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Abstract. We show that a recent cluster set theorem of Rung is sharp in a
certain sense. This is accomplished through the construction of an
interpolating sequence whose limit set is closed, totally disconnected and
porous. The results also generalize some of Dolzenko's cluster set theorems.
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1. INTERPOLATING SEQUENCES. We begin by considering a closed totally

disconnected set P on the boundary 34 of the unit disc A in the complex

plane. Thus §=aA—P is the union of countably many disjoint arcs. Our first
objective is to construct interpolating sequences on certain curves in the
unit disc A whose limit points are all the points of P. In a special case
Dolzenko [1] used this construction apparently not realizing that he was
dealing with interpolating sequences. We wish to define an approach to a
point 7 € dA inside a reasonably nice subdomain of A. Let h(t) be a
real-valued function defined for -1 < t < 1. We require that

(i) h be continuous.
(ii) h(t)=h(-t).
(iii) h(0)=0, h(1)=1, h(tl) < h(tz), 0<t); <t,<1. (1.1)

(iv) h(t) < t.
(v) h"(t) >0, t# 0.

Such an h is said to be a convex approach function. This function h

determines a convex boundary domain Q(6,h) at r=eie as follows (See

Fig. 1): it
Q(e,h) = {re"":0 < r < 1-h(t-0); |t-9| < 1} (1.2)

For example h(t)=t defines the usual nontangential approach; h(t)=t2
defines the horocyclic approach and so on. The boundary of the domain
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Fig. 1 The graph of h-angle domains, the sequence {zk}, and the set D.

ie and are defined

consists of two h-curves Z, and Z_ which meet at r=e

by

A
t
®

A
-

[1-h(t-0)]elt, o <

z,(t,6,h)
(1.3)

[1-h(t-6)]elt, 0 <o-t < 1.

In

zZz_(t,e,h)

and the second

The first curve in (1.3) is called the right h-curve at
Clearly these

curve in (1.3) is called the left h-curve at T (See Fig. 1).

curves are rotations of the corresponding curves at 1.
We construct an interpolating sequence which has

Recall that a sequence {zn} is an interpolating sequence if, for each

P as its limit set.

bounded sequence of complex numbers (wn), there exists a function f in H°

such that f(zn)=wn for every n. We shall use the characterization of
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Garnett [2] for interpolating sequences. For a.,b € A, set

x(a,b) =

a-b_
1-ab

[ —

the pseudohyperbolic distance on A The sequence {z“} is interpolating if

and only if

(i) lim x(z_ .,z ) > 0:
n#&m n-m
(1.4)
(ii) There exists a constant A such that for any domain

D = (reiezl_d <r <1, ]e-65) < d},
2 (1-}z _}) < Ad.
oo lzph) <

Such a domain D is shown in Fig. 1.

Recall that P=34-P is the countable union of disjoint open arcs which
we denote by (Tn.T;). oriented in the usual counterclockwise sense. We

denote the length of this arc by |(rn,r;)l. Fix such an arc (rn,r;). We

ending at Tn (We

could equally well define these sequences on the left h-curve or both. For
simplicity we put them only on the right h-curves). Because any zZ,

now construct a sequence (zk}: on the right h-curve Z_

intersects each circle |z;=r, 0 < r < 1, in at most one point it is enough
to define (zk) by specifying |zk|. Thus let

lzgl = 1 - h({(r ,78)|/16) = 1-K

(1.5)
-1zl = (-1zgf)/2% = k2%, k> 1.
i) ie,
Consequently, if zy = lzkl e and Th=e , then from (1.3) we see that
2z lies "over" the interval (rn,r;) and is of the form
iy N
2z = [l—h(ek—en)]e » 0 <90, < /8, lzkl > 1/2. (1.6

We note that

1 1
2K oK 1
X (Zo 2y, q) 2 x Uzl l2eql) = l_il - ‘ER l " k2K
2

and thus x(zn,zm) > 1/3, n#m. To show (1.4)(ii), for a given domain D
let n be the least index such that Zy € D. Note that

