dynamic bit allocation is developed from the direct form, which is similar to Ramstad’s work.34

The sequential form is an iterative implementation of the direct form (see Fig. 3). For the sequential form of the standard-deviation-based algorithm, only the subband mean energy in Fig. 3 needs to be changed to the subband standard deviation. The sequential algorithm works as follows. Assume a total bit rate of \(B \) and that each subband initially starts with 0 bits. The total bit rate \(B \) is gradually distributed to the subbands through the iterations. At each iteration, only the subband with the largest signal energy can be assigned a portion of the bit rate. The amount assigned to this subband depends on three factors: (1) its current window size, (2) the required incrementals for changing to the next smaller window, and (3) the remaining total bit rate. If the subband starts with 0 bits, then it will be assigned a number of bits which is equal to the largest possible window, i.e., window 64 × 64 (see the table of AMBTC quantizers in Fig. 3). For a successful bit rate assignment at each iteration, the window size changes to the next smaller one for the assigned subband; the energy of this subband is divided by a factor \(\mathcal{F} = 2^r \) (this condition will be derived later), and the total bit rate \(B \) is reduced by the amount of bit rate assigned at that iteration. Owing to the energy reduction factor \(\mathcal{F} \), a subband has multiple chances for bit rate allocations (as described earlier) and is gradually moved from a larger window to a smaller one (i.e., from a coarser quantization to a finer quantization). The iterative bit allocation process ends when either the total bit rate \(B \) is entirely assigned or the remaining unassigned bit rate is too small to let any subband change its current window size to the next smaller one (thus the corresponding subband flag is set for each subband successively).

In Fig. 3, the key parameter which assures the bit allocation is optimum in each sequential step is the reduction factor \(\mathcal{F} \), which is derived from the direct form as follows. Assume that subband \(i \) has the highest average energy among all the available subbands in any given iteration. If the subband \(i \) is assigned an additional bit rate \(r \), the total bit rate is reduced to \((B - r) \). Thus, the average energy of subband \(i \) is divided by a factor \(\mathcal{F} \). For the bit allocation in the next iteration, Eq. (17) becomes

\[
\hat{b}_j = \frac{B - r}{K} + \log_2 \left(\frac{\mathcal{F}_j}{\mathcal{F}} \right) \quad j = 1, \ldots, K,
\]

Fig. 3 The flowchart for the Shannon-bound sequential dynamic bit allocation algorithm, where \(\mathcal{F} = 2^r \). For the standard-deviation-based algorithm, the term mean energy is changed to standard deviation.
Hence,

\[
\hat{r}_j = \left(\frac{1}{\hat{r}} \right)^{1/K} \left(\hat{p}_j \right)_{(1/K)} = \left(\frac{1}{\hat{r}} \right)^{1/K} \hat{p}_j .
\]

To maintain the optimum bit allocation in each iteration, the term in braces in Eq. (19) is required to be zero; thus,

\[
\hat{r}_j = b^* / \hat{R} \quad \text{and} \quad \hat{R} = 2^r \quad \text{(equal bandwidth case)} .
\]

(20)

To compare the total unassigned bit rates using both direct and sequential forms, simulations (using the "Lena" image) are performed for both Shannon-bound-based and standard deviation-based bit allocation algorithms at various B. The results are documented in Fig. 4. Note that in the sequential form, only in the last iteration might a small amount of unassigned bit rate occur for the total K subbands, and this is much less than that produced in the direct algorithm (see the vertical scales of Fig. 4). Thus the sequential form effectively reduces the total unassigned bit rate when the quantizers have a fixed bit rate.

4.5 Shannon Bound Versus Standard Deviation

The coding performance of SAMBTC with the Shannon bound or standard deviation sequential dynamic bit allocation algorithms are compared at various bit rates. Images "Lena" and "House" are used as real data for simulations. Both images are decomposed into 16 equal-bandwidth subbands. The total bit rate B is varied with a unit integer increment, from 12 to 32 bits/pixel, for 16 subbands (i.e., the average bit rate varies from 0.75 to 2 bits/pixel). The sequential versions of the Shannon-bound and the standard-deviation bit allocation algorithms are applied to both images at each given B. To compare the distribution of windows among the subbands and their sizes, it has been noted that the standard deviation sequential bit allocation tends to use larger windows (i.e., coarser quantization) and more subbands. On the contrary, the Shannon-bound sequential bit allocation tends to select a smaller number of subbands with finer quantization on these bands using smaller windows.

