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ABSTRACT  

Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high 
performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port 
security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf 
visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a 
single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can 
time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy 
efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and 
has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and 
transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo 
vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a four-
layer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field 
monitoring applications that need multispectral and three dimensional imaging capabilities.  Initial testing is in progress 
and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to 
image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.  
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1. INTRODUCTION  
Computational photography provides processing directly on digital cameras with features such as integration of many 
snapshots into a single panorama image.  In the same way, the CP integrates continuous multi-channel computer vision, 
digital video and snapshot digital image processing in a single device with features such as depth mapping and 
generation of mosaic images.  The continuous digital video processing for computer vision features is provided by both 
an FPGA interface and by an embedded Linux microprocessor.  Computer vision transform and convolution primitives 
required by higher level stereo and 3-D computer vision are provided by FPGA state machine logic operating on the 
input path from the multi-channel analog camera interface to offload the microprocessor to enable it to implement higher 
level functions such as passive depth mapping.  The hardware state-machine also provides deterministic continuous 
30Hz transformation.  The continuous computer vision functions can also be coordinated with high resolution snapshots 
at lower non-continuous rates.  The FPGA layer performs pixel encoding, time and resolution decimation as well as 
resolution interpolation required for left and right channel stereopsis.  The multi-channel design can likewise be 
reconfigured for an infrared and visible channel for multi-spectral operation or for active depth mapping with the 
addition of a structured light infrared projector.  The design of the PCB for the multi-channel analog camera interface to 
the FPGA is intended to be an open hardware reference available for education, computer vision and instrumentation 
research and product innovation.  The ability to use the reference PCB with commonly available FPGA and 
microprocessor options in small, battery powered systems makes the CP a modular system that can be integrated into a 
wide variety of computer vision and high definition snapshot collection applications.  Several uses that are planned or in 
consideration will be reviewed in this paper, but first the design concepts, interfaces, and architecture will be provided.  
The ultimate goal is the make the hardware (the interface PCB between cameras and FPGA boards), reference HDL 
(Hardware Design Language) firmware (FPGA bit streams), and reference software including OpenCV8 applications 
available for general use to extend and experiment with the design presented here.  
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2. COMPUTATIONAL PHOTOMETER DESIGN GOALS 
The CP was conceived out of frustration that most analog and digital cameras available for computer vision research and 
education do not have a balance of affordability, open design, and real-time performance features allowing for quick 
experimentation with passive 3-D vision algorithms.   These algorithms are used in embedded applications to explore 
biologically inspired processing and to emulate human vision functions12.  Likewise, the CP was designed so students 
can integrate multi-channel camera systems into educational projects with application specific modifications.   
 
2.1 Off-the-shelf Comparison Methodology 

The authors tested many cameras and depth mappers like the PrimeSense systems over years keeping track of 
performance, cost, how open the hardware, firmware and software are, and how efficient the option is for embedding 
and powering from a battery.  This is somewhat subjective and could include far more parameter like resolution, exact 
power consumption, and specific brands, but the basic analysis is provided here to simply provide justification for the 
custom PCB and the overall partial off-the-shelf modular design for the CP.  Exciting new options like off-the-shelf 
active depth mappers using the PrimeSense ASIC (Application Specific Integrated Circuits) from ASUS, Microsoft, and 
others come with an open application programmer’s interface (OpenNI3).  Unfortunately active depth mapper hardware 
is largely proprietary and difficult to modify, extend, or integrate directly on a custom PCB and also difficult to probe to 
learn about digital and analog signaling.  The authors concluded that the most cost effective method of providing an 
open design with capabilities similar to proprietary analog and digital cameras with pre-processing ASICs is to provide a 
hybrid FPGA and microprocessor reference design.   
 
A table summarizing features and comparing off-the-shelf options with the CP architecture is summarized in Table 1.   
 
The grades for each category in Table 1 are rated 1 to 3 as follows: 

1. Cost – 3 if available for less than $500, 2 if commonly less than $1000, 1 if commonly more than $1000. 
2. Openness – 3 if hardware (HW), firmware (FW) and software (SW) are open design file and source code, 2 if 

only two layers are, and 1 if only one layer.  In cases where IP can be licensed a half credit was awarded. 
3. Performance – 3 if frame rates are nearly constant at 30Hz or better with microseconds of interrupt latency for 

real-time (RT), 2 if frame rates are 30Hz or better with latency variation in milliseconds, 3 if variable frame 
rates less than 30Hz are observed most often. 

4. Efficiency – 3 if the configuration can be easily battery powered for hours of embedded operation, 2 if the 
configuration can be embedded at all, 1 if it must be hosted in a lab or pole attached with grid-tied power. 

