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and Power System with Uncertain Wind Energy

Dan Hu, Sarah M. Ryan, ∗
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Abstract

We compare approaches for addressing uncertainty in the joint scheduling of a combined power and

gas system, with the goal of minimizing the total cost of meeting demands for gas and electricity, while

satisfying operational and equilibrium constraints. A stochastic programming model and a deterministic

model with reserves are formulated to investigate the hourly unit commitment and economic dispatch in

the power system as well as the hourly working schedule of the natural gas system. The deterministic

model uses reserves proportional to the wind energy forecast to mitigate the effect of the uncertainty in

wind energy, whereas the stochastic programming model makes the day-ahead decisions while explicitly

considering the wind energy uncertainty. Nonlinear constraints on the gas flows in pipelines are linearized

with binary variables where, based on numerical experimentation, the number of piecewise linear segments

is chosen to balance accuracy and computational efficiency. A six-bus power system with seven-node gas

system and the IEEE 24-bus power system with adjusted Belgian 20-node gas system are analyzed. The

simulation results indicate that, when the total wind capacity exceeds 15% of the conventional generation

capacity, the stochastic programming model produces schedules with comparable or lower cost and energy

shortages than the deterministic model with reserves.

Keywords: Natural gas system, Power system, Short-term unit commitment and economic dispatch,

Wind energy.

1 Introduction

According to a U.S. government forecast, the share of natural gas in the total electricity generation will

rise from 27% in 2012 to 31% in 2040, while the share from coal will decrease from 39% to 34% [1]. This
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change results from the retirement of coal-fired generators, the development of high-efficiency natural gas

fueled power generators (NGPGs), the increase of natural gas supply with a relatively stable gas price since

2009, and potential emission regulations. To maintain a reliable power system, more research about how to

make unit commitment (UC) and economic dispatch (ED) decisions for the increasing numbers of NGPGs

is needed.

Wind energy, with a low operational cost, can be added into the power grid directly and thus relieve some

of the pressure on NGPGs. Meanwhile, NGPGs can ramp their production up and down quickly according

to the variable wind energy. The cooperation of the wind generators and NGPGs can not only decrease the

operational cost but also increase the reliability of the grid. Due to the pre-schedule scheme of natural gas

and power systems, ahead of the actual operating day, decisions about the supply of natural gas must be

made on the basis of wind power output forecasts. If the actual wind output is less than the forecast, load

shedding may occur if too few units are committed or not enough gas is available. Thus, it is important to

plan the operation of the natural gas and power systems accounting for the uncertainty of wind energy.

Currently in many parts of the world, the natural gas and power systems are operated independently. As

natural gas claims a higher share of generation capacity, more generating companies consider signing firm

contracts with the natural gas suppliers to make sure they have sufficient fuel. Because the peak gas and

electricity loads may overlap and coincide with extreme weather, the current independent operation of the

natural gas and power systems makes it hard to react to these conditions. Recently, the U.S. Federal Energy

Regulatory Commission, which regulates both systems, mandated adjustments in the timing of day-ahead

wholesale electricity markets to permit better coordination with the gas market. Here, we examine the

combined operation of the electric power and natural gas systems to minimize the total operational cost

including penalties on non-served energy.

In this paper, we focus on comparing the stochastic and the deterministic scheduling of the combined

natural gas and power system with uncertain wind energy. We formulate the problem with a centralized direct

current (DC) power flow model and static natural gas system, neglecting some complicated dynamic power

and natural gas constraints for the sake of tractability. Uncertainty in the wind energy is incorporated by

adding fixed reserves in the deterministic model or by probabilistic scenarios in the stochastic programming

(SP) model. Here we quantify risk as the expected unserved energy (in the form of either gas or electricity)

and cost as the UC and expected production cost in the combined system. While some previous comparisons

of stochastic and deterministic scheduling of these systems together have focused on expected cost, we

examine risk impacts more closely. We compare the cost and risk in numerical case studies, illustrating

that under deep penetration of wind power, the SP model reduces both cost and risk compared to the

deterministic model with reserves.
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2 Literature Review

Many researchers have discussed approaches to modeling the combined natural gas and power system. The

effects of gas infrastructure and gas unit price on power generation scheduling were addressed by using

security-constrained unit commitment (SCUC) [2]. Dual decomposition, Lagrangian relaxation and dy-

namic programming were used to solve a large scale integrated electricity-gas optimal short-term planning

problem with a hydrothermal system included, formulated as a nonlinear mixed-integer program [3], while

a day-ahead integrated SCUC model is applied incorporating the natural gas network constraints and fuel

diversity as an effective peak shaving strategy [4]. Reference [5] applied Benders decomposition in the SCUC

problem with natural gas transmission constraints and reference [6] formulated a bi-level model in which the

upper level problem includes the unit commitment (UC) and economic dispatch (ED) problems while the

lower level problem concerns the natural gas system. With a focus on component outages, or contingencies,

a coordinated stochastic model, including scenarios of random generating unit and line outages, was pro-

posed to demonstrate that hourly economic demand response would decrease the dependence on natural gas

constraints for the optimal operation of the electric power system [7]; a two-stage stochastic programming

model of the UC with natural gas constraints, in which the first stage optimizes the UC and gas production

decisions, was developed [8]; and reference [9] applied the corresponding linear sensitivity analysis to adjust

decisions in advance for system security in the event of a single contingency. The Alternating Direction

Method of Multipliers (ADMM) was used not only to solve the gas-electric integrated optimal power flow

model and compare the results with and without a coordinating operator [10] but also to coordinate the

gas-electric systems and demonstrate the algorithm efficiency, under electric load uncertainty [11]. In [12],

second-order cone constraints are employed as a relaxation for the non-convex gas flow through pipelines

and a sensitivity analysis of the wind energy forecast error is conducted. Reference [13] applied the energy

modeling method to the different energy systems including the natural gas system, power system, gas-to-

power units, gas-to-power units and line pack of the natural gas. Reference [14] proposed a genetic algorithm

based hybrid model for a power system distribution network, a natural gas network and the energy centers

including the combined heat and power units, different energy conversion devices and demand responsive

load to minimize the day-ahead operational cost of the integrated urban energy system, but the optimality

is not guaranteed. Moreover, it is difficult to extend these methodologies to multiple scenarios due to their

low computational efficiency. A study of a distribution system including reverse power management focuses

on the operation of the power-to-gas and gas-to-power facilities [15]. Reference [16] investigated the micro

integrated electric power, natural gas and heat delivery system and focused on minimizing the total operation

and environmental cost, and reference [17] proposed a robust optimization model of the integrated natural
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gas and power system model with uncertain wind energy and focused on the worst cases. None of references

[15], [16] and [17] modeled the detailed non-convex gas flow through pipelines.

