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Electronic properties of MoS2/MoOx 
interfaces: Implications in Tunnel 
Field Effect Transistors and Hole 
Contacts
Santosh K. C.1,2, Roberto C. Longo1, Rafik Addou1, Robert M. Wallace1,3 & Kyeongjae Cho1,3

In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), 
finding a low resistance metal contact is critical in order to achieve the desired performance. However, 
due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we 
investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS2/MoO3) 
using density functional theory (DFT). Our results demonstrate that, due to the large work function 
of MoO3 and the relative band alignment with MoS2, together with small energy gap, the MoS2/MoO3 
interface is a good candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface 
is not stoichiometric because of the presence of oxygen vacancies in MoO3, the heterostructure is 
more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally 
demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by 
an oxygen vacancy in the MoO3 aligns with the valance band of MoS2, showing an insignificant impact 
on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating 
appropriate contacts at the MoS2 and MoOx (x < 3) interface, which consistently explains the available 
experimental observations.

The aggressive miniaturization of silicon-based electronics, reaching a fundamental limit of scaling, has moti-
vated the electronic device community to explore for alternative channel materials and device architectures for 
the future transistor technology1,2. Within this context, atomically thin two dimensional (2D) graphene and hex-
agonal boron nitride (h-BN) have emerged as potential candidates for device application because of the advances 
in exfoliation methods and synthetic techniques3–6. However, due to the lack of a sizeable band gap in graphene 
and the large band gap (>​5 eV) of h-BN, these 2D materials have limitations in their use as channel materials 
in low power transistor applications. In the search for other thin 2D semiconductors with optimum electronic 
properties, 2D transition metal dichalcogenides (TMDs) have recently attracted a significant interest, as these 
materials possess sizeable band gaps (1–2 eV), ideally no dangling bonds and correspondingly low trap densities 
at semiconductor-dielectric interface allowing efficient electrostatics, as well as the reduction of short channel 
effects7,8. Moreover, TMDs provide a wide range of materials choices, and have tunable electronic and optical 
properties through thickness control, mixed alloys9,10, combination of TMD heterostructures, phase and strain 
engineering or with the application of an external electric or magnetic field11–13. Additionally, the electronic and 
optical properties can be modulated through the dielectric environment14–16. Single layer TMDs have a direct 
type band gap in the visible portion of the electromagnetic spectrum. As a result, TMDs are especially suitable for 
optoelectronic, digital electronics, and display devices.

However, there are still various challenges before the realization of an ideal device concept based on TMDs. 
Perhaps the most important is to find a suitable contact between a true metal and the TMD semiconductor with 
low interfacial resistance, to enable efficient charge injection and/or extraction. Thus, achieving low contact resist-
ance for TMD-based nano-electronic devices is the critical first step in order to get a good device performance. 
There are reports on true metal contacts with TMDs showing several problems, including degradation of the 
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performance of TMD transistors due to undesired interface reactions, contact resistance or posing an abnormal 
Fermi level pinning at the band gap of the semiconductor17–19. Moreover, recent studies have shown the impor-
tance of the contact metal deposition ambient and the resultant contact properties20–22. Therefore, alternative con-
tact materials which can effectively facilitate the charge transfer between the source/drain and the semiconductor 
(channel material) need to be sought. There has also been research on stable doping strategies to lower the contact 
resistance23,24, and different options, like transition metal oxides, have been used as a barrier layer between metals 
and organic semiconductors in organic photovoltaics (OPVs) devices for selective charge transfer25. However, uti-
lizing a metal oxide contact layer with transition metal dichalcogenides has not been realized until recently26–28. 
Hence, the specific nature of their interfacial electronic properties must be accurately determined before pursuing 
further extensive research on TMDs-metal oxide contacts.

Another interesting possibility is given by the corresponding TMD-TMO interfaces. From this point of view, 
Molybdenum trioxide (MoO3) could be considered as a promising hole contact on MoS2-based Field Effect 
Transistors (FET). MoO3 is stable in ambient conditions, and it provides an efficient hole extraction. Unlike true 
metal contacts, it does not induce Fermi level pinning at the interface. Our own work has previously shown that 
the interaction with metals at metal-TMD interface modifies the transition metal-chalcogen hybridization of the 
TMD, inducing states in the band gap, which ultimately results in unusual Fermi level pinning17. Accordingly, 
there is an urgent need to find a suitable contact material or barrier layer that could also avoid Fermi level pin-
ning, resulting in a nearly Ohmic contact. Currently, TMD-based devices are measured with Schottky limited 
electrical characteristics23. A good contact would facilitate the electron injection and extraction during the device 
operation.