After the bit allocation process is applied and the window size for each subband is determined, quantization using AMBTC is independently performed on each subband. The final compressed image is obtained by combining the compressed subbands through subband reconstruction. Each compressed image $\hat{x}(m,n)$ is then compared against the original source image $x(m,n)$. The PSNR curves of compressed "Lena" and "House" are plotted in Fig. 5. The PSNR is defined as:

\[
\text{PSNR} = 10 \log_{10} \left(\frac{255^2}{\text{MSE}} \right) \text{ dB} ,
\]

(21)

where $\text{MSE} = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} [x(m,n) - \hat{x}(m,n)]^2$ per pixel, and M and N are the number of rows and columns in a digital image, respectively. The Shannon-bound sequential dynamic bit allocation consistently outperforms the standard-deviation sequential algorithm. In addition, the reconstructed image quality has been compared at each bit rate. The Shannon bound algorithm is clearly superior.
To illustrate, a set of compressed "Lena" and "House" images are presented in Fig. 6, for both algorithms at 1.5625 bits/pixel (i.e., $\Theta = 25$). Their bit allocation results in terms of the AMBTC window assignment are listed in Table 2 where the numbers (1 through 16) in the table heading are the subband labels. For the subband labeling, see Fig. 7 where subband 1 represents the baseband. The number in the entry of Table 2 is the chosen window size for that band. For example, an 8×8 AMBTC window was used to compress subband 5 in image (a). For the chosen AMBTC windows and their corresponding bit rate see the table in Fig. 3. In addition, we used 0×0 and 1×1 to denote "discard" and "no compression," respectively.

Based on the simulation results shown in Fig. 4, it is interesting to note that on average the standard deviation algorithm has a lower unassigned bit rate than that using the Shannon bound algorithm. From this standpoint, the standard deviation algorithm is more efficient than the Shannon bound algorithm in allocating bits among subbands and is expected to perform better. On the contrary, the signal characteristic used in these two algorithms makes the bit allocation results
Fig. 8 The compressed 256×256 “Lena” and “House” images using SAMBTC with the Shannon-bound sequential dynamic bit allocation algorithm at 1.250 bits/pixel in (a) and (b); and at 1.015625 bits/pixel in (c) and (d).

Coding Performance

5.1 SAMBTC Versus AMBTC

Reconstructed “Lena” and “House” images using the SAMBTC approach with the Shannon-bound-based sequential dynamic bit allocation are presented in Fig. 8. Comparing Figs. 8 and 2, SAMBTC clearly outperforms the AMBTC in every case by effectively reducing the blocking artifact and significantly improving the image quality.

The corresponding window assignments for the subbands are listed in Table 3. Performance comparisons in terms of the MSE and PSNR are shown in Table 4 for both AMBTC and subband coding algorithms and/or signal sources (e.g., speech signal).

Table 2: Subband bit allocation results in terms of the AMBTC window assignment for the images in Fig. 6. For each case, from (a) to (d), the total unassigned bit rate is 0.0313, 0.0039, 0.0039, and 0.0 bits/pixel respectively.

<table>
<thead>
<tr>
<th>Fig. 6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>
and SAMBTC. Notice that the lower the bit rates, the greater the gain in PSNR by using SAMBTC.

5.2 SMMSEQ Versus 1-bit MMSEQ

In Section 3.1, we provided justifications about why AMBTC is the best among the 1-bit quantizers to exploit as the codec. To further demonstrate this, we replaced the AMBTC of the SAMBTC algorithm by the 1-bit MMSEQ and called this SMMSEQ (SMMSEQ). Simulations with results documented in Table 4 for the AMBTC and the SAMBTC are independently conducted for the MMSEQ and the SMMSEQ at the same bit rates. Comparisons are independently made at each bit rate for (1) full-band case—AMBTC versus MMSEQ and (2) subband case—SAMBTC versus SMMSEQ. The results show that the images are perceptually (almost) unnoticeable in the full-band case and even smaller in the subband counterpart. In terms of the PSNR, the 1-bit MMSEQ only outperforms the AMBTC by 0.66 dB for “Lena” and 0.42 dB for “House” in the full-band case and by 0.22 dB for “Lena” and 0.26 dB for “House” in the subband case. However, the computational complexity of the 1-bit MMSEQ is about 2 to 7 times that using the AMBTC in both full-band and subband cases. In the rest of the paper, the SAMBTC system is extended to compress color images recorded in various color spaces.

