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ABSTRACT: Atomic structures and electronic properties of
MoS2/HfO2 defective interfaces are investigated extensively for
future field-effect transistor device applications. To mimic the
atomic layer deposition growth under ambient conditions, the
impact of interfacial oxygen concentration on the MoS2/HfO2
interface electronic structure is examined. Then, the effect on
band offsets (BOs) and the thermodynamic stability of those
interfaces is investigated and compared with available relevant
experimental data. Our results show that the BOs can be
modified up to 2 eV by tuning the oxygen content through, for example, the relative partial pressure. Interfaces with hydrogen
impurities as well as various structural disorders were also considered, leading to different behaviors, such as n-type doping, or
introducing defect states close to the Fermi level because of the formation of hydroxyl groups. Then, our results indicate that for
a well-prepared interface the electronic device performance should be better than that of other interfaces, such as III−V/high-κ,
because of the absence of interface defect states. However, any unpassivated defects, if present during oxide growth, strongly
affect the subsequent electronic properties of the interface. The unique electronic properties of monolayer-to-few-layered
transition-metal dichalcogenides and dielectric interfaces are described in detail for the first time, showing the promising
interfacial characteristics for future transistor technology.

1. INTRODUCTION

For the development of future metal−oxide field-effect
transistors (MOSFETs), the conventional silicon transistor
channel, which has already reached its physical limit of scaling,
has to be replaced by an alternative material with higher carrier
mobility1 and a high-κ dielectric, providing a higher gate
capacitance for thicker films. For this purpose, III−V
semiconductors, which provide high electron and hole drift
mobilities, have been studied extensively.1−3 The detailed
interfacial oxidation mechanism of Si and SiO2 has been studied
from first-principles molecular dynamics simulations, which
explained a scheme that allows for strain relief during growth,
resulting in a high-quality interface.4 It was also evidenced by
the very low density of defects observed at this interface (less
than 1 per 104 interface atoms).5

To be a suitable candidate for use in future field-effect
devices, the material should be thermodynamically stable with
the corresponding high-κ oxide as well as able to unpin the
Fermi level with minimal defect trap density (Dit). Silicon
dioxide has been the dielectric of choice for many field-effect
devices, and, if the present miniaturization trends continue, the
projected oxide thickness should be less than 1 nm, or about
five silicon atoms across.6

To date, many studies have been focused on using hafnium
dioxide (HfO2)-based dielectrics because of their high dielectric

constant (∼20), thermal stability, and sufficient band offsets
(BOs). Despite the enormous effort to realize a low Dit III−V/
high-κ interface, these materials continue to suffer from high
defect densities, leading to threshold voltage shifts, large
leakage current, and charge trapping, thus causing instability of
the device. The nature and origin of the defects at the interface
continues to be investigated to optimize the oxide growth
deposition conditions and adopt a suitable defect passivation
mechanism.7,8 Recently, there has been substantial interest on
two-dimensional (2D) materials (such as graphene9−11) for
electronic device applications because of their higher carrier
mobilities and interfaces devoid of defect states. However,
owing to the intrinsic zero band gap at the Dirac point,
graphene-based layered FETs suffer from high leakage currents.
In addition, tuning the band gap of graphene is not feasible,
which limits its potential applications,12,13 although there has
been a recent report on the realization of a single-layer
graphene p−n junction, in which the carrier type and density in
two adjacent regions were locally controlled by electrostatic
gating, opening new techniques for a future graphene-based
bipolar technology.14 Therefore, because of the several
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aforementioned limitations, the semiconductor device com-
munity has turned its attention to other 2D or binary quasi-2D
materials beyond graphene, searching for unique electronic,
optical, chemical, and mechanical properties for a wide range of
future applications. Among these, transition-metal dichalcoge-
nides (TMDs), well known for being used as lubricant additives
or coating materials because of their interesting tribological
properties,15−17 have attracted remarkable interest for device
applications. The unique physical properties of semiconducting
TMDs, due to their crystal structure, symmetry, and thickness
(with changes in the interlayer coupling and strain- and field-
dependent modulation of the electronic properties, including
the effects of quantum confinement), enhance their tunabilty
and thus make TMDs promising device materials.18,19

