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INTERPOLATING SEQUENCES ON CURVES 

S.A. OBAID AND D.C. RUNG 

ABSTRACT. We establish a condition on boundary curves (ending 
at points) lying either in the unit disc or the upper half plane which 
implies that any consecutively separated sequence, in the hyperbolic 
distance, lying on one of these curves is an interpolating sequence 
for bounded holomorphic functions. 

1. Introduction. In a previous paper by the authors and Charles Belna 
[1] certain geometric properties of a sequence {zn} were shown to be suffi
cient that {z„} be an interpolating sequence for the algebra of bounded 
holomorphic functions in the unit disc A or the upper half plane H in the 
complex plane. In this paper we are concerned with identifying a class of 
curves in either H or A such that any sequence on such a curve satisfying 
a minimal hyperbolic separation is an interpolating sequence. A sequence 
{zn} in A is an interpolating sequence for the algebra H°°(A) if, for each 
bounded sequence {K>„}, there exists a function fe H°°(A) such that/(z„) 
= wn, for all n. For {zn} to be interpolating for H°°(A) it is necessary and 
sufficient that it be uniformly separated. That is 

oo 

inf H x(zn, zk) > 0, 
n k=l 

where ^(z, w) is the pseudo-hyperbolic distance in A. In case the domain 
is the upper half plane H we replace A by H in the above, retaining %(z, w) 
as notation for the pseudo-hyperbolic distance in H. The necessity was 
established independently by L. Carleson [2], W.K. Hayman [4] and D.J. 
Newman [6]; the sufficiency was proved by Carleson [2]. A sequence 
{z„} in A or H is called separated if 

(1.0) inf % (z M , z w )>0. 

Recently Gerber and Weiss [3] introduced a class <% of subsets of A defined 
by the property that a sequence lying in A e ^ is interpolating if and only 
if it is separated. They gave various characterizations of the class <̂ , one 
of which is that, for any set A e <g, the closure of A in the maximal ideal 
space M contains only nontrivial homomorphisms. Other characteriza-
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tions involve Carleson measures and hyperbolic distance. Our first result 
will be to give a geometric condition insuring that a curve is in ^ . It is a 
simple application of Theorem 1 of [1]. The remainder of this paper is 
concerne^ with a slightly different problem. Hayman [4], Newman [6] 
and Kabaila [5] independently showed that if {zj lies on a radius in A 
and satisfies 

(1.1) inf z(z„, zn+l) > 0, 
n 

then {zn} is an interpolating sequence. A sequence {zn} in either A or H 
satisfying (1.1) is said to be consecutively separated. D.H. Wortman [8] 
showed that any consecutively separated sequence lying on a convex 
boundary curve in A ending at a point is interpolating. We show that the 
same type result holds for a class of curves containing all of the above 
type and which satisfies a fairly simple geometric property. This result 
depends on Corollary 1 of [1]. We also obtain several analytic descriptions 
of these curves. We recall a few definitions in order to restate the relevant 
results from [1]. 

A cone, ^(0), with vertex angle a: is a closed region of the form 

(1.2) {re*: 6Q ^ 0 ^ a + 0O
 r ^ °}> %\1 < a < %. 

The rays d = d0 and 0 = a + 0O
 a r e referred to as the right and left 

boundary rays respectively of ^(0). The cone that is the image of ^(0) 
under T(z) = z -f £ is denoted by # ( 0 , vvith the right and left boundary 
rays of ^ (Q being the respective translated images of the right and left 
boundary rays of < (̂0). For simplicity we usually write <g instead of ^(0). 
We now give Theorem 1 and Corollary 1 of [1]. 

THEOREM 1. Let {zn} be a sequence that lies in either A or jf, let a be 
a number strictly between %\2 and %, and let N be a nonnegative integer. 
If to each n there corresponds a cone <6\ with vertex angle a such that 
zm e <£„(zn) for all but at most N indices m > n, then {zn} is an interpolat
ing sequence. 

CORROLLARY 1. Let {zn} be a consecutively separated sequence lying in 
either A or jf7. If there exists a cone ^ such that 

(1.3) zn+1etfn(zn),foralln, 

then {zn} is an interpolating sequence. 

We now apply directly Theorem 1 to boundary curves z(t), 0 g / < oo, 
in A or jjf. By a boundary curve we mean a curve z(t) such that, for any 
compact set A in the space, there is a tQ such that, for t ^ tQ, z(t) $ A. 