Several papers presented models of gas flows in pipelines. For the most general case of transient flow,

the laws of conservation of mass, energy and momentum were applied to find three partial differential

equations (PDEs) [18]. However, although the gas state condition could be added to those three PDEs to

help identify a closed form of the solution, more equations are required due to the large number of variables

in the transient model. The theoretical and some experimental results of the unsteady and transient flow

of compressible fluids in pipelines were reviewed in [19]. Given the special physical characteristics of gas

pipelines, they proposed a unidirectional flow model and developed various derivative models of different

thermal conditions. A one-dimensional, non-isothermal gas flow model was solved to simulate the slow

and fast fluid transients and address the effect of various thermal models on the flow rate, pressure and

temperature in the pipelines [20]. Given a one dimensional homo-thermal steady state flow condition, the

PDEs for transient state flow could be simplified and the Weymouth equation (WE) was proposed to model

gas flow in passive pipelines [6]. A theoretical and computational comparison of piecewise linear models for

approximating the WEs led to the conclusion that the incremental method, where continuous variables are

introduced to represent the portion of each segment and binary variables force all intervals to its left must

be completely used if a segment is chosen, is the fastest [21]. The non-convex Weymouth gas flow equation

was relaxed to convexified quadratic constraints to enable solution of the optimal gas flow by an iterative

second-order cone programming procedure with a greater efficiency than traditional nonlinear methods [22].

A robust co-optimization scheduling model was proposed to study the coordinated natural gas and power

system while considering key power system uncertainties [23], which only mentions incremental method is

used for linearizing nonlinear constraints but the computational efficiency and accuracy for different numbers

of segments were not discussed.

UC and ED formulations traditionally have been based on fixed reserve limits. With the power turbine

technology development, the capacity of wind turbines has increased significantly and wind power has become

an important energy resource. Thus, methodologies for incorporating increasing amounts of wind energy

into the power system attract more attention. Although many research studies have been done on scheduling

the combined natural gas and power system as well as on the UC/ED problems with uncertain wind energy,

there are few studies on the combined natural gas and power system that also include uncertain wind

energy. Reference [24] formulated a coordinated stochastic day-ahead scheduling model of the electricity

infrastructure with costs and constraints imposed by the gas system and examined its ability to firm the

uncertain wind energy. This study did not compare the stochastic programming approach against traditional

methods of adding reserves and did not analyze different levels of wind uncertainty. Reference [25] describes

4



the study that, to our knowledge, is most similar to this one. The authors compared deterministic, two-stage,

and multi-stage stochastic formulations of commitment and dispatch of an integrated gas and electricity

network. However, they separately solved a (stochastic) mixed-integer program to schedule the electricity

generators and a nonlinear program to determine if gas demands could be satisfied under that schedule, then

iteratively applied a heuristic method to constrain the gas generators’ output, re-solving both models until

feasibility could be achieved.

We apply linear approximations to the gas constraints and integrate the decisions for both systems in

a single optimization model. By penalizing energy- and gas-balance constraint violations in the objective

function, we quantify the risk of load shedding in either system. The contributions of this paper are:

(1) We model the combined day-ahead scheduling of the natural gas and power systems with reserves. The

current deterministic models for the integrated natural gas and power system in the literature include only

the wait-and-see model and the expected value model, which are special cases of the stochastic programming

model. There is a theoretically guaranteed relationship among the optimal expected costs of solution to

stochastic model, wait-and-see model and the expected value model. However, our proposed deterministic

model with reserves is a different and more practical model, where reserves are added in the day ahead market,

and there is no guarantee that the stochastic programming model dominates it. Thus, it is important to

compare the results of the deterministic model with reserves and the stochastic programming model. In

numerical case studies, the stochastic program results in less cost and risk when the wind uncertainty is

high.

(2) We compare the performance of a stochastic program and a deterministic optimization with reserve

constraints (called a DR model) when confronted with different levels of wind energy uncertainty on different

days. Current research only tests one or two cases of uncertainty using sensitivity analysis, which does not

guarantee the generality of the conclusions.

(3) We experiment with different numbers of segments when linearizing the nonlinear Weymouth equation,

to identify a number of segments that best balances computational efficiency with accuracy. Because the

past publications each use a single number of piecewise segments, which varies among them, it is hard to

compare their results. The number of segments we identify can serve as a standard for future studies.

The remainder of this paper has the following structure. The two models are presented along with a

perfect information (wait and see) model to evaluate their effectiveness in Section 3. Section 4 describes the

scenario generation process and numerical simulations to compare the operational cost and risk of the SP

and DR models. Finally, the conclusions are summarized in Section 5.
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3 Model

Although gas and electricity can flow in either direction through a pipeline or transmission line, respectively,

we model those components as directed arcs either from or to a node, where negative values for corresponding

flow variables indicate flows in the reverse direction. Define the notation as follows:

Sets and indices

J Gas nodes, indexed by j

J ′(j) Gas nodes connected to j by passive pipelines from j, indexed by j′

J ′′(j) Gas nodes connected to j by passive pipelines to j, indexed by j′′

C′(j) Gas nodes connected by active pipelines from j, indexed by c′

C′′(j) Gas nodes connected by active pipelines to j, indexed by c′′

Λ(j) Gas wells in node j, indexed by λ; Λ =
⋃
j∈J Λ(j) is the set of all gas wells

Ψ(j) Storage facilities in node j, indexed by ψ; Ψ =
⋃
j∈J Ψ(j) is the set of all storage facilities.

I Electricity nodes, indexed by i and i′

I ′(i) Electricity nodes connected to i by a transmission line from i, indexed by i′

I ′′(i) Electricity nodes connected to i by a transmission line to i, indexed by i′′

G(i, j) Gas-fired generators at power node i and gas node j, indexed by g;

G =
⋃
i∈I,j∈J G(i, j) is the set of all gas-fired generators.

N (i) Non-gas-fired conventional generators at node i, indexed by n;

N =
⋃
i∈I N (i) is the set of all non-gas-fired generators.

W(i) Wind turbines at node i, indexed by w; W =
⋃
i∈IW(i) is the set of all wind turbines

M Set of all gas-fired and non-gas-fired generators, indexed by m; M = G ∪ N

T Hours from 1 to |T |, indexed by t

S Wind energy scenarios, indexed by s

K Piecewise segments of gas flow quantities, indexed by k

Binary Decision Variables

ug,t, un,t, um,t Unit commitment indicator: equals 1 if unit is online in hour t and 0 otherwise

ykj,j′,t Linearization segment indicator
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Nonnegative Continuous Decision Variables

vug,t, v
u
n,t, v

u
m,t Unit start-up indicator: equals 1 if the unit is started up in hour t and 0 otherwise

vdg,t, v
d
n,t, v

d
m,t Unit shut-down indicator: equals 1 if the unit is shut down in hour t and 0 otherwise

pngλ Daily natural gas production level [kcf/day]

πj,t Gas pressure squared [Psig2]

δkj,j′,t Linear approximating coefficients for passive pipelines

α−j,t,s,α
+
j,t,s Unserved/excess gas in gas node j [kcf]

lψ,t,s Storage level [kcf]

qoutψ,t,s, q
in
ψ,t,s Out/in-flow of storage facility [kcf/h]

pg,t,s, pn,t,s, pm,t,s Electricity production [MWh]

µg,t,s Gas demand for electricity generation [kcf/h]

pwindw,t,s Wind energy output [MWh]

rg,t, rn,t, rm,t Operating reserves [MWh]

β−i,t,s,β
+
i,t,s Unserved/excess electricity [MWh]

γ−t,s,γ
+
t,s Non-supplied/excess reserves [MWh]

Unrestricted Continuous Decision Variables

ηj,j′,t Gas flow from j to j′ [kcf]

∆πj,j′,t Gas squared pressure difference between j and j′ [Psig2]

θi,t,s Phase angle [rad]

fi,i′,t,s Line flow from i to i′ [MWh]
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Fixed Parameters

Dng
j,t Non-electric gas demand [kcf/h]

P
ng

λ , Pngλ Max/Min daily gas production [kcf/day]

Cngλ , Cstorψ Gas production/storage cost [$/kcf]

Cj,j′ Passive pipeline constant [kcf/Psig]

τj,c′ Max squared pressure increase ratio of active pipelines

πj , πj Max/Min squared pressure [Psig2]

∆πkj,j′ Squared pressure gap of the segment

Lψ, Lψ Max/Min storage level [kcf]

Qψ Max net flow (outflow minus inflow) [kcf]

ηkj,j′ Gas flow of the kth piecewise segment on pipeline from j to j′

Γ−α ,Γ
+
α Unserved/excess gas penalty [$/kcf]

φg Efficiency of gas generator [kcf/MWh]

Csdg , C
su
g , Csdn , C

su
n , Csdm , C

su
m Shut-down/start-up cost [$]

Cprodn Power production cost [$/MWh]

Γ−β ,Γ
+
β Unserved/excess electricity penalty [$/MWh]

Γ−γ ,Γ
+
γ Non-supplied/excess reserves penalty [$/MWh]

P g, P g, Pn, Pn, Pm, Pm Max/min electricity generation [MWh]

Rupg , R
up
n , R

up
m , R

down
g , Rdownn , Rdownm Max ramp up/down rate [MW]

Xi,i′ Transmission line impedance [pu]

T ong , T onn , T onm , T offg , T offn , T offm Min on/off time [h]

De
i,t Electricity demand forecast [MWh]

F i,i′ Max line flow [MWh]

P̂windw,t Available wind energy forecast [MWh]

WR Reserve margin for wind energy [%]

Uncertain Parameters

P
wind

w,t,s Available wind energy in scenario s [MWh]

ξs Scenario probability
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3.1 Stochastic Programming (SP) Model

We propose a two-stage stochastic mixed-integer linear programming (SP) model of scheduling the com-

bined energy system to satisfy demands for electricity and gas under uncertain wind energy supply. The

two stage model not only deals with the uncertainties in the short-term scheduling problem, but also re-

flects the difference in time scales for operating inflexible thermal units and adjusting to varying amounts

of load and wind energy. As in many two-stage stochastic unit commitment models, we consider deci-

sions on an hourly basis. To avoid the end of day distortions in the decisions, we minimize the expected

cost over a 36-hour study horizon to be implemented over a 24-hour operating day. In the first stage,

one day ahead of the operating day, we make decisions on the hourly binary unit commitment decisions,

start-up and shut-down status of each thermal generator and the total gas supply quantity from wells,

along with pressures at each gas node, gas flows in each pipeline and the gas compressor working sched-

ule x ≡ (um,t, v
u
m,t, v

d
m,t, p

ng
λ , πj,t,∆π

k
j,j′ , ηj,j′,t, y

k
j,j′,t, δ

k
j,j′,t). These decisions are made in advance because of

minimum up- and down-times, ramping constraints, and the time required for gas to travel through pipelines.

Then, for each scenario time series of wind energy availability, the hourly dispatch solution of the power sys-

tem, including energy production and transmission quantities, as well as storage levels and flows in and out of

gas storage facilities, zs ≡ (pwindw,t,s , pm,t,s, lψ,t,s, µg,t,s, q
in
ψ,t,s, q

out
ψ,t,s, θi,t,s, fi,i′,t,s, α

−
j,t,s, α

+
j,t,s, β

−
j,t,s, β

+
j,t,s, γ

−
j,t,s, γ

+
j,t,s),

are determined. Thus, the second stage represents the ISO’s real time dispatch decisions and natural gas

system’s real time working pattern of the storage facilities. To focus on the uncertainty from wind energy,

equipment outages are not considered. Wind generators are modeled as dispatchable to reflect day-ahead

market practices such as those in the Midcontinent Independent System Operator (MISO) in the US, where

they participate as Dispatchable Intermittent Resources [26]. The model is:

ζSP = min
∑
t∈T

{ ∑
n∈N

(
Csun vun,t + Csdn v

d
n,t

)
+
∑
g∈G

(
Csug vug,t + Csdg v

d
g,t

)
+
∑
λ∈Λ

Cngλ pngλ

+
∑
s∈S

ξs
[ ∑
n∈N

Cprodn pn,t,s +
∑
i∈I

(
Γ+
β β

+
i,t,s + Γ−β β

−
i,t,s

)
+
∑
j∈J

(
Γ+
αα

+
j,t,s + Γ−αα

−
j,t,s

)
+
∑
ψ∈Ψ

Cstorψ qoutψ,t,s

]} (1)

s.t.
∑
j∈J

∑
g∈G(i,j)

pg,t,s+
∑

n∈N (i)

pn,t,s+
∑

w∈W(i)

pwindw,t,s+
∑

i′′∈I′′(i)

fi′′,i,t,s+β
−
i,t,s = De

i,t+
∑

i′∈I′(i)

fi,i′,t,s+β
+
i,t,s, ∀i, t, s

(2)

um,t − um,t−1 = vum,t − vdm,t−1, ∀m ∈M, t (3)

um,t ≥ vum,t, ∀m ∈M, t (4)

um,t ≤ 1− vdm,t, ∀m ∈M, t (5)
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vum,t + vdm,t ≤ 1, ∀m ∈M, t (6)

t∑
tt=t−T on

m +1

vum,tt ≤ um,t, ∀m ∈M, i, t (7)

t∑
tt=t−T off

m +1

vdm,tt ≤ 1− um,t, ∀m ∈M, i, t (8)

pm,t,s ≥ Pm
(
um,t − vum,t

)
, ∀m ∈M, t, s (9)

pm,t,s ≤ Pm
(
um,t − vum,t

)
+ Pm

(
vdm,t + vum,t

)
, ∀m ∈M, t, s (10)

pwindw,t,s ≤ P
wind

w,t,s , ∀w ∈ Wi, i, t, s (11)

−Rdownm ≤ pm,t,s − pm,t−1,s ≤ Rupm , ∀m ∈M, t, s (12)

− F i,i′ ≤ fi,i′,t,s ≤ F i,i′ , ∀i′ ∈ I ′(i), i, t, s (13)

fi,i′,t,s =
θi,t,s − θi′,t,s

Xi,i′
, ∀i′ ∈ I ′(i), i, t, s (14)

µg,t,s = φgpg,t,s, ∀g ∈ G, t, s (15)

α−j,t,s +
∑

λ∈Λ(j)

pngλ
|T |

+
∑

ψ∈Ψ(j)

(
qoutψ,t,s − qinψ,t,s

)
+

∑
j′′∈J ′′(j)

ηj′′,j,t +
∑

c′′∈C′′(j)

ηc′′,j,t

= Dng
j,t +

∑
j′∈J ′(j)

ηj,j′,t +
∑

c′∈C′(j)

ηj,c′,t +
∑
i∈I

∑
g∈G(i,j)

µg,t,s + α+
j,t,s,∀j, t, s (16)

Lψ ≤ lψ,t,s ≤ Lψ, ∀ψ, t, s (17)

−Qψ ≤
(
qoutψ,t,s − qinψ,t,s

)
≤ Qψ, ∀ψ, t, s (18)

lψ,t,s = lψ,t−1,s − qoutψ,t,s + qinψ,t,s, ∀ψ, t, s (19)

lψ,t−1,s − Lψ ≤ qoutψ,t,s − qinψ,t,s ≤ lψ,t−1,s − Lψ, ∀ψ, t, s (20)

πj ≤ πj,t ≤ πj , ∀j, t (21)

πj,t
τj,c′

≤ πc′,t ≤ πj,tτj,c′ , ∀c′ ∈ C′(j), t (22)

ηj,j′,t = sgn (πj,t − πj′,t)Cj,j′
√
|πj,t − πj′,t|, ∀j′ ∈ J ′(j), t (23)

The objective (1) is to minimize the total expected cost which consists of the first stage cost, including
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the thermal generator start-up and shut-down costs and gas supply cost (first line), and the second stage cost

(second line), including the expected electricity production costs of non-gas-fired conventional generators,

penalties on unserved/excess electricity, penalties on unserved/excess gas and the net cost of gas flows

from storage. Here we count the power production costs for non-gas-fired generators as the product of the

production cost per unit electricity and the electricity production. The production costs of the gas-fired

generators are the fuel costs coming from the gas production or storage facilities. Constraints (2) represent

the energy balance at each electricity node in each hour. The UC constraints (3)–(6) describe the connection

between start-up/shut-down and unit on/off status variables. Constraints (7)–(8) enforce generator minimum

on/off times. Constraints (9)–(10) describe upper and lower limits for the generator production levels and

constraints (11) impose upper bounds on the wind energy output according to the available wind energy for

each hour. Constraints (12) specify generator ramping limits. Constraints (13)–(14) represent the lossless,

linearized DC formulation of power flows, limited by the transmission line capacities.

The gas and power system are connected through the amount of gas consumed by gas-fired generators

(15).

The gas flow constraints (16) describe the flow conservation for each scenario in each hour at each

node. Constraints (17)–(18) enforce upper and lower bounds on the storage levels and flow rates into and

out of each gas storage facility. Constraints (19) connect storage levels of consecutive hours with the flow

rates. Constraints (20) impose limits on the flow rates to maintain storage levels within prescribed bounds.

Because the gas flow through a pipeline, as described by the Weymouth equation, depends on the difference

of squared pressure levels between its two end nodes, the gas flow model is formulated in terms of these

squared pressures, πj,t, which are bounded by constraints (21). According to a simplified compressor model,

the squared pressure increase ratio in each active pipeline is bounded as in (22) [27]. It limits the gas

pressure increase ratio through compressors. The WEs (23) are applied to characterize the gas flows in

passive pipelines.

According to the WEs, the gas flow in a passive pipeline is a continuous, nonlinear and non-convex

function of the squared pressures at the two end nodes of the pipeline. An incremental method is applied

to approximate the nonlinear constraints as piecewise linear with additional binary variables because it is

the fastest and most accurate linearization method for the nonlinear Weymouth equation [21]. We divide

the squared pressure range into segments and introduce a continuous variable δk and a binary variable yk

for each segment, k, where δk represents the portion of segment k that is used and the values of yk ensure

that if any part of a segment is used then all lower-valued segments must be completely used [28]. Upon

dividing its domain into intervals with breakpoints xk, k ∈ K, a one-dimensional nonlinear function h(x) can
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be approximated as (24)–(28).

h (x) ≈ h
(
x1
)

+
∑
k∈K

[
h
(
xk+1

)
− h

(
xk
)]
δk (24)

x = x1 +
∑
k∈K

(
xk+1 − xk

)
δk (25)

δk+1 ≤ yk ≤ δk, ∀k ∈ K − 1 (26)

0 ≤ δk ≤ 1, ∀k ∈ K (27)

yk ∈ {0, 1}, ∀k ∈ K (28)

Accordingly, we linearize constraints (23) as (29)–(35), where the quantities ∆πkj,j′,t are fixed constants.