In this paper, we present an investigation on the atomic structures and electronic properties of MoS2/MoOx 
(x ≤​ 3) interfaces for future FET-based device applications26–28. Our results show that TMD and MoOx interfaces 
enable ideal p-type contact characteristics for future transistor technology. Moreover, due to defect-induced gap 
states (i.e., defect bands) in sub-stoichiometric MoOx, the interface presents an Ohmic character, which may 
result in a promising Ohmic contact for TMD-based electronic devices. Therefore, this work provides a funda-
mental understanding of the interfacial electronic properties of MoS2 and both pristine and oxygen deficient 
MoOx (x ≤​ 3).

Methodology
First-principles calculations based on Density Functional Theory (DFT)28,29–31 with plane wave basis set and 
Projector Augmented Wave (PAW)32,33 pseudopotentials have been performed using the Vienna Ab-initio 
Simulation Package (VASP)33–35. The electronic wave functions were represented by plane wave basis with a cutoff 
energy of 500 eV and the exchange correlation interactions were incorporated as a functional of the Generalized 
Gradient Approximation (GGA)34. Additional calculations included the hybrid Heydt-Scuseria-Ernzerhof (HSE) 
exchange- correlation functional36 and many body methods (GW0)37. In order to investigate the MoS2/MoO3 
contact interface, a supercell structure with a S-terminated MoS2 (001) surface and a O-terminated MoO3 (010) 
surface was constructed. The lattice mismatch for such superstructure is less than 1% (the strain is on the MoO3 
surface). Periodically repeated slabs separated by a 16 Å thick vacuum region were used, in order to avoid the 
interaction between the two surfaces of the slab as a result of the periodic boundary conditions (PBC). During 
the calculations, the atoms were allowed to relax while the cell size was kept fixed. A Г-centered 6 ×​ 6 ×​ 1 and a 
12 ×​ 12 ×​ 1 k-point meshes were then used for the self-consistent field (SCF) and density of states (DOS) cal-
culations, respectively. The energy and forces were converged until a tolerance value of 10−5 eV and 0.01 eV/Å, 
respectively. Because standard DFT is unable to grasp the physics of van der Waals (vdW) interactions leading to 
overestimating the interlayer separation in layered materials, the Grimme vdW-D2 approach38,39 was adopted in 
order to optimize the MoS2 and MoO3 interlayer distance accurately.

Results and Discussion
We first investigate the electronic properties of bulk and single layer Molybdenum-trioxide (MoO3) in detail. 
MoO3 shows two phases (α​ and β​): α​-MoO3 is stable in an orthorhombic crystal structure with space group 
Qh

26 (Pbnm) (the unit cell lattice parameters are a =​ 3.962 Å, b =​ 13.855 Å, and c =​ 3.699 Å), and the β​ phase is 
observed only at high pressure and is metastable at ambient conditions40,41. In the α​-MoO3 phase (the one consid-
ered in this work), each unit cell contains four MoO3 formula units and has an easy cleavage (010) plane, as shown 
in Fig. 1(a,b). Each monolayer consists of two sublayers, with periodically arranged MoO6 octahedra. Thus, the 
crystal structure contains three distinct oxygen atoms due to their different coordination: asymmetrical bridging 
oxygen (unequal bond length with Mo), symmetric bridging oxygen (two Mo bonds with the same bond length 
and an elongated bond to the next sublayer), and terminal oxygen (single bond Mo-O). The terminal oxygen 
atom is preferentially deficient during an exfoliation process. The interlayer metal to metal distance d (Mo-Mo) 
is ~7.00 Å (the Mo-Mo distance within the same layer is 4.03 Å), and the effective vdW gap, d (O-O), is ~0.799 Å 
(See Fig. 1(a)). The electronic band structure for bulk MoO3 is shown in Fig. 1(c), which indicates that the band 
gap is of indirect type with the valance band maximum (VBM) at U (0.5 0.0 0.5) and the conduction band min-
imum (CBM) at Г (0.0 0.0 0.0) point. Our obtained band gaps (Eg) are 1.9 and 2.7 eV at the GGA and HSE levels 
of calculation, respectively. The HSE result is closer to the experimental values of 3.2 eV for bulk and 2.8 eV for 
polycrystalline MoO3, as obtained from absorption spectra measurements40. As can be seen in the DOS shown in 
Fig. 2(a), the MoO3 CBM is mainly contributed by Mo d states and the VBM by O p  states.

