Skip to main content
Article
A deletion/substitution/addition algorithm for classification neural networks, with applications to biomedical data
Journal of Statistical Planning and Inference (2008)
  • Blythe Durbin
  • Sandrine Dudoit
  • Mark J. van der Laan
Abstract
Neural networks are a popular machine learning tool, particularly in applications such as protein structure prediction; however, overfitting can pose an obstacle to their effective use. Due to the large number of parameters in a typical neural network, one may obtain a network fit that perfectly predicts the learning data, yet fails to generalize to other data sets. One way of reducing the size of the parmeter space is to alter the network topology so that some edges are removed; however it is often not immediately apparent which edges should be eliminated. We propose a data-adaptive method of selecting an optimal network architecture using a deletion/substitution/addition algorithm. Results of this approach to classification are presented on simulated data and the breast cancer data of Wolberg and Mangasarian (1990).
Keywords
  • Neural networks; Classification; Data-adaptive model selection
Publication Date
2008
Citation Information
Blythe Durbin, Sandrine Dudoit and Mark J. van der Laan. "A deletion/substitution/addition algorithm for classification neural networks, with applications to biomedical data" Journal of Statistical Planning and Inference Vol. 138 Iss. 2 (2008)
Available at: http://works.bepress.com/sandrine_dudoit/50/