THEOREM 2. Let z(t),Q ^ t g oo, be a boundary curve in A or 34? and 
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let a be a number strictly between iz\l and n. If to each t there corresponds 
a cone ̂ t with vertex angle a such that 

z(s) G <^(z(0), s ^ t, 

then any separated sequence on z(t) is interpolating. 

The companion result which follows from Corollary 1 is equally obvious 
with the cones <gt replaced by the single cone <$, and the sequence required 
only to be consecutively separated. However we prefer to give a more 
general result which has a conformally invariant form as well as finding 
analytic conditions on z(t) which imply that z(s) G <g(z(t)), s ^ t. To that 
end we limit ourselves now to either continuous piecewise differentiable 
or smooth curves in A or / / . As above we choose the parameter interval 
to be R+, the non-negative real numbers, although the results are all in
dependent of the parameter interval chosen. A piecewise differentiable 
curve z(t) in the complex plane is a continuous curve such that z'{t) exists 
and is nonzero except on a finite or countable set of isolated points Ez ç 
R+, where z'(t) either fails to exist or is zero. A smooth cure z(t) has a 
continuous, nonzero, derivative for all t G R+. In the sequel all curves are 
assumed to lie either in A or H unless so stated and to be at least piecewise 
differentiable even if not so specified. A boundary curve z(t) ends at a 
point if lim^coz(/) = r, where z is (necessarily) a boundary point of A 
or //(including oo). A boundary curve z(t) ending at a point z is said to 
be moderately oscillating if there exists a cone ^ and a value t0 such that 
if z is finite, 

(1.4) z(s) G #(z(0), s ^ U for all t ^ t0; 

or if z = oo, 

(..5) _ _ ^ 6 V ( - _ ^ ) , , É , , a l l , è / o . 

It should be pointed out that any boundary curves z(t) in A or H satisfy
ing (1.4), (or, indeed, the hypothesis of Theorem 2) must end at a single 
boundary point. This was observed by Gerber and Weiss for curves in 
their class # . One might ask whether one could define moderately oscil
lating for a curve z(t) ending at oo by (1.4), rather than (1.5), i.e., similar 
to Corollary 1. The answer is that this definition is not conformally invar
iant (it is too restrictive for curves tending to oo) whereas moderate oscil
lation, as defined, is conformally invariant. A proof of these remarks must 
await Theorem 3 of the next section, which gives an equivalent analytic 
formulation or fmoderate oscillation. 

2. Analytic formulations equivalent to moderate oscillation. The equivalent 
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analytic formulation of moderate oscillation is shown first and then several 
results are shown for boundary curves ending at finite points. 

THEOREM 3. Let z(t) be a boundary curve ending at a point. Then z(t) is 
moderately oscillating if and only if there exists real numbers 0O, a, %\2 < 
a < %, a determination of arg z\t), and a value tQ > 0, such that, for all 
t ^ t0, t $ Ez, ifz(t) ends at finite boundary point, 

(2.0) 0O < argz'(f) < 0O + a; 

or ifz(t) ends at oo, 

(2.1) ö o < a r g ^ - < 0 o + oc. 

PROOF. We suppose always that t ^ t0 and consider first the case in 
which z(t) ends at a finite boundary point and satisfies (2.0). We then show 
z(t) satisfies (1.4). Naturally we take < (̂0) to be the cone {re'ö|0o ^ arg 
z :g 0O + a, r ^ 0}. We begin by proving a modest version of (1.4). For 
any interval (/', t") c= R+ — Ez we show that, for any t' <; tx < t", 

(2.2) * ) 6 W i ) ) , * i ^ t^t". 

Initially suppose t < tx < t". By the differentiability of z(t) we have that 
arg(z(0 - z(^)) tends to arg z'(/i) as t -> tx. Thus there is some 5 > 0 such 
that 

(2.3) z(0 e tf(z(/!)), h^t èh + ô. 

Suppose z(t) leaves <^(z(/1)) for some t < t"\ then there is a point t2, 
t\ + ö < t2 < t", such that z(t2)£

<£(z(t1)) but for some e > 0, z(t) $ 
<g(z(ti)), for all t2 < t < t2 + e. But z(t) is differentiate at t2 and so (3.2) 
holds with t2 in place of tv Thus (2.2) holds for tx <J t < t" and by contin
uity holds at /" as well. Suppose now that tx = t'. Let {tn} be any sequence 
in (t\ t") approaching / ' monotonically. Because (2.2) is valid for each 
tn, we have that < (̂z(f„)) c <g(z{tn_{)), and the continuity of z(t) implies 
^(z(tn)) -• <%(z{t')), n -» oo. Thus we have shown (2.2). To prove the full 
result (1.4) we need only repeat the argument that z(t) cannot leave 
&(z(ti)), for any t ^ tl9 except that we replace the differentiability argu
ment by the more general (2.2), valid even if the point of departure, z(t2), 
has t2 e Ez. 

If z(t) ends at oo and satisfies (2.1) then (2.0) holds for zQ(t) = - l/(z(f)) 
and so z0(t) is moderately oscillating, which was to be shown. 

Conversely suppose z(t) is moderately oscillating and tends to a finite 
boundary point. Thus there are real numbers a, 0O, TC/2 < a < TU, and a 
value tx such that 0O S arg(z(s) - z(t)) ^ a + 0O, s > /, t ^ tv If ti Ez 

we have arg(z(s) — z(t)) -> arg z'{t) as s -> / and (2.0) is satisfied. If z(0 
ends at oo the above argument applied to — l/(z(/)) gives (2.1). 
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With this equivalent formulation we are now able to show that moderate 
oscillation is a conformally invariant property either in A or H or between 
them. We begin with A so any 1-1 conformai map of A onto A has the 
form L(z) = eid(z - zx)/(l - zzx), zx e A. If z(t) ends at r, then arg(L(z(0))' 
= arg(l - \zi\2j{\ - z(t)z{)2)) + arg(z/(0)t- As / -» oo the first argument 
on the right tends to arg(l — |^il2/((l — T ^I)2)) (any choice of the argu
ment will do). Thus arg(L(z(0)' satisfies (2.0) if arg(z'(0) does, albeit with 
a different value for 0O, and so is moderately oscillating. The 1-1 conformai 
maps of H onto H are of the form L(z) = (az + b/(cz -f d), a, b, c, d 
real numbers ad — be > 0. Let z(t) be a boundary curve in //ending at the 
point x which is moderately oscillating. If x is a finite point not equal to 
— die the L(z(t)) is a boundary curve ending at a finite point also, and 
arg(L(z(0))' = 2iYg(ad - bc)/((c z(t) + d)2) + arg z'{t). As t -* oo the 
first term on the right tends to arg(ad — bc)/((cx + d)2) and so L(z(t)) 
is moderately oscillating. If x = —d/c, c ^ O , then L(z(t)) ends at oo, 
and arg(L(z(0))7(£(z(f)))2 = a rg(«^ ~ bc)/(a z(t) + b)2 + arg z\t\ The 
first term on the right tends to 2 arg c and so L(z(t)) is moderately oscillat
ing. If x = oo and L(z(t)) ends at a finite point (that is c ^ 0), we have 
arg(L(z(0)X = arg(orf - bc/(c + ^(z(O)-1)2 + arg(z'(0)/02(0). The first 
term on the right tends to arg((ad — bc)jc2) and so L(z(t)) is moderately 
oscillating. If x = oo and L(z(t)) ends at infinity, then c = 0, a ^ 0, 
J # 0. Thus Sirg(L(z(t))y/(L(z(t)))2 = arg(ad)/(a + i z(z)-1)2 + arg(z,(/))/ 
(z2(r)). The first term of the sum tends to arg(d/a) as / tends to infinity and 
so L(z(t)) is moderately oscillating. Finally, let L(z) be any 1 — 1 con-
formal map of A onto //, and z(t) be a boundary curve in A ending at a 
point which is moderately oscillating. Because of the conformai invari
ances already shown we may suppose that z(t) ends at 1 and that L(z) = 
i(l - z)/(l + z)). Then arg(L(z(0))' = arg(-20/(l + z(t))2 + arg z'(t). 
As t -• oo the first term on the right tends to arg ( - /) and so L(z(t)) has 
moderate oscillation. Going from H to A we suppose z(t) ends at 0 and 
L(z) = (1 — z)/(l -f z). Then we proceed as above. 

There does exist a boundary curve z(t) in //ending at 0 which is moder
ately oscillating but such that the curve —l/(z(t)) does not satisfy (1.4) 
at oo. Thus, in //, it is not enough to require that a curve z(t) ending at 
oo have the property that z(s) e C(z(t)), s ^ t, for all / ^ f0, in order to 
have a conformally invariant property. Via geometry, it is not difficult 
to show that if z(t) ends at oo and satisfies (1.4), then — \j(z(t)) satisfies 
(1.4). We first construct a consecutively separated sequence {zn} in H 
tending to 0 such that {z„}, but not { —l/zw}, satisfies (1.3). Joining the 
points {zn} with straight line segments will give a curve z(t) with the 
prescribed properties. It also shows that Corollary 1 is too restrictive for 
contecutively separated sequences in //tending to oo. We recast Corollary 
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1 later. To begin our construction we choose the cone c€\ {re/ö| — % ^ d ^ 
— #/6, r ^ 0}. We construct the sequence {zj}™ four elements at a time. 
Let z0 = i. Then let zi be the point of intersection of the circle A, tangent 
to the real axis at 0 and passing through z0, with the left boundary ray of 
^(ZQ). (See Fig. 1 for this and subsequent constructions.) Let z2 = —Z\ 
and let z3 be the intersection of the left boundary ray of ^(z2) and the 
imaginary axis. Repeat the construction with z3 replacing z0. Using ele
mentary geometry and induction it is easy to show that z3k = i/2k, z3k+i = 
(1/2*) ( V T + i3)/4, z3k+2 = (1/2*) ( - V T + i3)/4, A: = 0, 1, 2, . . ., and 
then to show that i(zh zy+1) ^ 1/(2^13), for ally. The sequence satisfies 
(1.3) and the rectilinear curve z(t) through the Zj satisfies (1.4), both using 
the cone <%. However the points — l/z3/b — l/z3k+1, and — \/z3k+2 all lie 
on the straight line Im z = \\\z3k\ with - \jz3k+l lying to the left and 
— l/z3yH-2 lying to the right of — l/z3k. If the sequence {— 1/zy} and the 
curve — l/z(0 satisfied (1.3) and (1.4) respectively, for some cone &*, 
the fact that - l/z3k+1 e <#*(- \\z3k) and - l/z3k+2 e tf* ( - l/z3k) would 
imply that the vertex angle of ^* is at least %. This completes the example. 

We now generalize Corollary 1. 

DEFINITION. Let {zn} be a sequence lying in A or H with l i n v ^ zn = 
T, a point on the boundary of A or H. The sequence is a conical sequence 
if there exists a cone ^ and an index N such that 

(2.4) 

(2.5) 

i) if T ^ oo, zn+i e <g(zn), for all /z > TV; 

ii) if z = oo, — -J- ), for all n > N. 
z*t 

5TT 

Z ? / 

\ "VC 

i = z A 
o ^ -

z \ 
K^^L 2 

Figure 1. 
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THEOREM 4. Any conical sequence {zn} in H or J which is consecutively 
separated is an interpolating sequence. Further, conical sequences are con-
formally invariant on A or H or between them. 

PROOF. First we show that {zn} is interpolating. If {zn} tends to a finite 
boundary point, then Corollary 1 applies to give interpolation. If {zn} 
tends to oo then { — l/zn} is consecutively separated and satisfies the 
hypothesis of Corollary 1. Hence {— l/zn}, and thus {zn} is interpolating. 
To show that conical sequences are conformally invariant, all we need to 
find is a piecewise differentiable boundary curve z(t) passing through the 
sequence points (with increasing parameter) ending at a point and which is 
moderately oscillating. Then, for any admissible conformai transformation 
L(z), the curve L(z(t)) is moderately osciallating by the conformai in
variance of this property. This implies that the sequence {L(zn) = L(z(tn)}, 
tn < tn+1, is conical. If {zn} tends to a finite boundary point, then we take 
z(t)to be the curve obtained by successively joining zn to zn+i by a straight 
line segment. It certainly is piecewise differentiable, ends at a single point, 
and is moderately oscillating. If {zn} tends to oo, we construct, as just 
described, the curve z(t) passing through the sequence points {- \jzn}. 
We then let zx{t) — — \/(z(t)). Then z^t) is also a piecewise differentiable 
curve ending at oo and passing through the points {zn}. It is moderately 
oscillating because the sequence {— \/zn} satisfies (2.5) and so zi(t) 
satisfies (1.5). 