- o0 k
S (1-lzp]) € = (-fz ]) = T (1-|z |)/2° = 2(1-|z |) < 2d,
zkED( Lzl < k=n 1zl k=n n n

hence the sequence (zk} is interpolating.
We want to construct a larger interpolating sequence by taking the union

of all sequences at the points Th For each arc (Tn,r;) in P construct
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a sequence on 4 _ in exactly the same manner as above We claim that the
(countable) union, S, of these sequences is still an interpolating sequence
(Note that any rearrangement of an interpolating sequence is still
interpolating). We first show that (1.4) is satisfied, beginning with
(1.4)(1).

We will show that if a.,b € S, then

x (a,b) > %% (1.7)

The proof of the above inequality can be done in two steps. First, if a
and b lie on the same h-curve then we have shown that (a,b) > 1/3.
Second, if a,b lie on two different h-curves then we use the following
inequality (See [3], p.474) which is valid for any a,b € A

a,b a-b a,b
TTT%{iTE%BT < ?%7;7% < T:T%f;fg%sj : (1.8)

The right inequality implies that if
feitt >
-la

1
v(a,b) >4 . (1.10)

(1.9)

A

then

-
Thus we show that (1.9) is valid. Let zmn be an element of the sequence on

-
the h-curve ending at Th and let sz be an element of the sequence on the

h-curve i T
ending at Ty as shown in Fig. 1. Set arg zm"=9m and arg Thn-

We may assume arg Tp > arg Tj' Then it is clear that

Tn TJ Tn
lzy, -zl > Iz, sin(e,-6 ) (1.11)
and
sin(6,-6,) > (2/m)(6,-6,) (1.12)
Thus Th T T
'zmn_.zk.’. R 'zmnl sin(em-en) >_1'
L Th8,-6,) sm
1—|zm |

where we used (1.1), (1.6), (1.11) and (1.12). This proves that the sequence
S satisfies (1.4)(1i).
For (1.4)(ii), let D be the domain specified there. We claim that

Z  (1-fa]) < sd. (1.13)
a€sfip

The points of S that lie in D belong to curves that end at the
boundary of D except for at most two curves which might end outside D
(See Fig. 1). Partition the points of S} D into two sets A and B as
T T
follows: znlll € A if and only if (Tm,T;) C 3D [} 24, otherwise put znm € B.
Thus from (1.1) and (1.5) we have



SHARPNESS OF SOME CLUSTER SET RESULTS 781

T T o T T d
b (1—;z"m!=z = (1—|zn”g)52 Z -z, m.>=2211—|zo < % Tl <3
T m n m n=0 m m
aneA

T

If {znm) CB then 7 has at most two values, say T and Ty (See Fig.

m
T .
1). Let zn1 denote the first term of each sequence lying in D then
i
2 Ty 2 Ti,2
1-3z. ) < 3 (-jz 0l T o5
2 L E im) Sy n;' p=o 2"
anEB

[}

2 Ti
2 3 (1-]z 1) < 4d.
i=1 1
where we used (1.5). Thus
2 (1-]a]) < 5d,
a€y|D

which implies that S is an interpolating sequence.

2. POROSITY AND RIGHT h-ANGLES. In this section we add another restriction

on the set P C 3A. We assume that P is porous. The notion of porosity was

introduced in 1967 by Dolzenko [1] and later used by Rung [4] and Yoshida [5]
to generalize some of the cluster theory results. We note that in 1976
Zajicek [6] generalized the definition of porosity and proved a variety of
interesting properties of porous sets.

Let P C 3a. For each el® € 3a. let m(6,2,P) be the length of the

largest subarc of the arc (ei(e~£). e1(9+£)) which does not meet P. If
no such arc exists define =(6,z,P)=0. According to Dolzenko [1], P is

porous at ele if

mﬂ!Q,t,P! > 0. (2.1)
30 &
A set P C dA is porous if it is porous at each p € P; P is o-porous if it

is the finite or countable union of porous sets. A porous set is nowhere
dense and thus a o-porous set is of the first Baire category.

