Skip to main content
Article
Stochastic distributed learning with gradient quantization and double-variance reduction
Optimization Methods and Software
  • Samuel Horváth, King Abdullah University of Science and Technology & Mohamed bin Zayed University of Artificial Intelligence
  • Dmitry Kovalev, King Abdullah University of Science and Technology
  • Konstantin Mishchenko, King Abdullah University of Science and Technology
  • Peter Richtárik, King Abdullah University of Science and Technology
  • Sebastian Stich, Ecole Polytechnique Fédérale de Lausanne
Document Type
Article
Abstract

We consider distributed optimization over several devices, each sending incremental model updates to a central server. This setting is considered, for instance, in federated learning. Various schemes have been designed to compress the model updates in order to reduce the overall communication cost. However, existing methods suffer from a significant slowdown due to additional variance (Formula presented.) coming from the compression operator and as a result, only converge sublinearly. What is needed is a variance reduction technique for taming the variance introduced by compression. We propose the first methods that achieve linear convergence for arbitrary compression operators. For strongly convex functions with condition number κ, distributed among n machines with a finite-sum structure, each worker having less than m components, we also (i) give analysis for the weakly convex and the non-convex cases and (ii) verify in experiments that our novel variance reduced schemes are more efficient than the baselines. Moreover, we show theoretically that as the number of devices increases, higher compression levels are possible without this affecting the overall number of communications in comparison with methods that do not perform any compression. This leads to a significant reduction in communication cost. Our general analysis allows to pick the most suitable compression for each problem, finding the right balance between additional variance and communication savings. Finally, we also (iii) give analysis for arbitrary quantized updates.

DOI
10.1080/10556788.2022.2117355
Publication Date
9-27-2022
Keywords
  • 90C06,
  • 90C15,
  • communication compression,
  • Distributed optimization,
  • federated learning,
  • gradient methods,
  • stochastic optimization,
  • variance reduction
Comments

IR Deposit conditions:

OA version (pathway a) Accepted version

12 Months embargo

License: CC BY-NC; CC BY-NC-ND

Published source must be acknowledged

Must link to publisher version

Set statements to accompany deposits (see policy)

The publisher will deposit in on behalf of authors to a designated institutional repository, where a deposit agreement exists with the repository

Citation Information
Horváth, S., Kovalev, D., Mishchenko, K., Richtárik, P., and Stich, S., "Stochastic distributed learning with gradient quantization and double-variance reduction", Optimization Methods and Software, vol. 38 (1), p. 91-106, Sep 2022, doi:10.1080/10556788.2022.2117355