TMDs have a layered bulk structure that can be exfoliated
into a single-layer semiconducting 2D material with sizable
band gaps or metallic behavior, depending on the type of
metal−chalcogen combination.20−26 Ideally, these materials are
anticipated to have a low Dit, as the dangling-bond density
should be minimal. They have been obtained by mechanical or
chemical exfoliation as well as chemical vapor deposition
techniques.12,27−31 Two-dimensional MoS2 has been recently
investigated for electronic device applications, showing
promising features of a high ON−OFF current ratio (108),
an appreciable carrier mobility (∼200 cm2/V·s),12 and a higher
current density32,33 with a high-κ gate dielectric. Using a
scandium electrode, the carrier mobility can be further
enhanced to ∼700 cm2/V·s, suggesting a negligible Schottky
barrier at the MoS2/Sc interface.

34 However, most of the metal
contacts on single-layer MoS2 show the well-known problem of
Fermi-level pinning mechanism,35,36 whereas the metal/oxide
interface seems to be more promising. Although initial reports
show mobilities in the range of 0.1−10 cm2/V·s for exfoliated
monolayer MoS2 on SiO2,

9 a recent study claims additional
mobility enhancement by reducing the impurity scattering by
high-κ deposition.37 Moreover, quantum transport simulations
of an ideal TMD device indicate that monolayer MoS2
MOSFETs with HfO2 can achieve near-ideal subthreshold
slope, suppression of drain-induced barrier lowering, and gate-
induced drain leakage.38 The switching behavior of a TMD
transistor degrades significantly with thicker layers due to
diminished gate control. Monolayer TMDs show the best
scalability with the largest ON−OFF ratios, achieving ON
current levels of 450 μA/μm for an ON−OFF ratio of 105,
whereas the bilayer devices deliver about half of this value
exhibiting significant loss of gate control upon addition of an
extra layer to the conducting channel.39 The literature lacks a
detailed, atomic-level investigation of the nature of TMD/high-
κ dielectrics interface. For a detailed understanding and further
optimization of TMD-based electronic devices, it is important
to examine in detail the atomic and electronic structures of
TMD/HfO2 interfaces under different growth conditions.
Here, a lattice-matched monolayer of the MoS2/HfO2

interface model is developed and the interface atomic structures
and the corresponding electronic properties are investigated
using density functional theory (DFT) calculations at different
levels of accuracy. The model interface is extensively
investigated as a function of oxygen and hydrogen incorpo-
ration, representing different HfO2 atomic layer deposition
(ALD) growth conditions on MoS2. The DFT results are
compared with previously reported experimental values from in
situ X-ray photoelectron spectroscopy (XPS) studies of HfO2
ALD on bulk MoS2.

40 Moreover, we also investigate the

influence of several structural defects and disorders at the
interface on the electronic properties. These studies on MoS2/
HfO2 can be extended to other TMDs and high-κ oxides in an
effort to identify the most promising device material candidates,
which might improve the performance of MoS2 as a device
channel material.

2. RESULTS AND DISCUSSION
First, we optimized the atomic structure of the stoichiometric
MoS2/HfO2 interface model and analyzed its electronic
structure. Then, the oxygen concentration at the interface is
varied to investigate the impact on the electronic properties of
the interface. Figure 1c shows the variation of electrostatic

potential along a direction perpendicular to the interface area of
the model. The vacuum level is flat, indicating that there is no
electrostatic polarization (no significant charge transfer) caused
by HfO2 deposition on the MoS2 layer. This finding indicates
that there is a very weak van der Waals interaction between the
MoS2 monolayer and HfO2. This is consistent with a recent
experimental study on the ALD of HfO2 on the MoS2 surface,
where no covalent bonding between the HfO2 and MoS2 layers
was detected.40 Symmetric potential profiles are observed for
the MoS2 monolayer and HfO2.
To understand the electronic properties and to obtain the