 
Table 1. Summary of alternative fully off-the-shelf options compared to the modular Computational Photometer (Resolution 
of 480i/480p considered sufficient, no preference for HD, *performance for the CP is still in verification) 

Configuration Cost Openness Performance Efficiency Score 

CP Low (3) Open HW, FW, SW (3) *RT (3) High (3) 12 

Digital Camera Port5 Low (3) Proprietary HW, Open FW, SW (2) Variable (1) High (3) 9 

Analog Camera with 
PC Frame Grabber 

Low (3) Proprietary HW, Open FW, SW (2) RT (3) Low (1) 9 

CameraLink4 High (1) Proprietary HW, IP FW, Open SW (1.5) RT (3) High (3) 8.5 

USB Webcam or 
Active Depth Mapper 

Low (3) Proprietary HW, FW, Open SW (1) Variable (1) High (3) 8 

Ethernet CCTV6 Medium (2) Proprietary HW, FW, Open SW (1) Predictable (2) Low (1) 6 

HD and SD-SDI High (1) Proprietary HW, FW, SW (0) RT (3) Low (1) 5 

 
The University of Adelaide tested a number of CCTV security cameras, webcam and analog cameras6 and the authors 
have likewise tested frame rates on CameraPort, webcam, and analog cameras with a frame grabber to establish 
performance.  Software and firmware for analog cameras using video decoders available off-the-shelf as well as a 
VxWorks driver developed by the authors is available for real-time digital video processing and computer vision10.  Low 



 
 

 
 

cost is important for educational use, high performance for interactive, real-time robotics and process automation using 
computer vision.  Efficiency is essential for embedding in field applications and devices.  Open hardware, firmware and 
software are also critical for education and research.  Finally, for product innovation, licensed IP options as are often 
available for some configurations and open application programmer’s interfaces may be sufficient to commercial 
applications, but solutions meeting all of the author’s criteria were not found to be available off-the-shelf. 
 
2.2 Modular Multi-channel Interface Board 

The custom PCB that has been fabricated, now being verified by the authors, is intended to bridge two or more analog 
cameras to an FGPA board that in turn uses standard interfaces to a microprocessor.  As such, it is an analog front-end, 
but with the FPGA reference HDL it provides interface-based image transformation offload as shown in Figure 1. 

 
Figure 1. Computational Photometer Block Diagram – Multi-channel Passive Configuration 

2.3 Educational Goals  

To provide students and faculty a reference design with analog and digital hardware design files that can be easily 
modified to scale, extend or improve the basic camera to FPGA interface board with simple test interfaces for analog and 
digital signal probing.  The design for the PCB has been kept simple, with a common four layer PCB layout approach to 
lower cost of fabrication and simplify verification.  The design files will ultimately be made available through university 
program web sites working with our industry sponsors.  Exact open hardware and software licensing details have yet to 
be finalized, but the goal is to follow the lead set by other open hardware reference designs. 

2.4 Research Goals 

The CP has been designed for a minimum of dual-channel continuous digital video acquisition and coordinated stereo 
computer vision pre-processing for common keypoint analysis (image registration) methods to compute passive depth 
maps using stereopsis.  Likewise, more sophisticated segmentation, recognition, and point cloud model generation 
algorithms can be implemented on an interfaced microprocessor like the TI OMAP.  The PCB design allows for use with 
a wide range of Altera DE boards, from the small scale DE0 to the DE2i, providing for simple battery powered use, but 
also for lab powered or pole attached uses for research with higher bandwidth and multi-core processing. 

2.5 Innovation Goals 

Potential product innovation and concepts can be explored by leveraging the open hardware, firmware and software 
design.  Our project goal is to encourage and facilitate FPGA acceleration of common computer vision convolutions and 
transformations found in open source software, e.g. OpenCV, to provide microprocessor offload and to increase 



 
 

 
 

performance and efficiency for applications like active depth mapping.  Active depth mappers have potential medical 
applications such as wound care7, intelligent transportation vehicle safety, augmented reality, entertainment and more.  
Since commercial applications need the option to build proprietary applications, the open license will be formulated to 
allow for proprietary as long as the core reference design and improvements to it remain open.  Initially the reference 
will simply provide FIFO (First in First Out) buffering of both digital video channels with options to re-encode pixels 
into several formats from the hardware decoder (YCrCb, RGB, grayscale), resolution decimation and interpolation for 
down and up conversion, as well as time decimation at the frame level.  Longer term, with larger scale FPGA options 
such as the Altera DE2i, it is envisioned that more complex transforms might be fully offloaded to the FPGA. 