∆πj,j′,t = πj,t − πj′,t, ∀j′ ∈ J ′(j), j, t (29)

∆πj,j′,t = ∆π1
j,j′,t +

∑
k∈K

(
∆πk+1

j,j′,t −∆πkj,j′,t

)
δkj,j′,t (30)

ηj,j′,t = η1
j,j′,t +

∑
k∈K

(
ηk+1
j,j′,t − η

k
j,j′,t

)
δkj,j′,t (31)

ηkj,j′,t = sgn
(
∆πkj,j′,t

)
Cj,j′

√
|∆πkj,j′,t| (32)

δk+1
j,j′ ≤ y

k
j,j′ ≤ δkj,j′ , ∀k ∈ K − 1 (33)

0 ≤ δkj,j′ ≤ 1, ∀k ∈ K (34)

ykj,j′ ∈ {0, 1}, ∀k ∈ K (35)

Overall, the SP model includes equations (1)–(22) and (29)–(35).

3.2 Deterministic Model with Reserves (DR)

The deterministic model with reserves has been implemented in the power system industry, but nobody im-

plemented it for the integrated operation of the power and natural gas system operation. Here we incorporate

a simple deterministic model with reserves as the comparable baseline for the SP model. The DR model

includes constraints (2)–(9), (11), (13)–(22), and (29)–(35) with S = {f}, ξf = 1 and P
wind

w,t,f = P̂windw,t ,∀w, t.

As in the traditional practice, day-ahead uncertainty in the wind energy is managed by including reserves.

The objective function (36) includes an additional term for non-supplied/excess reserves, and the reserve
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limits are imposed by replacing the dispatch constraints (10) and (12) with (37)–(40). Here we model only

operating reserves, which are proportional to the hourly total wind energy forecast as described in (38), to

protect against wind energy forecast errors. This is consistent with the SP model including scenarios for

uncertain wind energy only. Both the SP and the DR models could be extended to include additional types

of reserves including regulating, load-following, contingency, spinning and non-spinning reserves.

min
∑
t∈T

{ ∑
n∈N

(
Csun vun,t + Csdn v

d
n,t

)
+
∑
g∈G

(
Csug vug,t + Csdg v

d
g,t

)
+
∑
λ∈Λ

Cngλ pngλ +
∑
n∈N

Cprodn pn,t,f

+
∑
i∈I

(
Γ+
β β

+
i,t,f + Γ−β β

−
i,t,f

)
+
∑
j∈J

(
Γ+
αα

+
j,t,f + Γ−αα

−
j,t,f

)
+
∑
ψ∈Ψ

Cstorψ qoutψ,t,f + Γ+
γ γ

+
t,f + Γ−γ γ

−
t,f

} (36)

0 ≤ pm,t,f + rm,t,f ≤ Pm
(
um,t − vum,t

)
+ Pm

(
vdm,t + vum,t

)
, ∀m ∈M, t (37)

∑
m∈M

rm,t,f + γ−t,f − γ
+
t,f = WR

∑
w∈W

P̂windw,t , ∀t (38)

−Rdownm ≤ pm,t,f − pm,t−1,f , ∀m ∈M, t (39)

pm,t,f + rm,t,f − pm,t−1,f ≤ Rupm , ∀m ∈M, t (40)

To test the performance of the day-ahead decisions made according to the DR model, we simulate real-time

dispatch by fixing the day-ahead decisions and resolving the DR model for each wind energy scenario s in the

original set S while replacing f by s in equations (36)–(40) and setting rm,t,s = γ+
t,s = γ−t,s = 0,∀m ∈M, t, s.

Denoting the optimal cost of the solution under scenario s by ζDRs , the expected cost of the DR day-ahead

decisions is given by ζDR =
∑
s∈S ξsζ

DR
s . Fig. 1 depicts the process for comparing the SP model with the

DR model.

3.3 Lower Bound for Model Evaluation

A lower bound on the optimal cost from both models can be found by supposing it were possible to make

day-ahead decisions with perfect knowledge of the wind energy. We refer to this as the wait and see (WS)

model (41) . In the WS model, the decision maker makes no decisions until all random parameters P
wind

w,t,s

are realized. The optimal values of all decision variables and the objective are scenario-dependent. Denoting

the optimal objective value for scenario s as ζWS
s , the optimal objective value of the WS model is Σξsζ

WS
s ≤
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Figure 1: Flowchart of procedure for comparing the stochastic programming model and the deterministic
model with reserves.

ζSP ≤ ζDR.

ζWS
s = min

{∑
t∈T

[ ∑
n∈N

(
Csun vun,t + Csdn v

d
n,t

)
+
∑
g∈G

(
Csug vug,t + Csdg v

d
g,t

)
+
∑
λ∈Λ

Cngλ pngλ

+
∑
n∈N

Cprodn pn,t,s +
∑
i∈I

(
Γ+
β β

+
i,t,s + Γ−β β

−
i,t,s

)
+
∑
j∈J

(
Γ+
αα

+
j,t,s + Γ−αα

−
j,t,s

)
+
∑
γ∈Ψ

Cstorψ qoutψ,t,s

]
: (2)− (8),

(9)− (22), (29)− (35) enforced for this s only

}
(41)

4 Numerical Studies

We apply our models in two case studies consisting of a six-bus power system with a seven-node gas system [5]

and the IEEE 24-bus system with a 20-node gas system. The purpose of the first case study is to compare the

total cost distributions of the WS, SP and DR models. The second case study is used to find the scheduling

differences of the SP and DR models and compare the resulting risks and costs. We use a common set of wind

energy scenarios, scaled to the wind capacity, in both cases. Because the wind energy scenarios depend on

the uncertainty in the wind forecast and this uncertainty varies from day to day, we assess the performance

in multiple days in each case study. We assume that 1 kcf of natural gas can generate 1 MBtu of energy in

both cases. The mixed-integer programs are solved in their extensive form with GAMS/CPLEX 23.4.3 on a

Linux workstation (40 CPU, 252GB RAM).
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4.1 Scenario Generation

Various methods have been proposed for generating wind power scenarios. As this task is not the focus of

this paper, we employ wind power scenarios generated for stochastic UC according to the approach described

by [29, 30] and assessed by [31]. The important features of this approach are that it identifies a segment of

similar historical days based on the characteristics of the day-ahead wind power forecast trajectory and then

approximates the stochastic process for actual wind energy within that segment by conditional expectations

within ranges of the forecast error distributions for different hours. As a result, a specified number of

unequally likely scenario trajectories are generated with different amounts of dispersion on different days.

This method can be extended to generate wind energy scenarios with whatever level of temporal detail is

available in the forecast and actual wind data. For more details of the scenario generation process, please see

[30]. Wind forecast data were obtained from the Bonneville Power Administration [32, 33]. The observed

data and the wind generation capacity are available from [33] and [34], respectively. Data were collected for

a recent year but, due to missing information for some days, scenarios were generated for only 340 days. A

set of 27 scenarios was used for each day with probabilities ranging from 0.0001 to 0.5845. They were scaled

according to specified wind capacity penetrations in each case study. To avoid end-of-study effects, the

scheduling problems were solved over a 36-hour horizon. Deterministic loads for the first twelve hours were

repeated to represent hours 25-36, while each wind power scenario was concatenated with the corresponding

one for the following day.

4.2 Six-Bus system

The six-bus power system with seven-node gas system has two NGPGs, one coal fueled generator, one wind

generator (farm), three power loads, seven transmission lines, one storage facility, one active pipeline, five

passive pipelines, two non-electric gas loads and two gas suppliers [5], as shown in Fig. 1. Hourly gross

non-electric gas demand is 6000 kcf/h, divided between gas nodes 2 and 4 with the ratio of 2 to 1. The

electric load is divided among power nodes 1, 2 and 3 with the ratio of 1:2:2. We set the hourly reserve

margin for wind power WR to be 5% [35]. The wind generation capacity is 20% of the total thermal capacity.

The start-up and shut-down cost of all the generators are zero for this case study. All the data are available

at [39].

Let xMM
d,s and zMM

d,s denote the optimal values of the first-stage variables and second-stage variables

in scenario s from model MM for day d, respectively MM ∈ {DR,SP,WS}. The first-stage variables

xMM
d,s ,MM ∈ {SP,DR} are the same for all scenarios s; i.e., nonanticipative. Although the optimization

process minimizes the total cost over 36 hours, only the optimal decisions of the 24 hours would be imple-
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Figure 2: Six-bus power system with seven-node gas system. The natural gas system with gas loads (GL)
shown on the left-hand side and the power system with power loads (PL), generators (G) and wind generators
(W) is shown on the right-hand side. Dashed lines show connections between the two systems.

mented. Let f(x, z) denote the 24-hour cost. Expressions (42)–(43) define the daily expected cost and the

cost standard deviation which are used to evaluate the expected total cost and the proxy measure of risk

since it is mostly driven by the unserved energy penalties for model MM . The mean expected cost and

mean cost standard deviation for |D|=340 days are found by using equations (44)–(46).

EMM
d =

∑
s∈S

ξsf(xMM
d,s , zMM

d,s ) (42)

σMM
d =

√√√√∑
s∈S

ξs

[
f(xMM

d,s , zMM
d,s )− EMM

d

]2

(43)

EWS =
1

| D |

|D|∑
d=1

EWS
d , σWS =

1

| D |

|D|∑
d=1

σWS
d (44)

ESP =
1

| D |

|D|∑
d=1

EWS
d , σSP =

1

| D |

|D|∑
d=1

σSPd (45)

EDR =
1

| D |

|D|∑
d=1

EWS
d , σDR =

1

| D |

|D|∑
d=1

σDRd (46)

Based on experimentation described in Section 4.3, we approximate the nonlinear functions with 20

piecewise linear segments. A similar approximation accuracy experiment is conducted in [36] based on

Taylor series expansion to linearize the nonlinear constraints. Table 1 illustrates that the SP model has

mean expected cost and standard deviation nearly as low as the WS model. The DR model results in 36%
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higher mean expected cost and 32% higher mean standard deviation than the SP model. Fig. 3 shows the

relative frequency distributions for expected cost and cost standard deviation for the first 24 hours. Because

the high cost values are driven by the penalties for unserved energy, we can conclude that the SP model

makes more reliable decisions given different wind uncertainty.

Table 1: Mean expected cost and standard deviation comparison over 36 hours as well as the first 24 hours.

Mean expected cost, EMM ($) Mean standard deviation, σWS ($)

MM 36 hours 24 hours 36 hours 24 hours

WS 670,351 456,755 3,819 2,737
SP 674,114 459,331 3,847 2,883
DR 886,309 623,264 5,168 3,514
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Figure 3: (a) Distribution of first 24 hour expected cost Ed ($105); (b) Distribution of first 24 hour cost
standard deviation σd ($103).

4.3 24-Bus System

A modified IEEE 24-bus system and modified Belgian 20-node natural gas system are used according to [27]

as shown in Fig. 4 with the ramp up and down rates and production cost revised in accordance with [37].

The system has 3 NGPGs, 4 coal-fired units, 3 hydro units, 2 wind generators, 38 transmission lines, 9 power

loads, 2 gas suppliers (wells), 4 storage facilities, 21 passive pipelines, 3 active pipelines and 17 non-electric

gas demands. The unserved energy and non-supplied reserves penalty cost are set to be $3500/MWh and

$1100/MWh, respectively, as recommended by MISO [26]. The excess energy and reserve penalties are set
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to be $350/MWh and $110/MWh, respectively, while the unserved gas and excess gas penalties are set to

be $3500/kcf and $350/kcf, respectively. Fig. 5 shows the electric load and gas load of 36 hours in which

the electric peak load occurs at hour 18 and gas peak load occurs at hour 9. The total thermal generating

capacity is 3453 MW, which is the sum of the capacities of all the thermal generators in the IEEE 24-bus

system. Two wind generators with identical capacity are added at nodes 7 and 15. Energy production

by these wind generators is uncertain in advance. All the data are available at [39]. To compare the SP

model and the DR model representing different levels of wind energy penetration and resulting uncertainty,

we define the wind energy capacity penetration factor (WPF) to be the ratio of the total wind generation

capacity to the total thermal generation capacity; i.e., WPF =
∑

w∈W P
wind
w∑

m∈M Pm
. For example, given WPF=30%,

the total wind energy capacity is 0.3 × 3453MW = 1035.9MW. This implies that each of the two wind

generators has a capacity of 517.95 MW. As the WPF increases, the amount of uncertainty increases also;

i.e., the variation of wind energy uncertainty given WPF=30% is six times that given WPF=5%.