We now define a right h-angle in A at T=eie € dA. For any positive
constant ¢, set hc(x)=h[%ﬂ, -¢ < X < c; Then h® is also a convex

approach function. For any constants 0 < a < b, define
RA(0,a,b,h) = {rel®:1-n3(g-6) < r < 1-hP(#-0), 0 < @-0 < a}. (2.2)

The boundary curve of RA(6,a,b,h) defined by the left inequality will
be called the lower boundary curve of the right h-angle domain and the other
boundary curve is called the upper boundary curve (See Fig. 1). The left
h-angle domain at =, LA(@,a,b,h) is defined by replacing ¢-6 by 6-¢ in
(2.2) with upper and lower boundary curves defined by the same inequality. If
h(t)=t then this represents a typical Stolz angle domain.

If ECA and if E[] 3a # ¢ then the cluster set of a function f

along E will be denoted by C(f,E). Our final objective is to investigate
the sharpness of the following theorem of Rung [4].
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Theorem R. Tet f be defined in A taking values_in the extended

complex plane, and h a given approach function. lhen for all e'® € a,

except _for a o-porous set, for any choice of 0 <a <b and ¢ >0,

C(f,RA(6.a,b,h)) = C(f,LA(®,a,b,h)) = C(£,2(0.h"))

We start by introducing two well-known results due to Garnett (See Koosis [7],
p.281-282) and Kerr -Lawson [8].

Lemma 1 (Garnett) If there is an =7 > 0 such that viag.ap) > 7, for

n#m, and if z (I"Ianiz) < Ad, where D is given by (1.4) and A 1is @
a_€D
n

inf T x(a,,a_) > d,
m n=1 noom
n#n

where & depends_only on 7 and A.

Lemma 2 (Kerr-Lawson). Let B(z) be the Blaschke function whose zeros

are_given by the sequence {an}‘ Suppose that

inf T x(a,,a_) >¢6 > 0.
m n=1 noom
mEn

Then given a_ number 60 > 0 there exists a number £ > 0 which depends only

on & and 65 such that the set {z:{B(z){ < ¢} is contained in the union

of disjoint pseudohyperbolic discs N(an,do) with y-center a, and

X -radius 60.
Theorem 1. Let P be a closed totally disconnected porous subset of 23da

and let h be a convex approach function. Then there exists a Blaschke

function B(z) with the following properties:

(i) B(z) is defined and analytic in &a-P,

(ii) There exists an ¢ > 0 such that for each eiﬂ € 34,

lim |B(z)] > ¢ as <~ e with z €RA(8.3.2.0);

El

(iii) For each r = el € P, there exists either a RA(f.,a,b,R) or

o

LA(f,a,b,h) which contain infinitely many zeros of B(z). (The
eip.)

choice of a and b vary with

Proof. Let B(z) be the infinite Blaschke product

g Ia I a -z
B(z) = ] an [ n ] s z € A,
n=1 n

l—anz

where (an} is any arrangement of the interpolating sequence S defined in
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section 1 relative to the set P. Since B(z) 1is a Blaschke product then
(i) follows.
We now prove (ii). If r-e'f € aa-P then (ii) is obvious. If = €FP

then we first show that (ii) holds for the case when r=eiﬁ is an isolated
point of P. 1In this vircumstance 7 i{s the initial endpoint of an arc
(r,7*) contained in da-P. Using the results of Rung [4, p.204] and
Satyanaraya and Weiss [9, p.65] we find that the pseudohyperbolic distance
near T between the boundaries of the right h-angle domain (2.2) is at least
{b-a|/2|b+a]. Choosing a=1/2, b=3/2, the above distance equals to 1/4.

. 1 13
Thus for large n, each N(zn,a) c RA(ﬁ.Q,z,h).