The concept of offloading primitive image convolution is referred to here as a CVPU (Computer Vision Processing Unit) 
and is envisioned to work on the camera input interface much like a GPU (Graphics Processing Unit) provides co-
processing on the output interface to offload graphics rendering.  Here the CVPU provides co-processing on input digital 
video for image segmentation, multi-image feature correspondence for 3-D depth mapping, edge detection, filtering and 
ideally any image pre-processing required by computer vision to reduce general purpose microprocessor loading.  
Likewise, this frees loading on the microprocessor so it can be used for higher-level logic algorithms such as SIFT 
(Scale Invariant Feature Transform) keypoint matching search for object recognition1. 

Likewise, it is often simpler to interface flash storage, file systems, and to host data management and searching 
algorithms such as recognition search algorithms built on SIFT, AdaBoost or Haar features2 for facial detection and 
recognition, the generalized Hough11 transform as well as many machine learning and inference applications for 
computer vision on embedded Linux platforms.  The CP design enables this simply by providing a USB 2.0 uplink to 
low-power microprocessors like the TI-OMAP and on the DE2i, but leveraging the on-board PCI express interface 
between the FPGA and the multi-core Intel Atom microprocessor.  Both can easily be configured to boot Linux, mount 
file systems, and host a full OpenCV library to simplify and speed-up application development. 

3. FABRICATED REVISION-A TEST PCB 
The Revision-A PCB was fabricated in January of 2014 and the authors are verifying the functionality of the TI decoders 
(each channel), the debug and test TI encoder, the parallel-to-I2C firmware configuration interface, and the FPGA digital 
video output.  The major blocks are shown in Figure 2 from the schematic capture tool (Mentor Graphics DxDesigner).   

 
Figure 2. Revision-A Computational Photometer Top Level Schematic 

The goal of the Revision-A board is function verification, connector and I/O verification for digital video data to the 
Altera DE0 and DE2i FPGA boards, and general design concept verification.  The cost has been verified (less than $200 
for the bill or materials and fabrication), the performance of full 30Hz dual-channel frame rate handling with less than 1 
millisecond latency remains to be verified, but the power efficiency has been verified for battery operation.  Video 



 
 

 
 

decoding consumes less than a half watt, and FPGA power requirements scale directly with frame rate and 
computational complexity.  Verification completion and release of hardware design files through an open hardware 
university program is scheduled for late 2014.  A picture of the Revision-A PCB is provided in Figure 3.   

 
Figure 3. Revision-A Computational Photometer PCB 

Note the dual YPrPb (Y=Green luminance gamma corrected with sync, sub-sampled modulated Red, and sub-sampled 
modulated Green) inputs with alternate composite NTSC input options.  The parallel port is a Revision-A feature for 
debug that can be eliminated, but allows for use of the decoder and encoder firmware configuration tools.  Open 
reference design users can decide to preserve or eliminate debug and test interfaces.  Digital video verification is being 
completed using a second separate FPGA state machine to generate NTSC Y-channel only test input on the component 
interface to drive in known gray map patterns that can be verified on digital outputs between the decoders and the FPGA.  
Likewise, injected test patterns can be verified on the UBS 2.0 or PCI express microprocessor interfaces as well. 

4. COMPUTATIONAL PHOTOMETER RESEARCH APPLICATIONS 
The CP will enable research in both passive 3-D computer vision and active RBG depth mapping9 with an infrared or 
visible structured light projector such as the Texas Instruments DLP (Digital Light Projector) as shown in Figure 4.  

 
Figure 4. Computational Photometer Active RGB Depth Mapper Configuration 



 
 

 
 

Furthermore, with the use of analog infrared cameras (readily available at reasonable cost, or derived by removing 
filters), multi-spectral images with correspondence can be used in computer vision research as well.  Perhaps most 
importantly, the CP opens up hybrid FPGA and microprocessor software computer vision algorithm research.  The 
concept of the CVPU is made easier to explore using Altera DE FPGA boards and the CP interface board.  For example, 
the lowest level image convolution and transformation primitives of edge detectors, the steps in SIFT keypoint 
correspondence for recognition, image stitching, digital stabilization and passive stereopsis can be implemented in the 
FPGA.  Acceleration of SIFT and related feature vector and shape detection (Hough transform) methods are a major goal 
for research after verification. 

5. SUMMARY AND FUTURE PLANS 
After verification and release of the CP design described here, future work includes education, innovation and research 
application work.  The performance of FPGA accelerated edge detection convolutions, feature vector matching, shape 
finding transformations and general resolution interpolation and decimation performance will be reported in future 
publications by the authors.  The hybrid FPGA accelerated applications can be compared to the same applications built 
with off-the-shelf cameras, software processing only, GPU acceleration, and multi-core processing to quantify the 
efficiency (in terms of total power used), the frame rate, and the algorithmic metrics such as keypoint matches per 
second.  The authors invite others to help in the overall verification, extension of the design, and would encourage 
similar testing of computer vision algorithms with FPGA acceleration and sharing of results. 
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