Figure 4: Modified IEEE 24-bus system and modified Belgian 20-node natural gas system [27]

We identify specific days to examine the results according to the dispersion of the scenarios. Because

unserved energy is penalized at a higher rate than excess energy, we measure the dispersion according to the

amount of positive deviation, or discrepancy, of a scenario from the forecast. Define εs to be the discrepancy

between the wind energy forecast and scenario s.

εs =

36∑
t=1

∑
w∈W

max
{
P̂windw,t − P

wind

w,t,s , 0
}

(47)

Fig. 6 shows the discrepancy histograms of four days, selected based on diversity in the expected value and

variance of the discrepancy. Fig. 7 shows the wind scenarios and forecast distribution of these four days.

Day (a): Low expected discrepancy and low variance.

Day (b): Low expected discrepancy and medium variance.
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Figure 5: Power and gas load profiles.

Figure 6: Discrepancy histogram of four days.

Day (c): Medium expected discrepancy and medium variance.

Day (d): Large expected discrepancy and large variance.

Before we compare the simulation results of the SP and DR models, we conduct an experiment to study

the effect of the number of linearization segments |K| for both models for day (d) to choose an efficient

approximation while maintaining a relatively accurate cost. Each segment has equal length. The minimum

and maximum breakpoints of a passive pipeline from j to j′ are πj − πj′ and πj − πj′ , respectively. As

illustrated in Tables 2 and 3, as |K| increases from 2 to 80, the optimal costs of SP and DR model first

change rapidly and become stable when |K|≥ 40, while the computational time generally increases with

|K|. In addition, it takes more than 24 hours to find the optimal solution when |K|= 80. Because the

daily short-term operation of natural gas and power system requires solutions to be found quickly, we choose
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Figure 7: Hourly wind availability of scenarios and forecast for four selected days, scaled as a fraction of
capacity.

Table 2: SP model segment experiment result for day (d)
WPF=5% WPF=15% WPF=30%

|K| 2 5 10 20 40 80 2 5 10 20 40 80 2 5 10 20 40 80

Expected
Cost (103$)

1,822 1,782 1,782 1,782 1,782 1,782 1,741 1,701 1,701 1,701 1,701 1,701 1,649 1,609 1,609 1,609 1,609 1,609

Time (103s) 10.3 0.7 5.5 42.6 18.6 143.6 7.5 1.5 0.5 0.5 0.8 94.3 6.5 1.6 55.3 44.7 59.7 77.8

|K|= 40 for the following case study.

To compare the costs and risks from the SP and DR models, we plot the UC and expected production

cost versus expected shortage across all 27 scenarios for the first 24 hours with WPF of 5%, 15% and 30%

and WR of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% in Fig. 8. The rows and columns

contain plots for different cases and WPF levels, respectively. The SP model has no unserved energy in

any of the 12 subplots. As the WPF increases from 5% to 30%, the 24-hour UC and expected production

cost decreases for all four of the days and both models. The DR model has zero unserved energy and lower

24-hour UC and expected cost than the SP model given WPF equals to 5%. Here we minimize the expected

cost including not only UC and expected production cost but also unserved and excess penalties for 36 hours.

It is not guaranteed that the first 24-hour UC and expected cost of the SP model is less than that of the

DR model. For each of the four cases, the SP model has less expected shortage than the DR model when

the WPF equals 15% or 30%, indicating that the SP model lowers the risk of operating the system while

maintaining a low UC and expected production cost.

Day (b) has the largest difference between the SP and DR models, as illustrated in Fig. 6(b). As the

WPF increases to 30%, the expected energy shortage of the DR model increases dramatically while that of

the SP model remains at zero. In addition, as the WR increases from 10% to 100%, the expected shortage of
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Table 3: DR model segment experiment result for day (d)
WPF=5% WPF=15% WPF=30%

|K| 2 5 10 20 40 80 2 5 10 20 40 80 2 5 10 20 40 80

WR

Expected
Cost

(103$)

0.1 1822 1782 1782 1790 1782 1782 1742 1728 1720 1720 1728 1728 1656 1622 1622 1622 1622 1622
0.2 1822 1790 1790 1782 1790 1782 1765 1728 1741 1720 1741 1741 1658 1624 1624 1624 1624 1624
0.3 1822 1782 1782 1782 1790 1782 1765 1728 1728 1741 1720 1728 1665 1630 1631 1630 1631 1630
0.4 1822 1782 1782 1790 1782 1790 1765 1728 1720 1741 1728 1728 1668 1634 1634 1634 1634 1634
0.5 1822 1782 1790 1790 1782 1782 1747 1708 1708 1708 1708 1708 1677 1628 1628 1628 1628 1628
0.6 1831 1786 1786 1786 1786 1794 1747 1708 1708 1708 1708 1708 1670 1630 1630 1631 1630 1632
0.7 1831 1782 1787 1782 1787 1787 1749 1708 1708 1708 1708 1708 1672 1632 1632 1632 1632 1632
0.8 1831 1787 1787 1782 1782 1782 1749 1710 1710 1710 1710 1710 1683 1642 1642 1642 1642 1642
0.9 1822 1787 1782 1782 1782 1782 1750 1711 1711 1711 1711 1711 1691 1644 1644 1644 1644 1644
1 1822 1787 1782 1787 1787 1787 1757 1719 1719 1718 1719 1719 1698 1652 1654 1652 1652 1654

Total Time (103s) 1.21 1.87 2.89 4.95 9.93 27.32 1.32 1.61 2.51 4.95 12.84 22.72 1.32 1.84 2.94 5.54 12.77 231.61

Figure 8: Expected total cost less penalty versus expected shortage of the first 24 hours with WPF of 5%,
15% and 30% and WR ranging from 10% to 100%. The scale of each subplot is adjusted for visibility of the
results and the comparison between the DR model and the SP model within each subplot.

the DR model decreases. When WR is greater than 80%, there is no unserved energy in the DR model, and

the UC and expected production cost of the SP model is less than that of the DR model. Table 4 displays

the hourly UC schedule for day (b) with WPF of 30%, selected based on the greatest difference between the

results of the two models, and WR of 40%. Among the seven thermal units, units 1, 4 and 5 are NGPGs,

while units 2, 3, 6 and 7 are coal fueled. Units 8, 9 and 10 are hydro generators which are assumed free and

always on. Here the NGPGs are cheaper than the coal fueled generators and the SP model always commits

one unit more than the DR model does in hour 7–21. Production levels of well 1 of the SP and DR models are

identical and equal to 861,983 kcf/day, while those of well 2 are 0 kcf/day for both models. The corresponding

24 hour UC and expected production costs are $1,032,629 and $1,025,947, respectively, for the SP and DR

models, while the respective expected shortage amounts are 0 and 28 MWh. The SP model commits more

units in each hour to increase the committed capacity and assure that sufficient electricity can be produced

in case less wind energy is available than forecast. The SP model is able to firm the variable wind energy
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Table 4: Optimal unit commitment decisions for day (b) with WPF = 30% and WR = 40%.

Unit Fuel Type SP model hours (1-24)

1 Gas 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 Gas 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 Gas 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
2 Coal 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
3 Coal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Coal 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Unit Fuel Type DR model hours (1-24)

1 Gas 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 Gas 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
5 Gas 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
2 Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Coal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Coal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

by committing more units and supplying more gas since DR model makes the day-ahead decisions only on

the basis of the wind energy forecast and reserve margins.

Table 5: Comparison of shortages in the first 24 hours for different scenarios day (b) with 30% wind capacity
penetration factor (WPF) and 40% wind reserve margin (WR).

Scenario 1 2 3 4 5 6 7 8 9

Probability 0.0010 0.0079 0.0010 0.0079 0.0634 0.0080 0.0010 0.0080 0.0010

SP shortage 20 0 0 0 0 0 0 0 0

DR shortage 344 327 327 0 0 0 0 0 0

Scenario 10 11 12 13 14 15 16 17 18

Probability 0.0079 0.0636 0.0080 0.0636 0.5110 0.0647 0.0080 0.0646 0.0082

SP shortage 0 0 0 0 0 0 0 0 0

DR shortage 293 276 276 0 0 0 0 0 0

Scenario 19 20 21 22 23 24 25 26 27

Probability 0.0010 0.0080 0.0010 0.0080 0.0647 0.0082 0.0010 0.0082 0.0010

SP shortage 0 0 0 0 0 0 0 0 0

DR shortage 155 239 239 0 0 0 0 0 0

C

To explore the reliability comparison further, Table 5 reports shortages in different scenarios from using

the SP and DR models in day (b) with 30% wind capacity penetration and 40% WR, reported for the first 24

hours. Scenario 1 has one of the most different shortage between the SP and DR models, where the shortages

of the two models are 20 MWh and 344 MWh, respectively. Fig. 9 shows the wind energy availability time

series of the scenarios 1, 10 and 19 as well as forecast for day (b), expanded from Fig. 7(b). In hour 20,

the wind energy availability of scenario 1 is only 21% less than forecast, whereas at hour 1, the wind energy

availability of scenario 1 is 80% less than forecast. On average the wind energy availability of scenario 1 is
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55% of the forecast. The DR model resorts to 327 MW of electric load shedding in scenario 1 during hours

11–13 because of the high electric and gas loads and large wind energy discrepancy. A WR of 40% still

results in considerable shortage because all four storage facilities run out of gas as listed in Fig. 10 and line

congestion occurs. Specifically, for example, under scenario 1, power node 17 has the most non-served energy

of 196.60 MWh in hour 12. There are three lines connecting to power node 17. Both line 28 from power node

16 to 17 and line 29 from power node 17 to 18 reach the maximum flow of -500 MWh. Line 31 from power

nodes 17 to 22 has a flow of 196.60 MWh. In other words, among all the three lines connecting to power

node 17, the optimal solution has only one power flow into power node 17 through line 29 and both the

other two lines have power flows out of power node 17. Power flow constraints through line 29 are binding

and congestion occurs. As the WR increases to 50%, the 24 hour expected unserved energy is reduced to 6

MWh and the UC and expected production cost increases to $1.035× 106, whereas the cost of the SP model

is $1.026 × 106. In general, the SP model is able to make day-ahead and real time decisions with a better

cost-risk trade-off for the integrated natural gas and power system while accounting for network constraints,

including crucial limitations on gas storage capacity, as well as the uncertain discrepancy between actual

and forecast wind energy.
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Figure 9: Hourly wind availability, scaled to capacity, of scenarios and forecast for day (b).

5 Conclusions

We compare a two-stage stochastic program (SP) and a deterministic model with forecast-based wind reserves

(DR) to model the short-term combined scheduling of the natural gas and power systems while minimizing

the total operational cost with uncertain wind energy. Simulation results are compared with multiple wind
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Figure 10: Hourly storage level of four storage facilities with 30% wind capacity penetration factor and 40%
wind reserve margin for day (b) for scenario 1.

uncertainty scenarios in two case studies. In the smaller case study of a six-bus power system and seven-node

natural gas system, we simulate a year’s worth of days to capture the variability of the daily wind energy

forecast and the resulting wind energy scenarios. The simulation results indicate that the SP model yields

a much lower standard deviation and mean cost, suggesting that probabilistic-scenario-based scheduling of

the combined system is better able to maintain a stable cost.

The two models are further compared using a 24-bus power system and 20-node natural gas system in

four days that differ according to discrepancy between the wind energy scenarios and forecast, three WPF

of 5%, 15% and 30%, and various wind reserve margins (WR). With WPF=5%, the DR model maintains no

expected unserved energy and has less expected cost than the SP model. When the WPF equals 15% or 30%,

the combination of expected cost and expected unserved energy resulting from the SP model consistently

dominates that from the DR model. By adjusting the thermal unit commitments along with the gas supply

and pipeline working schedule on the day ahead to the level of uncertainty present in the scenarios, the SP

model avoids shortages (high risks) while achieving low costs given relatively high wind penetration level.

Linearization experiments were done for both the small and large case studies to choose a number of

segments that balances accuracy and computational efficiency. The details of the large system segment

experiment indicates that the SP model is more robust to the number of segments. In this paper we modeled

the unit commitment and economic dispatch process of the power system in two stages. Alternatively, more

stages may be included with, for example, a third stage that explicitly addresses the intra-hourly dispatch

process. Security constraints could be added to protect against equipment failure. Finally, more efficient
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stochastic programming solution algorithms such as progressive hedging could be applied to improve time

and memory efficiency.

In future work, investigation of a good method to choose breakpoints in the piecewise linear formulation

can improve approximation accuracy. To improve computational efficiency, use of the three-binary model

[38] for unit commitment should be investigated also.
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