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A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

S. ABBASBANDY, M. ALAVI

ABSTRACT. In this paper we present a method for solving fuzzy linear systems
by two crisp linear systems. Also necessary and sufficient conditions for exis-
tence of solution are given. Some numerical examples illustrate the efficiency
of the method.

1. Introduction

Systems of simultaneous linear equations play a major role in various areas as
such as mathematics, physics, statistics, neural network and etc. A general model
for solving an n x n fuzzy linear system which coefficients matrix is crisp and the
right-hand side column is an arbitrary fuzzy number vector was given by Friedman
et al. [7]. They used the embedding method given in [5] and replace the original
n x n fuzzy linear system by a 2n x 2n crisp function linear system. Some other
numerical procedures, for example, Jacobi, Gauss-Seidel, SOR iterative methods
and Adomian decomposition method for solving fuzzy linear systems are designed
by [1],]2],[3]. In this paper we present a method for solving n x n fuzzy linear system
whose coefficients matrix is crisp and the right-hand side column is an arbitrary
fuzzy number vector. For solving n x n fuzzy linear system we solve two n x n crisp
function linear systems (in comparison with Friedman’s procedure). Numerical ex-
amples are provided to illustrate the efficiency of the method.

2. Preliminaries

Here we recall the basic notations for symmetric fuzzy numbers and symmetric
fuzzy linear systems.

Definition 2.1. [8] A fuzzy number is a map u : R — I = [0, 1] which satisfies:
(7) u is upper semi-continuous.
(#) u(z) = 0 outside some interval [c,d] C R.
(7i7) There exist real numbers a, b such that ¢ < a < b < d where
1: u(x) is monotonic increasing on [c, al.
2: u(x) is monotonic decreasing on [b, d].
3 u(x)=1, a<z<b.
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Also u is called symmetric fuzzy number if w(u® + z) = u(u® — z) for Vo € R,
where u® = QTH’.
An equivalent parametric definition of fuzzy numbers is given in [5, 4] as:

Definition 2.2. An arbitrary fuzzy number in parametric form is represented by
an ordered pair of functions (u(r),@(r)), 0 < r < 1, which satisfy the following
requirements:

1: u(r) is a bounded left-continuous non-decreasing function over [0, 1].

2: @(r) is a bounded left-continuous non-increasing function over [0, 1].

3: u(r) <u(r),0<r<1.

Also u = (u, ) is called a symmetric fuzzy number in parametric form if
(o) = M) )
2
is a real constant for all 0 < r < 1. For example u = (2 4+ 7,5 — 2r) is a fuzzy
number and v = (1 + 7,3 — r) is a symmetric fuzzy number in parametric form. A
crisp number « is simply represented by u(r) =u(r) = a, 0 <r <1, [5].

Definition 2.3. The n x n linear system

a1121 + ... + @1pTn = Y1,
21T1 + ... + G2nTn = Y2,

(1)

121 + oo + ApTn = Yn,

where the coefficients matrix A = (aij), 1 <14, 7 < nisacrisp nxn matrix and each
yi, 1 <4 < mn, is fuzzy number in parametric form, is called a fuzzy linear system
in parametric form (FLS) [7]. One recalls [5] that for arbitrary fuzzy numbers
x = (z(r),Z(r)), y = (y(r),y(r)) in parametric form and scalar k

1: x =y if and o;ﬂy if 2(r) = y(r) and Z(r) = 7(r).
2: v +y = (z(r) +y(r),z(r) +7(r)).
3: kx = (kz(r),kz(r)) if k is nonnegative and kx = (kz(r),kz(r)) if k is
negative.
Definition 2.4. A fuzzy number vector X = (z1, %2, ..., T,)! given by x; = (z;(r),

Ti(r)), 1 <i<mn,0<r <1,is called (in parametric form) a solution of the FLS
(1) if

n n
Zj:l AijTj = Zj:l AijZj =Y.

