Skip to main content
Crystallization engineering as a route to epitaxial strain control
APL Materials (2015)
  • Andrew R. Akbashev
  • Aleksandr V. Plokhikh
  • Dmitri Barbash
  • Samuel E. Lofland, Rowan University
  • Jonathan E. Spanier
The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO3 and (001)LaAlO3substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO3 results in a coherently strained film, the same films obtained on (001)LaAlO3 showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO3. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.
  • Epitaxy,
  • Crystallization,
  • Atomic layer deposition,
  • Carbon,
  • Ferroelectric thin films
Publication Date
Citation Information
Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel E. Lofland, et al.. "Crystallization engineering as a route to epitaxial strain control" APL Materials Vol. 3 Iss. 10 (2015) p. 106102 ISSN: 2166-532X
Available at:
Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons CC_BY International License.