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A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

S. ABBASBANDY, M. ALAVI

Abstract. In this paper we present a method for solving fuzzy linear systems
by two crisp linear systems. Also necessary and sufficient conditions for exis-

tence of solution are given. Some numerical examples illustrate the efficiency
of the method.

1. Introduction

Systems of simultaneous linear equations play a major role in various areas as
such as mathematics, physics, statistics, neural network and etc. A general model
for solving an n × n fuzzy linear system which coefficients matrix is crisp and the
right-hand side column is an arbitrary fuzzy number vector was given by Friedman
et al. [7]. They used the embedding method given in [5] and replace the original
n × n fuzzy linear system by a 2n × 2n crisp function linear system. Some other
numerical procedures, for example, Jacobi, Gauss-Seidel, SOR iterative methods
and Adomian decomposition method for solving fuzzy linear systems are designed
by [1],[2],[3]. In this paper we present a method for solving n×n fuzzy linear system
whose coefficients matrix is crisp and the right-hand side column is an arbitrary
fuzzy number vector. For solving n×n fuzzy linear system we solve two n×n crisp
function linear systems (in comparison with Friedman’s procedure). Numerical ex-
amples are provided to illustrate the efficiency of the method.

2. Preliminaries

Here we recall the basic notations for symmetric fuzzy numbers and symmetric
fuzzy linear systems.

Definition 2.1. [8] A fuzzy number is a map u : R → I = [0, 1] which satisfies:
(i) u is upper semi-continuous.
(ii) u(x) = 0 outside some interval [c, d] ⊂ R.
(iii) There exist real numbers a, b such that c ≤ a ≤ b ≤ d where

1: u(x) is monotonic increasing on [c, a].
2: u(x) is monotonic decreasing on [b, d].
3: u(x) = 1, a ≤ x ≤ b.
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Also u is called symmetric fuzzy number if u(uc + x) = u(uc − x) for ∀x ∈ R,
where uc = a+b

2 .
An equivalent parametric definition of fuzzy numbers is given in [5, 4] as:

Definition 2.2. An arbitrary fuzzy number in parametric form is represented by
an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the following
requirements:

1: u(r) is a bounded left-continuous non-decreasing function over [0, 1].
2: u(r) is a bounded left-continuous non-increasing function over [0, 1].
3: u(r) ≤ u(r), 0 ≤ r ≤ 1.

Also u = (u, u) is called a symmetric fuzzy number in parametric form if

uc(r) =
u(r) + u(r)

2
,

is a real constant for all 0 ≤ r ≤ 1. For example u = (2 + r, 5 − 2r) is a fuzzy
number and v = (1 + r, 3− r) is a symmetric fuzzy number in parametric form. A
crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1, [5].

Definition 2.3. The n× n linear system

(1)



a11x1 + ... + a1nxn = y1,
a21x1 + ... + a2nxn = y2,

.

.

.
an1x1 + ... + annxn = yn,

where the coefficients matrix A = (aij), 1 ≤ i, j ≤ n is a crisp n×n matrix and each
yi, 1 ≤ i ≤ n, is fuzzy number in parametric form, is called a fuzzy linear system
in parametric form (FLS) [7]. One recalls [5] that for arbitrary fuzzy numbers
x = (x(r), x(r)), y = (y(r), y(r)) in parametric form and scalar k

1: x = y if and only if x(r) = y(r) and x(r) = y(r).
2: x + y = (x(r) + y(r), x(r) + y(r)).
3: kx = (kx(r), kx(r)) if k is nonnegative and kx = (kx(r), kx(r)) if k is

negative.

Definition 2.4. A fuzzy number vector X = (x1, x2, ..., xn)t given by xi = (xi(r),
xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1, is called (in parametric form) a solution of the FLS
(1) if

(2)


∑n

j=1 aijxj =
∑n

j=1 aijxj = y
i
,

∑n
j=1 aijxj =

∑n
j=1 aijxj = yi.

Definition 2.5. For fuzzy linear system AX = Y , like FLS (1), let matrix B
contains the positive entries of A and matrix C contains the absolute value of the
negative entries of A. Then A = B − C and we define A+ = B + C.
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Definition 2.6. The permutation matrix be a square matrix with one unit element
in each row and column and all other entries zero.