BOs between MoS2 and HfO2 across the interface, the local
density of states (DOS) at bulklike Hf, O, Mo, and S atoms
away from the interface is computed. The computed band gaps
of HfO2 are 4 and 6 eV, as obtained with generalized gradient
approximation (GGA) and Heyd, Scuseria, and Ernzerhof

Figure 1. Atomic structure of the MoS2/HfO2 interface: (a) side view
and (b) top view of the interface. Hafnium, oxygen, molybdenum, and
sulfur are represented by turquoise, red, purple, and yellow spheres,
respectively. (c) Electrostatic potential profile perpendicular to the
interface area (along the z-direction). The red lines represent the
variation of interfacial potential, whereas the green line shows the
contribution of the isolated MoS2 monolayer. Both potentials are
measured with respect to the EVBM.
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(HSE) calculations, respectively (cf. with the experimental
result of 5.9 eV40). For the MoS2/HfO2 interface, GGA
calculations yield a band gap of 1.8 eV, whereas HSE results
widen the gap to 2.34 eV. Then, even though the HSE band
gap of HfO2 matches the experimental result much better than
the GGA band gap, qualitatively the BOs of the interface
remain relatively unchanged. Moreover, a trend of band gap
decrease when going from single to multilayer MoS2 is
observed, with significant changes in the BOs (as will be
discussed later).
Valence band offest (VBO) and conduction band offset

(CBO) obtained from GGA calculations are ∼1.0 and ∼1.24
eV, respectively, whereas those obtained from HSE calculations
are ∼1.60 and ∼2.0 eV, respectively (Figure S1), and the
corresponding experimental values for the bulk interface are
∼2.67 and ∼2.09 eV (Eg = 1.23 eV for the bulk).40 These
results show that qualitatively and quantitatively the BOs are
large enough to avoid leakage current during the electronic
device operation, although the calculations are for a single
MoS2 monolayer; whereas the available experimental values
were obtained for bulk MoS2/HfO2 interface (the changes in
the band gap with interface thickness will be discussed later).
To mimic the oxidizing environment of the ALD process and

to model the experimental conditions in a more realistic
manner, the interfacial oxygen concentration is varied and the
effect on the electronic properties is investigated. Our

calculations show strong effects of the interfacial oxygen
content on the electronic structure of the interface and the
corresponding BOs. Figure 2 shows the atomic structures of the
MoS2/HfO2 interface with different amounts of oxygen
concentration (O6 refers to six interfacial O atoms,
corresponding to a high oxygen concentration (1.76 × 1015

O atoms/cm2), and O3 refers to the lower limit of three
interfacial O atoms (0.88 × 1015 O atoms/cm2) within the
supercell of the interface model). Then, the electronic band
structures of those interfaces are investigated to elucidate the
impact of the oxygen concentration on the properties of the
interface. Figure 2a−d shows the band structures of the MoS2/
HfO2 interface with different oxygen concentrations at the
interface, with Table S1 summarizing the numerical results. For
device applications, the evaluation of the BOs between MoS2
and HfO2 as a function of the oxygen concentration is very
important, as they are one of the key parameters that reflect the
quantum mechanical electron tunneling mechanism across the
interface. From the analysis of the variation of the potential
across the interface in the previous section, there is no
significant charge transfer for the stoichiometric interface. In
the absence of charge transfer, the BOs are obtained by the
electron affinity (EA) rule or Anderson’s rule.41 In our model,
the change of the interfacial oxygen concentration directly
affects the EA. For instance, for the O3 model, the VBO is
always larger than 1 eV (1.8 eV), at the GGA (HSE) level of

Figure 2. Electronic band structures of MoS2/HfO2 interfaces with various oxygen concentrations at the interface: (a) Three interfacial oxygen
atoms (O3), (b) O4, (c) O5, and (d) O6. The zero of the energy is aligned to the Fermi level. The atomic structure of the MoS2/HfO2 interfaces
with various oxygen contents at the interface is also shown. Hafnium, oxygen, molybdenum, and sulfur are represented by turquoise, red, purple, and
yellow spheres, respectively.
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approximation, and it increases with O concentration at the
interface.
A change in the O concentration at the interface affects the

edge states of HfO2, but not MoS2, because the valence band
maximum (VBM) of HfO2 is dominated by O 2p states. A
higher O concentration shifts down the VB edge of HfO2 due
to the O 2p redistribution at the VBM.42,43 As a consequence,
the VBO increases with the amount of interfacial oxygen. Thus,
the VBO can be controlled by varying the oxygen
concentration, a property directly related to the ambient
atmospheric oxygen pressure during the oxide formation.
By controlling the interfacial O concentration gradually, the