Oxygen vacancies can be easily created by ion bombardment or loss of preferential bridging oxygens from 
reactions and/or annealing. Such oxygen vacancies may cause surface reconstruction depending on their con-
centration, by turning exposed Mo atoms into chemically active sites and participating in the adsorption of new 
species or MoOx reconstruction. MoOx has a very large work function (~6.67 eV from our DFT calculations, close 
to available experimental values26,42), compared to the work function of metals43 For defective, MoOx, we have 
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computed the formation energy (Eform =​ Edefect −​ Eperfect +​ μx, where, μ​: chemical potential of x =​ Mo and O) of Mo 
and O vacancies. Our results show that the O vacancy (VO) is energetically more favorable (by ~2 eV) than the 
Mo vacancy (VMo). Figure 2(b,c) show the corresponding DOS. Both defects induce gap states in the MoO3-x band 
gap. However, the Mo vacancy induces multiple gap states (of O p nature) close to the VBM (see Fig. 2(b)) due to 
unsaturated oxygen atoms, whereas an O vacancy leaves a Mo dangling bond, causing defect states of Mo d nature 
close (0.56 eV) to the CBM, as shown in Fig. 2(c). The defect level shifts downwards by 0.29 eV when using HSE. 
However, its electronic nature is not modified (i.e., its relative position in the band gap is not changed).

Similar to MoS2, MoO3 shows strong intralayer chemical bonds (Mo-O) and a relatively weak van der Waals 
interlayer interaction, which facilitates the exfoliation. Since MoO3 layers are stacked along the [010] direction, 
they can be easily cleaved and exfoliated to produce a thin quasi-2D crystal. The exfoliated monolayer of MoO3 

Figure 1.  (a) Side view of the atomic structure of the MoO3 unit cell. The interlayer metal to metal distance 
and the vdW gap are indicated by d(Mo-Mo) and d(O-O), respectively. (b) The MoO3 4 ×​ 1 ×​ 4 supercell used 
for the defects study, showing the layered structure along the [010] direction. Red and purple spheres represent 
O and Mo atoms, respectively. (c) Electronic band structure of bulk MoO3, showing the indirect band gap 
(indicated by an arrow) with the CBM at Г (0.0 0.0 0.0) and the VBM at U (0.5 0.0 0.5) high-symmetry k-points.

Figure 2.  DOS for bulk MoO3 in (a) pristine form, (b) with Mo vacancy (VMo), and (c) O vacancy (VO). Red, 
and black lines represent O and Mo DOS, respectively. Gap states caused by defects are indicated by arrows.  
(d) The electrostatic potential variation along the [010] direction is shown for a single MoO3 layer. The inset 
shows the atomic and electronic band structures for monolayer.
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contains two layers of Mo atoms with a thickness of ~1.38 nm (the lattice parameters of the single layer unit 
cell are a =​ 0.39 nm, b =​ 0.613 nm, c =​ 0.36 nm). From bulk to monolayer MoO3, the change in the electronic 
properties is not as significant as in the case of MoS2. Figure 2(d: inset) shows the electronic band structure of 
monolayer MoO3 (010). The obtained band gaps are Eg =​ 1.804 eV (GGA), Eg =​ 2.097 eV (GGA +​ U), Eg =​ 2.86 eV 
(HSE) and Eg =​ 3.66 eV (GW0). The gap is always indirect irrespective of the thickness, unlike MoS2 which shows 
a direct-indirect transition with decreasing thickness. The conduction band edge is dominated by Mo d orbit-
als and the valance band edge is mainly contributed from O 2p states, as in the bulk case. The work function 
(ɸ​ =​ Evac −​ EF; where Evac is the vacuum level and EF the Fermi level) is also estimated to be ~6.6 eV from our DFT 
calculations, close to the experimental value26,42.

In order to investigate the electronic properties of the MoS2/MoO3 interface, a heterostructure using the MoO3 
(010) and MoS2 (001) monolayer surfaces was constructed and subsequently optimized. If any defects are present, 
the electronic properties of the pristine MoS2 (001) monolayer will be altered significantly and a surface passi-
vation treatment will be crucial before constructing the interface44–46. Figure 3(a) shows the atomic configura-
tion of the MoS2/MoO3 interface model. As stated previously, the corresponding interlayer distance optimization 
was done using the DFT +​ vdW approach, to account for the weak MoS2-MoO3 interaction. Our calculations 
show that standard DFT overestimates the interlayer distance by ∆​d ~1.7 Å, with the obtained DFT +​ vdW result 
being d(S-O) ~2.8 Å. The DOS of the optimized interface model reveals the relative band alignments between 
both monolayers. The overall band gap of the pristine MoS2/MoO3 stack is substantially reduced (~0.22 eV) with 
respect to the respective separate counterparts, due to the metal oxide empty states appearing in the band gap 
energy range of MoS2. Including the HSE correction, the interface band gap only increases to 0.51 eV, even though 
the gaps of the individual monolayers widen significantly. As shown in Fig. 3(b), the VBM of MoS2 is located close 
to the CBM of MoO3.

Then, the conduction bands of MoO3 are lowered relative to those of MoS2, thus making a negative conduction 
band offset (CBO); this will result in the population of the upper MoO3 energy level from the MoS2 Fermi level. 
Mo d orbitals hybridized with O p orbitals from the MoO3 layer dominate the CBM, with MoS2 Mo d and S p 
hybridized orbitals dominating the VBM. The relatively small band gap makes this junction a promising contact 
heterostructure for tunnel field effect devices, where the gap, the band alignment and the interband charge carrier 
tunneling can be further controlled by an external applied field and the gate bias.

MoO3 is thought to contain a certain amount of oxygen vacancies (up to 3%), and is known to behave as a 
p-type contact with TMDs or other semiconductors26. Therefore, a model interface structure with oxygen vacan-
cies was also investigated, in order to examine the effect of possible O vacancies on the electronic properties. 
Indeed, our calculations show that the MoOx interfacial layer can behave as a p-type contact. Moreover, a unique 
band alignment between (MoS2/MoOx) with an almost zero charge injection barrier is formed, as demonstrated 
by the DOS shown in Fig. 4(b). The MoS2/MoOx contact does not cause Fermi level pinning, showing a superior 
contact performance over other true metals17–19. Therefore, our results clarify why the defective MoS2/MoOx 
interface can also be used as an ideal hole contact for TMD-based devices, besides the well-studied organic sem-
iconductors. The presence of O vacancies produce Mo dangling bonds, which induces defect gap states in the 
upper region of the MoOx band gap (close to the CBM). Moreover, this is an extraordinarily localized effect with 
only slight changes showed in the electronic structure of the neighboring atoms. These defect states of Mo 4d 
nature are just empty states that can be easily filled by electron transfer from the valance band of the MoS2 layer, 
creating the p-type MoS2. In other words, it behaves as a MoOx hole contact layer, injecting holes into the MoS2.

Therefore, MoOx has a great potential to be used as an efficient hole injection layer by charge transport through 
the valence band, thus making a TMD-based p-FET. The overall performance of a hypothetical FET electronic 
device depends on the metal/MoOx and MoOx/TMD contacts. However, the metal/MoOx contact resistance can 

Figure 3.  (a) Atomic structure of the stoichiometric MoS2/MoO3 interface. Red, purple and yellow spheres 
represent O, Mo and S atoms, respectively. The interlayer distance was optimized using the DFT +​ vdW 
approach. (b) The corresponding DOS of the interface. Green and blue lines represent the DOS of S and Mo 
atoms from the MoS2 layer, whereas red and pink lines correspond to the O and Mo atoms from the MoO3 layer.
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be properly tuned with a suitable choice of metal with a specific work function43. On the contrary, MoOx/MoS2 
contacts have been regarded as a major hurdle for many years. Recent experimental reports have shown a low hole 
Schottky barrier in a device study utilizing MoOx contacts with MoS2 and WSe2 TMDs26.

Due to the relatively large difference between the VBM and the CBM of the MoOx, the band alignment 
with MoS2 should also be very suitable for tunneling device applications. MoOx films were also found to be 
oxygen-deficient in a nitrogen environment, enhancing the device performance by means of a gap state mech-
anism47 which is consistent with the results of this work. Furthermore, by changing the thickness of MoOx 
and MoS2 layers, additional broad gap states can be introduced, which would substantially increase the hole 
transport48.

The interfacial electronic transport can also be modulated with an applied external electric field. However, 
synthesizing ideal or completely stoichiometric MoO3, or having controlled oxygen vacancy formation is actually 
a challenge. Thus, the contact is better realized due to the presence of oxygen vacancies in the MoO3. Interestingly, 
the formation of self-limiting WOx (x <​ 3) on atomically thin WSe2 was used as charge transfer dopants and low 
hole Schottky barrier contacts for p-WSe2 transistors49. Hence, given the numerous possible transition metal 
oxides with a wide range of work functions and electronic structures, and the additional available options to tailor 
their properties, such as modifying the defect concentration or the cation oxidation states, this research focused 
on hole contacts based on metal oxides-TMD heterostructures, and opens a new avenue to explore 2D TMDs and 
TMO interfaces for optimization of the device functionality.

Summary.  The electronic properties of the sub-stoichiometric MoOx/MoS2 interface have been investigated 
using DFT calculations. Our results reveal that, due to the large work function of MoO3, a unique and useful 
band alignment between MoS2 and MoO3 is observed, which can open a potential application in FET. Moreover, 
our findings are in excellent agreement with experimentally-observed sub-stoichiometric MoOx that shows a 
defect level alignment with the valance band of the TMD, creating an Ohmic-type contact perfectly suitable for 
metal-semiconductor device contact purposes. This result also indicates that the MoOx/MoS2 interface facilitates 
spontaneous charge transfer from the TMD to MoOx and vice versa. In other words, the defect state in the band 
gap of MoOx assists the hole injection at the interface (through the formation of a low hole injection barrier, thus 
facilitating an Ohmic injection). This theoretical work sheds light on the atomic level mechanisms of TMD/TMO 
interfaces, showing their promising characteristics for semiconductor device applications.
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