(2)
D @iy = D WiiTy =
Definition 2.5. For fuzzy linear system AX = Y, like FLS (1), let matrix B

contains the positive entries of A and matrix C' contains the absolute value of the
negative entries of A. Then A = B — C and we define AT = B + C.
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Definition 2.6. The permutation matrix be a square matrix with one unit element
in each row and column and all other entries zero.

Definition 2.7. An arbitrary matrix A is said to be absolutely permutation matrix
if AT is a permutation matrix.

Remark 2.8. If A is an absolutely permutation matrix then A~! is an absolutely
permutation matrix and A~! = AT,

Theorem 2.9. [6] The inverse of nonnegative matriz A is nonnegative if and only
if A is a permutation matriz.

3. Fuzzy solution

The i equation in (1) is representable in the following equivalent form:

(3) Do agzi+ Y agT =y,

aijZO Qjj <0
E ai;T; + E Qi T; = Yy
a;;>0 a;;<0
and hence
(4) > ay(@ —z) = Y ay(@ - ;) =Y~y
CLUZO a;; <0

Ifwj =7; —z; and v; =7; — y, then (4) has the form

Z Qi W; — Z Qi W; = Vg, = 17...,’/1,

ai; >0 ai; <0
and in the matrix form

(B+COYW =V,

where W = (wy,ws, ..., w,), V = (vi,v2,...,0,) and A = B — C. Let X¢ =
(x§,25,...,x5) and Y° = (y§,yS,...,yS) where z§ = (z;(r) + T;(r))/2 and yf =
(y;,(r) +7;(r))/2 for 1 <i <mn.
Theorem 3.1. Let X be a fuzzy solution of FLS (1) where coefficients matriz A
is monsingular matriz and Y is a fuzzy number vector. Then AX® =Y¢°.

Proof. Due to Eq.(3), we have for each i, 1 <i<n

(T;(r) +z;(r)) (@;(r) +z;(r)) . @:(r) +y,(r))
5 (0, BB, |, @O0, G0
a;; >0 a;; <0
and hence
D auti ) ayTy =i,
a;;>0 a;;<0
ie., (B—C)X¢=Y¢ which completes the proof. O

Remark 3.2. In Theorem 3.1, if Y is symmetric fuzzy vector then X is symmetric
fuzzy vector.
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Remark 3.3. For finding the solution of FLS (1), we must solve the following crisp

linear systems,
(5) (B+CYW =1V,
(B-C)X°c=Y~".

Because after solving (5), it is enough we take

for each 7, 1 <7 < n.

Theorem 3.4. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if both (B + C)~! and (B — C)~! exist and (B + C)~*
18 a nonnegative matriz.

Proof. The Eq.(5) has a unique solution if and only if both (B+C)~! and (B—C)~!
exist. Now let we consider D = 0.5[(B +C)~'+ (B —C)~!] and E = 0.5[(B +
C)~' + (B - C)71] and let we take

BC
s=(e5)

DE

-1 _

51 = ( br ) .

By referring to Theorem 3.3 in [7], we observe that the unique solution of FLS (1) is
a fuzzy vector (in parametric form) for arbitrary Y if and only if S~ > 0, therefore
it is sufficient to show that S~! > 0 if and only if (B+ C)_l >0. If S~1 > 0 then
D >0 and E > 0 and hence

hence

(B+O) '+ (B-0)" =0,
(B+oO)y ' —(B-0)t>o0,
~1 > 0 therefore by Theorem 2.9,

which implies (B + C)~! > 0. Now let (B + C
(B 4 C) is a permutation matrix and hence (
matrix. It shows that

Di; =0.5[(B+C)};+(B-C)}] >0,
Ei; =05[(B+C)}, —(B-0)}] >0,
which completes the proof. 0

)
B — () is absolutely permutation

Example 3.5. Consider the 2 x 2 symmetric fuzzy system

1 —x=(r,2—1),
1 + 320 = (44 21,8 — 2r).