VBOs can be modified up to 1.8 eV (O3 = 1.0 eV; O4 = 1.8 eV;
O5 = 2.3 eV; and O6 = 2.8 eV) at the GGA level of calculation,
although a significant reduction of the CBO is also observed for
higher oxygen concentrations (see Supporting Information).
This variation of the BOs will significantly affect the device
performance. However, the trend showing a bang gap
narrowing with the increase of oxygen concentration remains
unchanged. Moreover, we have identified for the very first time
the unique nature of the electronic properties of few-layered
TMD/HfO2 interfaces, by showing the nonidentical behavior of
each TMD individual layer, even for stoichiometric interfaces,
which opens a new possibility of multiconducting channel
concept for FET devices (Figure 3): when going from single-
layer to multilayer MoS2, the electronic properties of the
interface are modified, as the layers are coupled with van der
Waals forces through a weak interaction between S pz states.
Approximately, the middle MoS2 layers control the electronic
band edges. Thus, this unique feature of TMDs shows novel
implications for possible TMD-based devices. Moreover,
doping or oxidation will change the top and bottom layers
interfaced with the high-κ dielectric, whereas the layers beneath
will be physically intact, with only the electronic structure
altered, thus showing new and unique functionalities. The layer-
projected DOS (Figure 3) confirms that the individual layers
are not identical in terms of their electronic structure, affecting
the BOs and the band gaps. This finding emphasizes the unique
characteristics of hypothetical TMD-based devices compared to
those of standard Si- or III−V-based electronics.
Besides oxygen impurities, hydrogen impurities strongly alter

the structural and electronic properties of different host
materials into which they are incorporated, affecting the
performance of the electronic devices. During the ALD growth
process, the use of water as an oxygen precursor can provide
hydrogen species in the semiconductor surface. Defect
(dangling bond) passivating effects or dopant passivation
behavior are well known in conventional semiconductors.
Here, the presence of H atoms at the interface at several oxygen
concentrations is also examined (Figure S2). Our results show
that for the O3 model an additional H impurity results in n-
type doping behavior, as can be seen from the shifting of the
Fermi level up to the conduction band in the band structure
diagram shown in Figure S2a. However, for the O6 model, the
H impurity forms an OH bond, inducing defect states close to
the Fermi level. Then, both H and OH at the interface show a
strong impact on the electronic properties of the interface.
Additionally, OH-like species present at the interface shift the
Fermi level toward the valance band edge and exhibit p-type
doping behavior and gap states (which can be potentially
harmful for device applications due to Fermi-level pinning or
charge transfer to/from the defect state), as observed in Figure
S3. It is worthwhile to note that OH species are expected to be

abundant in a standard ALD process. The incorporation of an
H impurity (0.88 × 1015 H atoms/cm2) on the stoichiometric
interface model causes a defect-state density of about 1.5 ×
1014/eV·cm2 close to the band edges.
Interface structural disorder originated during the growth

process also affects the electronic properties and the
thermodynamic stability of the resulting device. Here, several
likely defective interfaces (Figure S4) are proposed to
investigate how the electronic properties are affected by
different atomic arrangements. The notation O6−O−S refers
to a modified O6 interface model in which oxygen from HfO2 is
interchanged with S from the MoS2 side, as shown in Figure
S4a, along with the corresponding electronic band structures