Definition 2.7. An arbitrary matrix A is said to be absolutely permutation matrix
if A+ is a permutation matrix.

Remark 2.8. If A is an absolutely permutation matrix then A−1 is an absolutely
permutation matrix and A−1 = AT .

Theorem 2.9. [6] The inverse of nonnegative matrix A is nonnegative if and only
if A is a permutation matrix.

3. Fuzzy solution

The ith equation in (1) is representable in the following equivalent form:∑
aij≥0

aijxj +
∑

aij<0

aijxj = y
i
,(3)

∑
aij≥0

aijxj +
∑

aij<0

aijxj = yi,

and hence

(4)
∑

aij≥0

aij(xj − xj)−
∑

aij<0

aij(xj − xj) = yi − y
i
.

If wj = xj − xj and vi = yi − y
i

then (4) has the form∑
aij≥0

aijwj −
∑

aij<0

aijwj = vi, i = 1, . . . , n,

and in the matrix form
(B + C)W = V,

where W = (w1, w2, ..., wn)t, V = (v1, v2, ..., vn)t and A = B − C. Let Xc =
(xc

1, x
c
2, ..., x

c
n) and Y c = (yc

1, y
c
2, ..., y

c
n) where xc

i = (xi(r) + xi(r))/2 and yc
i =

(y
i
(r) + yi(r))/2 for 1 ≤ i ≤ n.

Theorem 3.1. Let X be a fuzzy solution of FLS (1) where coefficients matrix A
is nonsingular matrix and Y is a fuzzy number vector. Then AXc = Y c.

Proof. Due to Eq.(3), we have for each i, 1 ≤ i ≤ n∑
aij≥0

(aij

(xj(r) + xj(r))
2

) +
∑

aij<0

(aij

(xj(r) + xj(r))
2

) =
(yi(r) + y

i
(r))

2

and hence ∑
aij≥0

aijx
c
j +

∑
aij<0

aijx
c
j = yc

i ,

i.e., (B − C)Xc = Y c, which completes the proof. �

Remark 3.2. In Theorem 3.1, if Y is symmetric fuzzy vector then X is symmetric
fuzzy vector.
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Remark 3.3. For finding the solution of FLS (1), we must solve the following crisp
linear systems,

(5)
{

(B + C)W = V,
(B − C)Xc = Y c.

Because after solving (5), it is enough we take

xi = xc
i − 0.5wi

xi = xc
i + 0.5wi

for each i, 1 ≤ i ≤ n.

Theorem 3.4. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if both (B + C)−1 and (B − C)−1 exist and (B + C)−1

is a nonnegative matrix.

Proof. The Eq.(5) has a unique solution if and only if both (B+C)−1 and (B−C)−1

exist. Now let we consider D = 0.5[(B + C)−1 + (B − C)−1] and E = 0.5[(B +
C)−1 + (B − C)−1] and let we take

S =
(

B C
C B

)
,

hence

S−1 =
(

D E
E D

)
.

By referring to Theorem 3.3 in [7], we observe that the unique solution of FLS (1) is
a fuzzy vector (in parametric form) for arbitrary Y if and only if S−1 ≥ 0, therefore
it is sufficient to show that S−1 ≥ 0 if and only if (B + C)−1 ≥ 0. If S−1 ≥ 0 then
D ≥ 0 and E ≥ 0 and hence

(B + C)−1 + (B − C)−1 ≥ 0,

(B + C)−1 − (B − C)−1 ≥ 0,

which implies (B + C)−1 ≥ 0. Now let (B + C)−1 ≥ 0 therefore by Theorem 2.9,
(B + C) is a permutation matrix and hence (B − C) is absolutely permutation
matrix. It shows that

Dij = 0.5[(B + C)T
ij + (B − C)T

ij ] ≥ 0,

Eij = 0.5[(B + C)T
ij − (B − C)T

ij ] ≥ 0,

which completes the proof. �

Example 3.5. Consider the 2× 2 symmetric fuzzy system{
x1 − x2 = (r, 2− r),
x1 + 3x2 = (4 + 2r, 8− 2r).

Hence
x1 − x2 = r, x1 + 3x2 = 4 + 2r,

x1 − x2 = 2− r, x1 + 3x2 = 8− 2r,
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and therefore {
(x1 − x1) + (x2 − x2) = 2− 2r,
(x1 − x1) + 3(x2 − x2) = 4− 4r,

which is equivalent to

(6)
{

w1 + w2 = v1,
w1 + 3w2 = v2,

where v1 = 2− 2r, v2 = 4− 4r. Another crisp system is

(7)
{

xc
1 − xc

2 = 1 = yc
1,

xc
1 + 3xc

2 = 6 = yc
2.

By solving (6) and (7), we have w1 = 1 − r, w2 = 1 − r, xc
1 = 9

4 , xc
2 = 5

4 and
therefore

x1 =
9
4
− 1

2
(1− r), x1 =

9
4

+
1
2
(1− r),

x2 =
5
4
− 1

2
(1− r), x2 =

5
4

+
1
2
(1− r).

Here x1 ≤ x1, x2 ≤ x2 and x1, x2 are monotonic non-increasing and x1, x2 are
monotonic non-decreasing functions.

Remark 3.6. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B + C)−1 and (B − C)−1 exist and (B + C) is a
permutation matrix.

Remark 3.7. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B +C)−1 and (B−C)−1 exist and A is an absolutely
permutation matrix.

4. Weak fuzzy solution

We now restrict the discussion to triangular fuzzy numbers, i.e., y
i
(r), yi(r) and

consequently xi(r), xi(r) are all linear functions of r, y
i
(1) = yi(1) and xi(1) =

xi(1) for all 1 ≤ i ≤ n. By virtue of Theorem 3.4, since (B + C) is nonnegative,
(B+C)−1 may be negative, in this case wi may be negative for some i and therefore
xi − xi < 0. The fact that xi is not a fuzzy number and we define a fuzzy number
vector

U = ((u1, u1), · · · , (un, un))t,

where
ui(r) = min{xi(r), xi(r), xi(1)},

ui(r) = max{xi(r), xi(r), xi(1)}.
If (xi(r), xi(r)), 1 ≤ i ≤ n, are all fuzzy numbers then ui(r) = xi(r), ui(r) = xi(r),
1 ≤ i ≤ n, and U is called a strong fuzzy solution. Otherwise, U is called a weak
fuzzy solution. In Example 3.5, the obtained solution was strong.
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Example 4.1. [7] Consider the 3× 3 fuzzy system x1 + x2 − x3 = (r, 2− r),
x1 − 2x2 + x3 = (2 + r, 3),
2x1 + x2 + 3x3 = (−2,−1− r).

The two crisp linear systems are w1 + w2 + w3 = 2− 2r,
w1 + 2w2 + w3 = 1− r,
2w1 + w2 + 3w3 = 1− r,

and  xc
1 + xc

2 − xc
3 = 1,

xc
1 − 2xc

2 + xc
3 = 0.5(5 + r),

2xc
1 + xc

2 + 3xc
3 = 0.5(−3− r).

The solution vectors in parametric form are W = (7 − 7r,−1 + r,−4 + 4r)t and
Xc = (1.19 + 0.12r,−1.12− 0.27r,−0.92− 0.15r)t, then

x1 = (−2.31 + 3.62r, 4.69− 3.38r),

x2 = (−0.62− 0.77r,−1.62 + 0.23r),
x3 = (1.08− 2.15r,−2.92 + 1.85r).

The fact that x2, x3 are not fuzzy numbers because, W2 and W3 are negatives , the
fuzzy solution in this case is a weak solution given by

u1 = (−2.31 + 3.62r, 4.69− 3.38r),

u2 = (−1.62 + 0.23r,−0.62− 0.77r),
u3 = (−2.92 + 1.85r, 1.08− 2.15r).

5. Conclusions

In this work we propose an efficient method for solving a system of n fuzzy linear
equations with n variables. The original system with matrix A is replaced by two
n × n crisp linear systems. The new system is then solved by two n × n crisp
systems. The solution vector be symmetric solution if the right hand side vector
be symmetric.
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