Lemmas 1 and 2 imply that there exists a positive number ¢ such that

|B(z)] > ¢ for z & nUIN(z;,l/B). Thus we have lim |B(z)| > &, for z €

EY

N
M

RA(p,%.%,h). Recall that the points of (an) lie on right h-curves ending at
isolated points of P and lying over the corresponding interval of 3A-P.

Consequently if r 1is a limit point of P then it is easy to see that

U N(an,l/a) still does not meet this RA(ﬁ.%,%.h) so lim {B(z)| > ¢, when
n=1 T

z € RA(A..3.0).
Finally we prove (iii). If r=e1p is an isolated point then clearly
RA(ﬁ,%.%,h) contains infinitely many zeros of B(z). Suppose r=eiﬁ is a

limit point of isolated points 7, € P. We shall show that there exists an

integer m > 2 such that the right h-angle domain RA(f,1,m.,h) contains

infinitely many points of S. Let P be the union of the arcs

-~ oo
p=U (v,.7%)
n=1 n''n
and without loss of generality we take p=0. By (2.1) there is a sequence
ie, ie ia ip
(e k, k) and subarcs (e k,e k) C 3a-P with

of arcs e

By, —«
lin XK 5 o, (2.3)

We consider two cases according as to whether the subsequence (eiak,eipk)

approach 1 from above or below. If both, then select a subsequence

approaching from one side of 1. The case of (eiak,eipk) approaching 1 from
below is slightly more complicated and so we prove this case. We suppose to
the contrary that none of the left h angle domains LA(O,1,m,h), m=2,3,4,...
contain infinitely many points of S. For each m, there must be an infinite

b iak iﬁk
subsequence of the arcs (e ,e ) such that the corresponding Blaschke

k
sequence (z& )) on Z+(t,ak.h) has its first term, zék), between the upper
boundary curve Z_(t,0,h) of LA(0,1,m,h) (defined in (2.2)) and 3A (See
Fig. 1). To see this we first may assume that logl < 1. Then note that
Z+(t,ak.h) and Z_(t,ﬁk,h) meet at a point on the radius to the midpoint of
i ip
(e Ke K, k)

the arc e

lies
between Z_(t.ﬁk.h) and 3A and certainly between Z_(t,0,h), the lower

Because arg zék) = 55;%5 < 85525 , then zé
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boundary curve of LA(O,1,m,h), and d3a. But then zék) must lie between the

upper boundary curve of LA(O0,1,m,h), Zg(t.o,hm), and dA elsc there would be
infinitely many points of S inside LA{0,1,m,h). For each m choose
iak iﬂk
m m : .
(e e ) satisfying X 2 0, m » <. According to (1.5) the first
m
i
(k_) km

Blaschke sequence term Zq m associated with e

ie ip B, -«
(k) k k k_"%k
1-1zp ™ =hfte Me ™f/16) = h[ "‘mJL]

iy,

Thus the point wm=lwmte m

on Z_(t,o,hm) which lies on the same

(k)
radius as Zq satisfies

(k) Py
hiyy/m) = 1 = Juwe} > 1 - |z, ") = [——ETE_AJ

Now |¢m| < okm and so the properties of nt together with the above

two inequalities imply that

m m m 16
Sm

and this last expression tends to 0 as m » «. This contradicts (2.3).

When the intervals approach 1 from above the left angle at 1 is replaced by
the corresponding right angle at 1 and the proof proceeds along the same lines
as before. This completes the proof of the theorem.

Remark 1. Note that the constant ¢ appearing in property (ii) of Theorem 1
depends only on the three constants 60=1/8, n=1/4n, A=5 (which appear in

(1.7), (1.10) and (1.13) respectively) so that any Blaschke product whose
zeros are an interpolating sequence with these three constants satisfies
IB(2)l > ¢ for a single constant «=.

A slight modification of a result of Dolzenko [1, p.8] gives the
following lemma.