Hence
&1 _f2 =T 21 +3£2 :4+2T7

El—QQZQ—T, T, + 3T = 8 — 2,
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and therefore

(T1 —21) + (T2 —2y) =2 —2r,
(T1 —zq) + 3(T2 — T2) =4 — 4r,

which is equivalent to

w1 + w2 = V1,
(6) { w1 + 3wz = va,

where v1 = 2 — 2r, vg = 4 — 4r. Another crisp system is

ﬂf‘i*iﬂ%zlzyf,

By solving (6) and (7), we have wy = 1 —7r, wy =1 -7, 2§ = J, 25 = 2 and
therefore

9 1 9 1
= — — —(1— T1 = — —(1 —
gl 4 2( T)7$1 4—"_2( T)’
5 1 5 1
=2 (=), Ta=+=(1—7).
Lo 4 2( T):‘TQ 4+2( T)

Here z; < 71, 2o < T2 and 77, T2 are monotonic non-increasing and z;, z, are
monotonic non-decreasing functions.

Remark 3.6. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B + C)~! and (B — C)~! exist and (B + C) is a
permutation matrix.

Remark 3.7. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B+C)~! and (B —C)~! exist and A is an absolutely
permutation matrix.

4. Weak fuzzy solution

We now restrict the discussion to triangular fuzzy numbers, i.e., y.(r), ¥;(r) and
consequently z;(r), Z;(r) are all linear functions of r, y.(1) = 7;(1) and z;(1) =
T;(1) for all 1 < i < n. By virtue of Theorem 3.4, since (B + C) is nonnegative,
(B+C)~! may be negative, in this case w; may be negative for some i and therefore
T; —x; < 0. The fact that x; is not a fuzzy number and we define a fuzzy number
vector

U= ((uy, 1), 5 (U, W)
where
w;(r) = min{z; (), 7i(r), ;(1)},
w;(r) = max{z;(r), Ti(r), ;(1)}.
If (z;(r),Zi(r)), 1 <i < n, are all fuzzy numbers then u,(r) = z,(r), w;(r) = T;(r),

1 <i<mn,and U is called a strong fuzzy solution. Otherwise, U is called a weak
fuzzy solution. In Example 3.5, the obtained solution was strong.
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Example 4.1. [7] Consider the 3 x 3 fuzzy system

T1+ X2 — T3 = (T72_T)7

I 72172 +l‘3 = (2+T,3),

21’1 + x9 + 3(E3 = (72, e T).
The two crisp linear systems are

w1 +we + w3 =2 —2r,
wy + 2wy +wz =1—r,
211)1 +w2+3w3 = 177”,
and
i + x5 — 25 =1,
x§ — 225+ 25 =055+ 1),
2x§ 4+ x5 + 32§ = 0.5(—3 — ).
The solution vectors in parametric form are W = (7 — 7r,—1 + 7, —4 + 4r)" and
X¢=(1.1940.12r, —1.12 — 0.27r, —0.92 — 0.15r)t, then

z1 = (—2.31 + 3.62r,4.69 — 3.387),

2y = (—0.62 — 0.77r, —1.62 + 0.23r),
x5 = (1.08 — 2.15r, —2.92 + 1.85r).

The fact that o, x5 are not fuzzy numbers because, W5 and W3 are negatives , the
fuzzy solution in this case is a weak solution given by

uy = (—2.31 + 3.62r, 4.69 — 3.387),

uy = (—1.62 4 0.23r, —0.62 — 0.77r),
ug = (—2.92 4 1.85r,1.08 — 2.157).

5. Conclusions

In this work we propose an efficient method for solving a system of n fuzzy linear
equations with n variables. The original system with matrix A is replaced by two
n X n crisp linear systems. The new system is then solved by two n x n crisp
systems. The solution vector be symmetric solution if the right hand side vector
be symmetric.
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