Figure 3. Atomic structures of multilayered MoS2/HfO2 interfaces
(upper panel); electronic band gap variation (the energy values are
referred to the vacuum level) (middle panel); and layer-projected
DOS (lower panel).
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showing additional bands inside the gap of MoS2. The notation
O7−O−S refers to an interface in which the bottom sulfur
atoms of MoS2 are completely replaced by O atoms and the
interfacial O atoms of HfO2 are bonded with S atoms, as shown
in Figure S4b. It can be seen that these interchange defects
caused interface defect states in the band gap of MoS2 between
1.2 and 1.5 × 1014/eV·cm2, for a defect density of about 1 ×
1015 O or H atoms/cm2.
Defect-state generation can be anticipated if there is S and O

bonding at the interface or in the TMD surface.44,45 S and O
interchange to form Mo−O and S−O bonds, reducing the band
gap significantly. In pristine MoS2, the main VBM contribution
comes from the hybridization of Mo d and S p orbitals, whereas
CBM is mainly composed of Mo d orbitals. In the disordered
system, the hybridization is weakened due to rehybridization at
the interface, inducing gap states in the band gap of MoS2.
Thus, with extrinsic defects present at the interface, gap states
will be induced, resulting in a deleterious impact on the device
performance. The band structure depicted in Figure S4c of a
single S−Mo−O layer with HfO2 (Supporting Information)
shows that the band gap narrows substantially, indicating a
metallic character (MoO2 is a metal46). The metallic nature of
the contact also indicates the possibility of utilizing such
interface to make contact materials for future TMD-based
devices.47

To determine the thermodynamic stability of the different
interface models, we investigate their formation energies (see
Supporting Information for details) as a function of the oxygen
chemical potential (μO), as shown in Figure 4. The formation
energy increases gradually when the oxygen chemical potential
changes from O-rich to O-poor limit, for the O6 to O3
interface models considered in this study, with the oxygen-rich
environment being thermodynamically favorable.
Figure 4 also shows that the thermodynamic stability of the

O3 model is higher than that of O4, O5, and O6 models for a
wide range of chemical potentials, albeit far from realistic ALD
conditions. The relative formation energy of the O6−3H defect
model is relatively low in the range close to a partial pressure of
1 atm, showing that it is stable in O-rich environments. Besides,
as can be seen in Figure S2f, OH species formed at the interface
passivate all of the oxygen dangling bonds. Because of that, the
local atomic structure is distorted compared to that of the
pristine interface model, also inducing a slight distortion in the
layers underneath. The stability of the O3−H model is lower
than that of the O3 model, which means that for a
stoichiometric interface, H impurities increase the formation

energy. However, the O7−O−S model is the least stable among
all of the interface models investigated but O7−O is stable
under O-rich conditions. This thermodynamic analysis
indicates that most of the defective surfaces are less likely to
be formed. However, on the contrary, additional hydrogen
impurities at the interface are more likely to be formed
compared to that in the stoichiometic MoS2/HfO2 interface
(O3 model).
The study of the effect of oxygen concentration on the

electronic structure has been reported previously for III−V/
high-κ interfaces.43 It was shown that the most stable interface
corresponds to a high concentration of oxygen and that the
VBOs can be modified up to ∼2 eV by decreasing the
interfacial oxygen content. However, although from different
nature, there are always gap states, due to the presence of
dangling bonds on the III−V semiconductor surface. On the
contrary, the inert nature of TMD monolayers does not induce
interfacial gap states, which can in turn arise from surface
defects formed during their synthesis. Our results have shown
that postprocessing could aim to remove or passivate such
defects, thus increasing carrier mobility.48 Also, nonstoichio-
metric interfaces can also behave as contacts, exhibiting an
Ohmic electrical behavior.49 Interface defect states will affect
the carrier mobility in the electronic device because they act as
charge traps. Indeed, high-density interface states can cause
issues such as frequency dispersion of capacitance, Fermi-level
pinning, low electron mobility, or instability of device
operations.50 In this study, we have identified the preferable
interface structures for specific chemical environments. Such
chemical environment can be monitored and/or controlled
through the oxygen partial pressure. Then, the obtained VBOs
for the different interface structures show the dependence of
the BOs and band gaps (which are easily measurable) on each
specific interface structure. Therefore, finally, one can easily
correlate experimentally measured data with defective inter-
faces, identifying the origin of any possible defect and/or
impurities.
Besides, in electronic devices such as FETs, the gate field

controls the overall operation of the device, by sweeping the
Fermi level across the semiconductor band gap to change the
carrier density in the channel material. However, a significant
interface-state density within the semiconductor band gap can
pin the Fermi level to those gap states, which will ultimately
compromise the efficiency of the gate field control of the
transistor. As it has already been shown that a high density of
interface states is the primary cause for the poor device