For boundary curves in A ending at a point, there is an equivalent 
formulation for Theorem 3 in polar coordinates. Given such a curve 
z(t) = r(t)eiHt), for t $ Ez, let /c(t) denote the angle from z(t) to z\t), 
— % < fc(t) S ft- For future considerations we note that 

(2.6) tan,(0 = ^ | p . 

We remark here that, for the remainder of the paper, when considering 
ratios of real number a/b, we assume that a and b are not both zero and 
if b — 0 we define a/0 = + oo if a > 0 and a/0 = — oo if a < 0. 

THEOREM 5. Let z(t) = r(t)eid{t) be a boundary curve in A ending at 
ei(P. Then z(t) is moderately oscillating if and only if there exist real numbers 
öi, a\ 7u/2 < a' < ft, and a value t0 such that, for t ^ tQ and / $ Ez, 

(2.7) 0x < fc(t) < d1 + a. 

PROOF. Assume / ^ t0, and suppose z(f) is moderately oscillating. We 
can assume without loss of generality that a and #0 are chosen so that 

(p - % g d0 < arg z'(0 < d0 + a < ç + ft. 
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If / <£ Ez, arg z'(t) = 0(t) + tt{t). For small e > 0 there is a ^ such that, 
for t > ti and t $ Ez, 

0O — (p — e < fc(t) < 0O — (p 4- a + e. 

So for t > ti, tc(t) satisfies (2.7) with 6\ = 0o — <p — e and a' = a + 2e. 
Conversely, if tc(t) satisfies (2.7), we may choose arg z'(t) so that arg z\t) = 
d(t) + tc(t). So, for small e, there is a t2 such that, for t > t2, 

Oi + <p - e < arg z'(0 < öi + <p + ar + e, 

and so z(/) is moderately oscillating. 

We conclude this section with a condition on a smooth curve which is 
equivalent to moderate oscillation provided the boundary curve ends at a 
finite point. 

THEOREM 6. Let z(t) = z(t) + iy(t), be a smooth boundary curve ending at 
a finite point. Then z(t) has moderate oscillation if and only if there exists a 
t0 > 0 such that the set of (extended) real numbers {(y'(t))l(x'(t)), t ^ /0} 
omits some open interval. 

PROOF. For smooth curves, arg z'(t) has a continuous determination, 
and so the set A(to) = {arg z'(t), t ^ /0} is an interval on the real line. It 
contains an interval of length % if and only if the set T(t^) = {tan(arg 
z ' (0) = (y'(t))/(x'(0)> t = h) omits at most one point. Thus A(tQ) is con
tained in some interval of the form [0O, a 4- 00], %\2 < a < TU, if and 
only if T(to) omits some open interval. Hence an application of Theorem 
3 completes the proof. For the disc A there is a polar form of Theorem 6. 

THEOREM 7. Let z(t) = r(t)eï6(i) be a smooth boundary curve in à ending 
at a point. Then z(t) has moderate oscillation if and only if there exists 
a ÎQ > 0 such that the set {0'(t))/(r'(t)), t ^ ?0} omits some open interval. 

PROOF. The set A(to) = {/c(t)9 t ^ t0 > 0} is an interval in the reals and 
so it contains an interval of length % if and only if T(to) = {tan tc(t) = 
(r(t)d'(t))l(r'(t)), t ^ t0} omits at most one point. Thus A(t0) is contained 
in an interval of the form [0l5 a' + 0J, TC/2 < a' < %, if and only if 
T(tQ) omits an open interval. But the set T*(t0) = {(0'(t))/(rf(t)\ t ^ t0} 
is close to the set T(t^) for large t0 and so there is a value tQ such that 
T*(t0) omits an interval if and only if T(t^) does. Involing Theorem 4 
completes the argument. 

In either Theorem 6 or 7 the ratios could be inverted giving the same 
result. In the next section we give more readily verifiable conditions neces
sary for a boundary curve ending at a finite point to be moderately 
oscillating. 

3. Sufficient conditions for moderate oscillation. The theorems of this 
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section apply only to boundary curves ending at a finite point. For curves 
tending to oo, the best criterion for moderate oscillation remains Theorem 
3. 