6 Color Images and Spaces

In general, an uncompressed color image is commonly represented with 24 bits/pixel—8 bits/pixel for each of the three uncompressed color component images. Two 256 × 256 color images with 24 bits/pixel, “Girl” and “Doll” [see Figs. 9(a) and 9(b) in Color Plate 1, respectively], are used for the simulations in this paper. The “Girl” includes a facial image with flesh tones, highly important for television and color images with 24 bits/pixel, the “Girl” and “Doll” contain highly saturated areas. Together, these two images cover a wide range of chrominance information and have been recorded in the Commission Internationale de l’Eclairage (CIE) standard observer, XYZ color space. Usually, a color space transformation from the XYZ to another space is performed before compression begins.

7 Observations on Applying AMBTC to Color Images

7.1 AMBTC Bit Planes for Color Images

Recall that any compressed monochrome image using the AMBTC method generates at most two quantization levels for each block in the image. However, this is often not true for color images. When AMBTC is applied to a block in a color image, each color component of this block independently generates its own bit plane. Thus, each color block is represented by more than two quantization levels provided that the bit planes from the three component images at the same block position are not identical.

Table 4 Comparison between the SAMBTC and the full-band AMBTC at various bit rates using (a) “Lena” and (b) “House.” In the full-band AMBTC case, the bit rate \(b \) corresponds to use of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 windows, respectively.

<table>
<thead>
<tr>
<th>(a). LENA</th>
<th>AMBTC</th>
<th>SAMBTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate, (bpp)</td>
<td>MSE (/pel)</td>
<td>PSNR (dB)</td>
</tr>
<tr>
<td>(b = 8/16)</td>
<td>32</td>
<td>153.125</td>
</tr>
<tr>
<td>20</td>
<td>162.459</td>
<td>27.073</td>
</tr>
<tr>
<td>32</td>
<td>129.891</td>
<td>26.290</td>
</tr>
<tr>
<td>64</td>
<td>95.391</td>
<td>25.336</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b). HOUSE</th>
<th>AMBTC</th>
<th>SAMBTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate, (bpp)</td>
<td>MSE (/pel)</td>
<td>PSNR (dB)</td>
</tr>
<tr>
<td>(b = 8/16)</td>
<td>32</td>
<td>153.125</td>
</tr>
<tr>
<td>20</td>
<td>162.459</td>
<td>27.073</td>
</tr>
<tr>
<td>32</td>
<td>129.891</td>
<td>26.290</td>
</tr>
<tr>
<td>64</td>
<td>95.391</td>
<td>25.336</td>
</tr>
</tbody>
</table>

The impact of applying SAMBTC in two different color spaces is investigated. Two important categories of color spaces are considered: (1) television color spaces (i.e., YIQ and YUV), through linear transformation from XYZ, and (2) perceptually uniform color spaces (i.e., L*u*v* and L*a*b*), through nonlinear transformation from XYZ. The main objective of the transformation is to reduce the covariances among the three component images, and the energy and variance distributions are more compact (e.g., see Table 5 for “Girl”).

Note that the Y components in YIQ, YUV, and XYZ are all identical where Y is the luminance. The I and Q in the YIQ space and the U and V in the YUV space are the chrominance signals. The coordinates of (I, Q) and (U, V) have a 33-deg phase difference. As a result, the coding performance conducted on these spaces is fairly close judging from the perspectives of imaging quality and compressibility. The major difference is their transmission format. Therefore, to demonstrate the coding performance of the SAMBTC in category (1), YIQ is chosen for simulations. For category (2), L*u*v* is used to represent color images because the L*u*v* space has been used in television while the L*a*b* space is used by the colorant industries (Ref. 47, p. 69 and Ref. 48, p. 19).

To view a color image recorded in any color space, the image must be transformed into XYZ space first, followed by linear transformation from XYZ to RGB space along with proper gamma corrections. Denote this space as display RGB in order to distinguish it from the transmission RGB space.
Consider, for example, a 2\times2 AMBTC window applied to a color image represented in \(L^*u^*v^*\) space. Assume the three bit planes of components \(L^*\), \(u^*\), and \(v^*\) at a particular block position are
\[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix},
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}, \text{ and } \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix},
\]
respectively. The 0’s and 1’s in each bit plane correspond to the two quantization levels \(a_{L^*}\) and \(b_{L^*}\) for component \(L^*\), \(a_{u^*}\) and \(b_{u^*}\) for component \(u^*\), and \(a_{v^*}\) and \(b_{v^*}\) for component \(v^*\). Thus, the three component blocks of the decoded image at this particular position are:
\[
\begin{bmatrix}
\mathbf{b}_{L^*} & \mathbf{a}_{L^*} \\
\mathbf{b}_{u^*} & \mathbf{a}_{u^*}
\end{bmatrix},
\begin{bmatrix}
\mathbf{a}_{u^*} & \mathbf{b}_{u^*} \\
\mathbf{a}_{v^*} & \mathbf{b}_{v^*}
\end{bmatrix}, \text{ and } \begin{bmatrix}
\mathbf{b}_{u^*} & \mathbf{a}_{u^*} \\
\mathbf{b}_{v^*} & \mathbf{a}_{v^*}
\end{bmatrix}.
\]

In order to display the block on a CRT monitor, these three component blocks must be converted into display \(RGB\) with gamma correction. Let the combination of the transformations be denoted as \(T(\cdot)\). Then, this block in display \(RGB\) space is expressed as:
\[
\begin{bmatrix}
\mathbf{T}(\mathbf{b}_{L^*}, \mathbf{a}_{L^*}) & \mathbf{T}(\mathbf{a}_{u^*}, \mathbf{b}_{u^*}) & \mathbf{T}(\mathbf{b}_{v^*}, \mathbf{a}_{v^*})
\end{bmatrix}.
\]

This example, each pixel may display a different color since all the arguments of \(T(\cdot)\) are different.

7.2 AMBTC Color Blocking Artifacts

Recall that the full-band AMBTC introduced blocking artifacts in monochrome images at low bit rates. For color images, two aspects regarding the severeness of blocking artifacts have been studied as follows.

7.2.1 Blocking artifacts in YIQ and \(L^*u^*v^*\)

AMBTC windows with size \(2 \times 2\) for \(i = 1, 2, \ldots, 6\) are chosen for the simulations. For each size, the full-band AMBTC is applied to each component image of “Girl” and “Doll” represented in the \(YIQ\) and \(L^*u^*v^*\) color spaces. The compressed component images are then transformed into the display \(RGB\) space with gamma correction. The simulation results show that the severeness of blocking artifacts in the \(YIQ\) and \(L^*u^*v^*\) color spaces is about the same. In particular, the difference of the color blocking artifacts presented in the \(YIQ\) and \(L^*u^*v^*\) spaces is not noticeable when using a window size smaller than or equal to \(16 \times 16\). For window sizes greater than \(16 \times 16\), the resulting image difference between these two spaces is quite small.

To demonstrate the blocking artifacts exploiting the AMBTC algorithm at low bit rates, the compressed images using a \(32 \times 32\) AMBTC window to “Girl” and “Doll” in the \(L^*u^*v^*\) space are presented in Figs. (9c) and (9d) in Color Plate 1, respectively.

7.2.2 Blocking artifacts within the color components

To investigate the severeness of the blocking artifacts present in each component image, a set of five compressed images in the \(L^*u^*v^*\) color space is generated for each AMBTC window (from \(2 \times 2\) to \(64 \times 64\)). For example, using a \(32 \times 32\) AMBTC window, five images are generated as follows: (1) A \(32 \times 32\) window is independently applied to all three component images, i.e., \(L^*, u^*,\) and \(v^*\); (2) a \(32 \times 32\) window is applied to the luminance \(L^*\) only; (3) a \(32 \times 32\) window is separately applied to the two chrominance signals \(u^*\) and \(v^*\); (4) a \(32 \times 32\) window is applied to the chrominance \(u^*\) only; and (5) a \(32 \times 32\) window is applied to the chrominance \(v^*\) only. The compressed images have a bit rate of 3.046875 bits/pixel for experiment (1), 17.015625 bits/pixel for experiments (2), (4), and (5), and 10.03125 bits/pixel for experiment (3). Although the resulting bit rates are not identical, this is not a concern in this particular experiment. The blocking artifacts due to experiment (1) are shown in Figs. (9c) and (9d). Comparing the compressed images of experiments
Fig. 9 Each color image is 256×256 with 24 bits/pixel, i.e., 8 for each color component: (a) original "Girl," (b) original "Doll," and (c) and (d) blocking artifacts of "Girl" and "Doll," respectively, in the $L^*u^*v^*$ color space using a 32×32 AMBTC window on each color component plane.
(1) and (2), they are perceptually identical. On the other hand, the compressed images from experiments (3), (4), and (5) are almost identical to the original images in Figs. 9(a) and 9(b).