Lemma 3. A set P C3A given by

where Pn are closed, totally disconnected and porous sets can be written in

the form i~
P= F
k=1 K

where Fk are disjoint, closed, and porous. Moreover if p#q then each of

t
he gets Fp and Fq lies entirely on an arc complementary to the other
with respect to 3a.



SHARPNESS OF SOME CLUSTER SET RESULTS 785

Theorem 2. Given a4 o-porous sct P C 3A which can_be written_as

P=U P
n=1
holomorphic_function f(z) in A with the following properties:

where P = are closed and porous. There exists _a bounded

n'

(i) f(z) is continuous from within A at each point of 3A-P:

T

(ii) For each point r € P, there_exist two h angle domains s_at

such_that the cluster sets of f along these angles are

different.

o0
Proof. Consider the set P=|) Pn. Lemma 3 implies that there exist mutually
n=1

disjoint, closed, and porous sets Fk such that P=|) Fk. Furthermore Fk
k=1

lies entirely in an arc complementary to Fj for k£j. Corresponding to each

set Fk we construct a function Bk(z) (Bk(szB(z), P=Fk) as we have done in

Theorem 1. Following Dolzenko we define f(z) as the infinite series

f(z) = k§1:2k B (z), z€a, (2.4)

where & 1is the fixed constant appearing in Theorem 2. (Recall that this
value ¢ obtained in property (ii) of Theorem 1 is independent of the
particular Bk(z); see Remark 1 after Theorem 1. There is no loss of

generality in assuming 0 < £ 5 < 1/2.) The series (2.4) is clearly
1-¢

uniformly and absolutely convergent on compact subsets of A and so f(z) is
analytic and bounded on A. It is also clear that f(z) is continuous from
within A at each point r € C-P. This proves (i) of the theorem.

We now proceed to prove (ii). Consider a fixed Fk and let
0

r=eiﬂ € Fk . Then for k#k0 the functions Bk(z) are continuous at the
0

point T. Moreover we have for z € A

00

2

2(k,yt1
g e 0 aa?)

/(1-e€). (2.5)

Iz
k=kg+1

We now use Theorem 1, specifically property (ii) of B, (z), property (2.5),
ko

and the continuity of Bk(z) at v for k < k0 to show the following

AP 11
limit. Set a = z ¢ Bk(r). Thus for =z € RA(p,é,E,h) we find
lim {f(z) - a|
YA R
k-1
- lim | %, (z) + £ KB (2)-B(r)] + = 2B (2))
27T 0 k=1 k0+1
o 1y IB, (z)] - TIm | 0; 2kp, ( )]
> ¢ m z - m & B,(z)-B, (7 .
o Ko z3T k= k k : (2.6)

add

-Tm | = 2B (2)]
k0+1
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> 8 - &

2 ko‘l 2(k0*1)‘(]

2 knrl
- 0 &) - p
£ [1 ; 2] = ry > 0.

Note that (2.6) implies that there are no points of C(f,RA(ﬂ,%,%,h)) within
the disc |{f(z) al < rg. On the other hand property (ii1) of Theorem 1 shows

that there exists a sequence (zn) of zeros of Bk (7z) contained in an h
0

angle domain at + such that Zy 2T Consequently using (2.5) and the

continuity of the finite sum we have

k-1
o 2k 0
Tim (f(z)-al = IIn | = B (z 2Krg (2 )-
O . N
2(k,=1)
<o % /a-e?) =y
Now ry <rg because
2 k,+1
0
ryry = ¢ [1 - []fza]] > 0. (2.8)

Expressions (2.7) and (2.8) imply states that the cluster set of f(z) along
the h angle domain containing the zeros of Bk (z) contains points in the
0

circle |f(z)-a} < ry- This completes the proof of (ii). If the sets Pn are

not assumed to be porous then the zeros of Bk (z) only accumulate at r and
0

so the best that can be said is that the total cluster set of f at = is
different from the cluster set of f along RA(ﬂ,%,%,h).
Thus we have generalized Dolzenko's results and have shown the sharpness

of Theorem R when the exceptional g-porous set is the union of closed porous
sets.
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