THEOREM 8. Let z(t) = z(t) -f iy(t) be a boundary curve ending at a finite 
point. Then z(t) has moderate oscillation if condition (A) or (B) is satisfied. 

(A) x'{t), t $ Ez, does not change sign and either 

lim ? M orh^ Mi tèE 

is finite; 
(B) y'(t), t $ Ez, does not change sign and either 

1- x'(t) rr- x'(t) . , rr 
l i m -777; or hm ^77v, t$E„ 

is finite. 
If z{t) is assumed to be a smooth curve ending at a finite point, then it has 
moderate oscilltion if any one of the four above mentioned limits is finite. 

PROOF. We begin with a piecewise differentiate curve which has 
x\t) ^ 0, t $ Ez. It is easy to see that the continuity of x(t) insures that 
x(t) is non-decreasing for all t e R+. Thus arg z\t) satisfies 

(3.0) -%\2 ^ argz'(f) è nß. 

If lim^oo((/(0/(V(0) = M < 00, / <£ Ez, then (3.0) gives, for large / and 
small e > 0, 

— %\2 <; arg z'(t) < arctan M + e, 

and Theorem 3 implies z(t) is moderately oscillating. The other three cases 
are entirely similar with arccot M replacing arctan M in case B. If z(t) 
is a smooth curve, Theorem 6 is immediately applicable. 

THEOREM 9. Let z(t) = r{t)ei0{t) be a boundary curve in A ending at a 
point. Then z(t) has moderate oscillation if condition (A) or (B) is satisfied. 

(A) 7(f) ^ 0, ti Ez, and either 

v 0'(f) r— 0'(O , , z 7 

is finite; 
(B) 0'(t), t $ Ez, does not change sign and either 

^TO^TO' '**" 
is finite. 
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If z(t) is a smooth boundary curve in J , then it is moderately oscillating 
if any one of the four above mentioned limits is finite. 

PROOF. We begin with the piecewise difierentiable case and assume 
r\t) ^ 0, t $ Ez. As in Theorem 8 this implies that r(t) is increasing on 
R+. The differentiability of z(t) together with r(t) increasing makes it easy 
to show that 

(3.1) -%\2 ^ K(t) ^ %\2. 

Recalling that tan *(*) = r(t) (0\tW{t)\ if l i m ^ ö ' t o / ^ ' f r ) ) = M < 
oo, then because r(t) -> 1 as / -> oo, there exist positive numbers e and 
t0 such that, for t ^ tQi t $ Ez, 

(3.2) -%\2 - s S fc(t) ^ arctan M + e. 

Hence z(t) has moderate oscillation. The proofs for the other cases are 
similar with case (B) using cot tc(t) = (r'(t)/(r(t) d\t)). If z(t) is a smooth 
curve, then a direct application of Theorem 7 shows that z(t) is moder
ately oscillating and the proof is complete. 

If z{t) = x(t) + iy(t) = r(t)ei6U) is a boundary curve ending at a finite 
point such that neither x'{t) nor y'(t) changes sign for t $ Ez, neither does 
the quantity (y'(t)/(xf(t)), and so z(t) has moderate oscillation. If z(t) 
lies inzJ with neither Q\t) nor r'(t) changing signs, then z(f)has moderate 
oscillation. It is possible to combine the various polar and rectangular 
conditions and we illustrate such a combination in the next theorem. 

THEOREM 10. Let z{t) = x(t) + iy(t) = r{t)eiHt) be a boundary curve in 
A ending at 1. If z{f) satisfies one of the following conditions for t $ Ez, 
then z(t) is moderately oscillating. 

(A) r'(t) ^ 0 andy'(t) does not change sign; 
(B) x'(t) ^ 0 and d\t) does not change sign. 

PROOF. All the proofs are entirely similr and we show the proof in the 
case r'(t) ^ 0 and y'(t) ^ 0, / £ Ez. The first inequality implies that r(t) 
is non decreasing and so — %\2 ̂  n(t) ^ %\2\ the second implies that 
y(t) is non increasing and so — % ^ arg z\t) S 0. Because arg z'(0 = 
0(0 4- it(t\ and 0(0 -* 0 as t -> oo, there is a t0 > 0 such that - (3TT)/4 ^ 
arg z'(0 ^ — #/6, and, by Theorem 3, z(t) had moderate oscillation. 
The other cases are shown in a similar manner. If z(t) ends at e*> other 
combinations imply that z(t) is moderately oscillating. 

The results of §3 on piecewise differentiable curves can be applied to 
sequences tending to a finite point to show they are conical sequences. 

4. Conditions on sequences implying interpolation. If {zn}°$ is a sequence 
of complex numbers, then the curve zx(t) = zn + (t — n) (z„+1 — zn)9 
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n ^L t <> n + 1, « = 0, 1,2, . . ., is a continuous piecewise differentiable 
curve connecting the points zn. If zn = xn + /yw and we set z^f) = 
x(t) + />(0, then y'(t) = j w + 1 - j ; n ; x '(0 = xM+1 - xM, n < t < n + 
1,/i = 0 , 1 , 2 , . . . . 

For polar representation, setting zM == rweîow define, for n = 0, 1, 2, . . . , 

lrM+1 ^(ÖW+(ÖW+1^)(2^2«-I))5 w + 1/2 < r ^ /i + 1; 

This curve is again a piecewise differentiable curve connecting the points 
zn. Ifwesetz2(0 = r(t)emt\ then, for« = 0, 1,2,. . ., 

\l{rn+l - rn), n < t < n + -1 ; 
(4.0) r'(f) = 2 

10 , Az + -±- < t < n: + 1 ; 

(o , n < t < n + 4" ' 
(4.1) 6'{t)-] l 

|2(0B+1 - 0„), n + ± < t < n + L 

COROLLARY 2. Le/ {zM = xn + /yw} 6e a consecutively separated sequence 
in either A or H which tends to a finite boundary point. Then {zn} is an 
interpolating sequence if either condition (A) or (B) is satisfied. 

(A) {xn} is a monotonie sequence and either 

Hm i^+i ~~ y* or [jj^ yn+i - y\ 

w finite; 
(B) {>>„} /s # monotonie sequence and either 

lim **+i - x* o r fini ^± I_ 
»-•"Bo > ' w + l — 7« W-+00 J „ + l — J w 

PROOF. The curve zx(t), defined by the sequence, satisfies the hypothesis 
of Theorem 8 and so is moderately oscillating; thus {zn} is a conical se
quence and by Theorem 4 is an interpolating sequence. 

The proofs of the next two corollaries are similar and based upon 
Theorem 9 and 10 respectively. 

COROLLARY 3. Let {zn = rne
idn) be a consecutively separated sequence in 

A tending to a boundary point. Then {zn} is an interpolating sequence if 
either conditions (A) or (B) is satisfied. 

(A) {rn} is monotonically increasing and either 
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lim *»+i ~ °» or hm °n+1 ~ °n 

n-+oo rn+l rn n-^-co rn+l rn 

is finite ; 

(B) {dn} is a monotonie sequence and either 

lim ^ + 1 ~ Vn or HE r
ß
n+1 ~ r*n 

is finite. 

PROOF. After a rotation of A we may assume that {zn} tends to 1. We 
use the curve z2(t) = r{t)eidU\ defined by {zn}. Recall that tan fc(t) = 
(r(t)d'(t))j{r\t)). Then (4.0) and (4.1) show that, as t -+ oo, r\t) and 
0'(t) eventually are of one sign if {rn} and {#„}, respectively, are mono-
tonic, and tan tt(t) is asymptotic to (0w+i — 0w)/(rw+1 — r j . Thus Theorem 
9 shows that z2(0 is moderately oscillating if either A or B satisfied. 

The proof for the next corollary follows along the same line so we omit 
it. 

COROLLARY 4. Let {zn = xn + iyn = rne
i6n} be a consecutively separated 

sequence in A tending to 1. Then {zn} is an interpolating sequence if either 
condition (A) or (B) is satisfied. 

(A) {rn} is a monotonically increasing sequence and {yn} is a monotonie 
sequence; 

(B) {x„} is a monotonically increasing sequence and {6n} is a monotonie 
sequence. 

Theorem 8 contains the results on the M-sequences of Weiss [7] and 
Theorem 10 contains a results of Gerber and Weiss [3], while Theorem 2 
contains Wortman's result [8] on convex curves. 

The authors thank the referee for a careful reading of the manuscript 
and many helpful comments. The second author acknowledges partial 
support from a sabbatical leave from the Pennsylvania State University 
taken at the University of Hawaii-Manoa. 
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