The identical experiments described above were also applied to color images recorded in the YIQ space. The same conclusion is also drawn. This indicates that the luminance has much more severe blocking artifacts than the chrominance at the same bit rate.

8 Dynamic Bit Allocation for Color Images

Unlike the monochrome image, each color image has three color component images. Since each component image is decomposed into 16 equal-bandwidth subbands in this paper, a given total bit rate B must be distributed among the 48 subbands. Thus, the Shannon-bound sequential dynamic bit allocation algorithm developed for monochrome images earlier is exploited with two additional algorithms: (1) quota-ratio division and (2) intercomponent unassigned bit rate reduction.

8.1 Quota-Ratio Division

Let a quota ratio be denoted as $(q_1 : q_2 : q_3)$. The numbers q_1, q_2, and q_3 correspond to the proportion of the total bit rate B allocated to components L^*, u^*, and v^* in the $L^*u^*v^*$ space (or for components Y, I, and Q in the YIQ space), respectively. The coding performance of the Shannon bound sequential dynamic bit allocation algorithm is evaluated without or with a quota ratio, individually. Without using a quota simulation results show that the image quality is poor, even at medium to high bit rates.

With a quota $(q_1 : q_2 : q_3)$, the total bit rate B is partitioned into three unequal parts. This can be justified from the perceptual and numerical viewpoints. From the perceptual viewpoint, it is well known that the human visual system (HVS) perceives luminance and chrominance differently, and the HVS is much less sensitive to the errors that occur in chrominance than in luminance. From a numerical viewpoint, the luminance and chrominance of a color space may have different numerical ranges depending on the chosen color space. For example, component L^* has a fixed range (between 0 and 100) of value while components u^* and v^* can have negative values. Therefore, it is not appropriate to treat the three components in a color space equally.

The HVS-based (4:1:1) ratio [also used by the source input format (SIF) of the Motion Picture Experts Group (MPEG)] is chosen. That is, the total bit rate B is partitioned into three parts: $B_{L^*} = (2/3)B$ and $B_{u^*} = B_{v^*} = (1/6)B$ for the $L^*u^*v^*$ space and $B_{Y} = (2/3)B$ and $B_{I} = B_{Q} = (1/6)B$ for the YIQ space. Using a (4:1:1) quota, simulation results obtained at various bit rates show that the images are generally superior to those without quota division.

8.2 Intercomponent Unassigned Bit Rate Reduction

For ease of discussion, let us consider the bit allocation in the $L^*u^*v^*$ space. After independently applying the Shannon bound sequential dynamic bit allocation algorithm to each color component plane based on B_{L^*}, B_{u^*}, and B_{v^*}, a small number of total unassigned bit rates (possibly zero) may result at the end of the process on each component image—denoted as e_{L^*}, e_{u^*}, and e_{v^*} for components L^*, u^*, and v^*, respectively. Hence, an additional algorithm called intercomponent unassigned bit rate reduction is developed as follows.

Based on our simulation studies, the severeness of the color blocking artifacts in each color component at the same bit rates is ranked as $v^* < u^* < L^*$ in the $L^*u^*v^*$ space. Thus, the Shannon bound sequential dynamic bit allocation algorithm is initially performed for the component v^* based on B_{v^*}. Any unassigned bit rate e_{v^*} from component v^* will be unconditionally added to B_{u^*}. The Shannon bound sequential dynamic bit allocation algorithm is then performed on component u^* based on $(B_{u^*} + e_{v^*})$. Similarly, any unassigned bit rate e_{u^*} from component u^* will be unconditionally allotted to B_{L^*}. Thus, the bit allocation algorithm for component L^* is based on $(B_{L^*} + e_{u^*} + e_{v^*})$. As a result, the total unassigned bit rate $e_{L^*u^*v^*} = (e_{u^*} + e_{v^*} + e_{L^*} + e_{Y})$ might be reduced further provided that not both e_{u^*} and e_{v^*} are zero.

All the simulations have shown that the intercomponent unassigned bit rate algorithm consistently reduces the total unassigned bit rate $e_{L^*u^*v^*}$ and thus improves the image quality. For the YIQ space, the Shannon bound sequential dynamic bit allocation is performed in the following sequence: Q, I, and Y. The same arguments and simulations can be applied to the YIQ space. The intercomponent unassigned bit rate algorithm is also consistently effective in the YIQ space.

Finally, it is important to observe that the quota ratio (4:1:1) may be changed after adding the e_{u^*} (to B_{u^*}) or e_{v^*} (to B_{v^*}), assuming that e_{u^*} or e_{v^*} is nonzero. However, since the quantities e_{u^*} and e_{v^*} are quite small, the actual ratio is still close to (4:1:1).

9 Color Rate-Distortion Performance

9.1 Simulation

To conduct extensive experiments, a set of 14 bit rates ranging from 2.4 to 0.75 bits/pixel was chosen for each of the four cases (“Girl” and “Doll” in the YIQ and $L^*u^*v^*$ spaces, combined) to evaluate the color rate-distortion performance of the SAMBTC. Given a total bit rate B, a proper AMBTC window is decided upon for each subband based on the bit allocation result. The chosen AMBTC window is independently applied to the subband as its quantizer. After AMBTC decoding, the subband synthesis is performed independently for each color component based on its quantized subbands. The synthesized L^*, u^*, and v^* are the reconstructed components (with distortions) of the original L^*, u^*, and v^*, respectively.

To display the compressed color image on a CRT monitor, the compressed L^*, u^*, and v^* are then transformed into the CIE XYZ space followed by the conversion from the XYZ space to the display RGB space with gamma correction. Similarly, the same subband synthesis procedures are also applicable to the compressed subband images for each component in the YIQ space.

9.2 Rate-Distortion Measurement

The distortion in a compressed monochrome image can be measured in terms of mean-square error and peak-to-peak signal-to-noise ratio. Since a compressed color image involves three compressed component images, the total distortion is thus a function of the distortion in each component. For the YIQ space, this function is unknown. Therefore, the
applied an error diffusion technique of digital halftoning to effectively smooth out blocking artifacts. Their findings can be exploited in SAMBTC presented here to further improve imaging quality.

Finally, a VLSI realization of AMBTC codec for video signal processing has been reported in Ref. 30. With attractive performance and system merits, a VLSI implementation of the SAMBTC system for multimedia applications is suggested.

11 Appendix

The following tables show some subband bit allocation results in terms of AMBTC window assignment for the subbands of color images “Girl” and “Doll” (see Fig. 7 for subband labeling). The total unassigned bit rates for each case are fairly small and insignificant (on average, 0.0067 bit/pixel per subband). Therefore, they are not listed here, but are available in Ref. 44.

<table>
<thead>
<tr>
<th>Bit Rate (bpp)</th>
<th>4:1:1</th>
<th>(a) The Luminance of GIRL in YIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B for 48 bands</td>
<td>$B_1 = [B_1]_x \times 3</td>
<td>Component Y</td>
</tr>
<tr>
<td>12</td>
<td>0.75 (32:1)</td>
<td>6.000 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>1.50 (16:1)</td>
<td>10.667 1 2 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>24</td>
<td>2.25 (12:1)</td>
<td>16.000 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>3.00 (8:1)</td>
<td>25.600 1 7 14 0 0 0 0 0 0</td>
</tr>
<tr>
<td>38.4</td>
<td>4.50 (4:1)</td>
<td>64.000 2 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Rate (bpp)</th>
<th>4:1:1</th>
<th>(b) The Chrominance of GIRL in YIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B for 48 bands</td>
<td>$B_1 = [B_1]_x \times 3</td>
<td>Component I</td>
</tr>
<tr>
<td>12</td>
<td>0.75 (32:1)</td>
<td>0.667 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>1.50 (16:1)</td>
<td>2.667 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>24</td>
<td>2.25 (12:1)</td>
<td>16.000 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>3.00 (8:1)</td>
<td>25.600 1 7 14 0 0 0 0 0 0</td>
</tr>
<tr>
<td>38.4</td>
<td>4.50 (4:1)</td>
<td>64.000 2 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Rate (bpp)</th>
<th>4:1:1</th>
<th>(c) The Luminance of DOLL in YIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B for 48 bands</td>
<td>$B_1 = [B_1]_x \times 3</td>
<td>Component Y</td>
</tr>
<tr>
<td>12</td>
<td>0.75 (32:1)</td>
<td>6.000 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>1.50 (16:1)</td>
<td>10.667 1 2 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>24</td>
<td>2.25 (12:1)</td>
<td>16.000 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>3.00 (8:1)</td>
<td>25.600 1 7 14 0 0 0 0 0 0</td>
</tr>
<tr>
<td>38.4</td>
<td>4.50 (4:1)</td>
<td>64.000 2 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Rate (bpp)</th>
<th>4:1:1</th>
<th>(d) The Chrominance of DOLL in YIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B for 48 bands</td>
<td>$B_1 = [B_1]_x \times 3</td>
<td>Component I</td>
</tr>
<tr>
<td>12</td>
<td>0.75 (32:1)</td>
<td>0.667 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>1.50 (16:1)</td>
<td>2.667 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>24</td>
<td>2.25 (12:1)</td>
<td>16.000 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>3.00 (8:1)</td>
<td>25.600 1 7 14 0 0 0 0 0 0</td>
</tr>
<tr>
<td>38.4</td>
<td>4.50 (4:1)</td>
<td>64.000 2 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Rate (bpp)</th>
<th>4:1:1</th>
<th>(e) The Chrominance of GIRL in Luv*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B for 48 bands</td>
<td>$B_1 = [B_1]_x \times 3</td>
<td>Component Y</td>
</tr>
<tr>
<td>12</td>
<td>0.75 (32:1)</td>
<td>6.000 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>1.50 (16:1)</td>
<td>10.667 1 2 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>24</td>
<td>2.25 (12:1)</td>
<td>16.000 1 4 4 0 0 0 0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>3.00 (8:1)</td>
<td>25.600 1 7 14 0 0 0 0 0 0</td>
</tr>
<tr>
<td>38.4</td>
<td>4.50 (4:1)</td>
<td>64.000 2 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Fig. 11 Compressed "Girl" images: (a) in YIQ at 2.4 bits/pixel—10:1, (b) in YIQ at 0.75 bits/pixel—32:1, (c) in L’u’v’ at 2.4 bits/pixel—10:1, and (d) in L’u’v’ at 0.75 bits/pixel—32:1. For presentation, all these images were transformed from the YIQ or L’u’v’ space into the display RGB space with gamma correction.

Color Plate 2
Fig. 12 Compressed “Doll” images: (a) in YIQ at 2.4 bits/pixel—10:1, (b) in YIQ at 0.75 bits/pixel—32:1, (c) in L’u’v’ at 2.4 bits/pixel—10:1, and (d) in L’u’v’ at 0.75 bits/pixel—32:1. For presentation, all these images were transformed from the YIQ or L’u’v’ space into the display RGB space with gamma correction.

Color Plate 3
References

32. J. Makhoul, S. Rocac, and H. Gish, "Vector quantization in speech coding,", *Proc. IEEE 73, 1551–1588, Nov. (1985).*

Kai-Kuang Ma received his BE in electronic engineering from Chung Yuan Christian University (Taiwan) and MS and PhD degrees in electrical engineering from Duke University and North Carolina State University, respectively. Currently, he is a lecturer at the School of Electrical and Electronic Engineering, Nanyang Technological University, Republic of Singapore. From 1992 to early 1995, he was a member of the technical staff at the Institute of Microelectronics (IME), National University of Singapore. At IME, he was responsible for R&D in advanced imaging technologies. From 1984 to 1992, he was with IBM in the United States and worked on various advanced product developments in the areas of PC-based multimedia communications using the IBM digital signal processor MWave, telecommunications, and VLSI. His research interests include subband/wavelet image coding, very low bit rate coding for wireless visual communications, ATM packet video, and neural networks. Dr. Ma is a senior member of IEEE and a member of Sigma Xi and Eta Kappa Nu.

Sarah A. Rajala received her BS in electrical engineering from Michigan Technological University, Houghton, in 1974, and MS and PhD degrees in electrical engineering from Rice University, Houston, Texas, in 1977 and 1979, respectively. In 1979 she joined the Electrical and Computer Engineering Department at North Carolina State University, Raleigh, where she is a professor and director of the Industry/University Center for Advanced Computing and Communication. She is also an adjunct professor in the Radiology Department at the Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC. From July 1987 to July 1988, she held a visiting appointment in the School of Electrical Engineering at Purdue University. Her research interests include color image processing and time-varying image analysis with application to image coding/compression, motion estimation, and target acquisition and tracking.