Figure 4. Thermodynamic stability of the MoS2/HfO2 system with interfacial impurities. The interface formation energy is given with respect to the
oxygen chemical potential in the following range: −5.38 eV ≤ μO ≤ 0 eV (setting the bulk value to zero). The right plot is a zoom of the section
corresponding to experimental conditions around 1 atm.
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performance of III−V/dielectric interfaces, the analysis of
possible defect states and their origin for TMD and high-κ
dielectric interfaces becomes crucial to prevent poor device
performance, highlighting again the importance of defect
passivation or preparing defect-free interfaces.

3. CONCLUSIONS

In conclusion, in this study, we have shown that the BOs of
MoS2/HfO2 interfaces change with increasing interfacial oxygen
content, indicating their dependence on the oxide growth
environment. For the stoichiometric, defect-free MoS2/HfO2
interface, no charge transfer between HfO2 and MoS2 is
observed. However, disorder and defects at the interface can
introduce gap states, which would be harmful for device
applications due to the subsequent charge transfer or Fermi-
level pinning. Thus, the interfacial oxygen content significantly
affects the thermodynamic stability and the BOs of the
interface. Furthermore, interfacial hydrogen impurities are
also shown to have a strong effect on the interfacial stability
and the corresponding VBO. These DFT results of MoS2/HfO2
interface properties are qualitatively consistent with those
obtained from in situ XPS studies of HfO2 ALD on bulk MoS2
and highlight the importance of fabricating defect-free
interfaces for novel, TMD-based device applications.

4. METHODS AND CALCULATION DETAILS

First-principles calculations are performed on the basis of
DFT51−53 with plane wave basis set and projector-augmented
wave pseudopotentials,54,55 implemented in the Vienna ab
initio simulation package.51,56 The electronic wave functions are
represented by plane wave basis with a cutoff energy of 500 eV.
The exchange correlation interactions are incorporated as a
functional of the GGA.57−59 Knowing the underestimation of
the band gaps obtained from standard GGA calculations, we
also used the hybrid functional proposed by Heyd, Scuseria,
and Ernzerhof (HSE), in which the short-range part of the
exchange functional is represented by a (fixed) combination of
GGA and Hartree−Fock contributions, whereas the long-range
part and the correlation functional are described by the GGA.60

To investigate the MoS2/HfO2 interface, an interface model
starting with a S-terminated MoS2 surface and an O-terminated
HfO2 (111) surface, with a lattice mismatch less than 1%, is
constructed, as shown in Figure 1a. This interface model
contains 5 atomic layers of Hf and 10 atomic layers of O, to
minimize the quantum size effects. Although dielectric materials
typically become amorphous after annealing at high temper-
atures to reduce defect formation, the local Hf−O bonding is
more important than long-range order for interface engineer-
ing. Therefore, the 15 dielectric layers considered represent a
good model system for this type of interfaces.42,43 Periodically
repeated slabs are used to model the interface. Each periodic
slab is separated by 16 Å of vacuum to avoid interaction
between the two surfaces of the slab due to the periodic
boundary conditions. In our calculations, the atoms are allowed
to relax, whereas the cell size is kept fixed after optimization of
the unit cell. A Γ-centered 6 × 6 × 1 k-point within the
Monkhorst−Pack scheme61 mesh is used in the self-consistent
field (SCF) calculations, and a 12 × 12 × 1 k-point mesh is
used for DOS calculations. An SCF dipole correction is used to
cancel spurious electric fields that may be induced by the
periodic boundary conditions of the interface model. The

energy and forces are converged until tolerance values of 10−4

eV and 0.01 eV/Å, respectively.
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