Skip to main content
Characterization of laterally deformable elastomer membranes for microfluidics
Journal of Micromechanics and Microengineering (2007)
  • Sang Joon John Lee, San Jose State University
  • C. Y. Chan, San Jose State University
  • K. J. Maung, San Jose State University
  • E. Rezler
  • N. Sundararajan

This work presents experimental characterization and numerical modeling of laterally deflecting polydimethylsiloxane (PDMS) membranes under pneumatic actuation. The device for this study is a membrane valve seat that partially closes a perpendicular fluid microchannel, fabricated using single-layer soft lithography. Membranes with thickness between 8 and 14 µm have been experimentally tested up to 207 kPa, and maximum lateral displacement beyond 20 µm has been demonstrated. Investigation of geometric parameters by factorial design shows that the height of the membrane is more dominant than the width and thickness, and this is attributed to the zero-displacement boundary condition at the foot of the membrane where it is bonded to a flat substrate. A numerical model that incorporates hyperelastic material testing data shows close agreement with the deflection behavior of experimental samples, accurately predicting that a membrane of 10 µm thick, 100 µm wide and 45 µm tall deflects approximately 13 µm at 207 kPa. Simulation further shows that sidewall effects from bulk compression of the elastomer material in the actuation cavity have a significant effect, reducing maximum displacement by as much as 15% over predictions based on deformation that is limited strictly to the membrane only. Experimental yield, SEM imaging and stress simulations emphasize that the membrane foot region requires the greatest attention in terms of process development.

  • elastomer membranes,
  • microfluidics
Publication Date
Publisher Statement
SJSU users: use the following link to login and access the article via SJSU databases
Citation Information
Sang Joon John Lee, C. Y. Chan, K. J. Maung, E. Rezler, et al.. "Characterization of laterally deformable elastomer membranes for microfluidics" Journal of Micromechanics and Microengineering Vol. 17 Iss. 5 (2007)
Available at: