Cognitive-behavioral guided self-help for the treatment of recurrent binge eating

Ruth Striegel Weissman

Available at: https://works.bepress.com/ruth_striegel/67/
Cognitive Behavioral Guided Self-Help for the Treatment of Recurrent Binge Eating

Ruth H. Striegel-Moore
Wesleyan University

G. Terence Wilson
Rutgers, The State University of New Jersey

Lynn DeBar, Nancy Perrin, and Frances Lynch
Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon

Francine Rosselli
Wesleyan University

Helena C. Kraemer
Stanford University School of Medicine

Objective: Despite proven efficacy of cognitive behavioral therapy (CBT) for treating eating disorders with binge eating as the core symptom, few patients receive CBT in clinical practice. Our blended efficacy–effectiveness study sought to evaluate whether a manual-based guided self-help form of CBT (CBT-GSH), delivered in 8 sessions in a health maintenance organization setting over a 12-week period by master’s-level interventionists, is more effective than treatment as usual (TAU). Method: In all, 123 individuals (mean age = 37.2; 91.9% female, 96.7% non-Hispanic White) were randomized, including 10.6% with bulimia nervosa (BN), 48% with binge eating disorder (BED), and 41.4% with recurrent binge eating in the absence of BN or BED. Baseline, posttreatment, and 6- and 12-month follow-up data were used in intent-to-treat analyses. Results: At 12-month follow-up, CBT-GSH resulted in greater abstinence from binge eating (64.2%) than TAU (44.6%; number needed to treat = 5), as measured by the Eating Disorder Examination (EDE). Secondary outcomes reflected greater improvements in the CBT-GSH group in dietary restraint (d = 0.30); eating, shape, and weight concern (d = 0.54, 1.01, 0.49, respectively; measured by the EDE Questionnaire); depression (d = 0.56; Beck Depression Inventory); and social adjustment (d = 0.58; Work and Social Adjustment Scale), but not weight change. Conclusions: CBT-GSH is a viable first-line treatment option for the majority of patients with recurrent binge eating who do not meet diagnostic criteria for BN or anorexia nervosa.

Keywords: binge eating, cognitive behavior therapy, guided self-help, effectiveness

Cognitive behavioral therapy (CBT) has been shown to be an effective treatment for bulimia nervosa (BN) and binge eating disorder (BED; Brownley, Berkman, Sedway, Lohr, & Bulik, 2007; Shapiro et al., 2007; Wilson, Grilo, & Vitousek, 2007) and has been recommended as the psychological treatment of choice for these disorders (Wilson & Shafran, 2005). Yet, only a minority of patients receive this treatment (Currin et al., 2007; Mussell et al., 2000), and, indeed, only a minority of individuals receive any mental health treatment specifically targeting the eating disorder (Grilo et al., 2008; Mond, Hay, Rodgers, & Owen, 2007; Striegel-Moore et al., 2008; Striegel-Moore, Leslie, Petrill, Garvin, & Rosenheck, 2000) despite strong evidence of psychosocial and health impairments associated with these disorders (Lewinsohn, Striegel-Moore, & Seeley, 2000; Mond & Hay, 2007; Mond, Hay, Rodgers, & Owen, 2009; Striegel-Moore, Seeley, & Lewinsohn, 2003). Numerous barriers have been described that may explain underutilization of mental health services in general and the recommended treatment (CBT) in particular (Cachelin & Striegel-Moore, 2006; Sysko & Walsh, 2008; Wang et al., 2005).

Experts have noted the dearth of clinicians trained in delivery of CBT treatment as well as the intensity and cost of CBT, which requires twenty 50-min sessions to be provided over a period of 5 months (Fairburn, 2008; Wilson, Willfley, Agras, & Bryson, 2010). To ensure cost-effective allocation of scarce treatment resources, experts have called for a “stepped care” approach to the treatment of eating disorders, with less intensive treatments as the first step and more intensive treatments reserved for those who fail to
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

In a previous report (DeBar et al., 2009), in the present study we lack of information about available or appropriate treatment op-

In the treatment of eating disorders, the existing studies have not yet fully explored the possibility of expanding the availability of CBT-GSH by offering this treatment via less educated therapists. As a step toward effectiveness research, we evaluated CBT-GSH delivered in a primary care setting by master’s-level counselors with no prior experience in the treatment of eating disorders.

Most patients presenting for treatment do not meet criteria for either BN or BED (Fairburn et al., 2007); to date, however, clinical trials have required presence of full-syndrome eating disorders. One of the major reasons for not meeting full-syndrome criteria is a lower binge frequency than the required minimum average of two episodes a week for 3 consecutive months in the case of BED, yet emerging evidence suggests that individuals who engage in regular binge eating even if at a lesser frequency report significant clinical evidence suggests that individuals believe that eating disorders should be treated in a primary care setting (Mond & Hay, 2008; Mond, Hay, Rodgers, Owen, & Beumont, 2004b). By providing guidance from highly educated therapists (doctoral candidates or therapists with graduate degrees) working in tertiary treatment centers with extensive local expertise in the treatment of eating disorders, the existing studies have not yet fully explored the possibility of expanding the availability of CBT-GSH by offering this treatment via less educated therapists. As a step toward effectiveness research, we evaluated CBT-GSH delivered in a primary care setting by master’s-level counselors with no prior experience in the treatment of eating disorders.

Method

Participants and Recruitment

Participants were 123 health plan members (91.9% female, 96.7% White, and 3.3% Hispanic) with a mean age of 37.20 years (SD = 7.78) and mean body mass index (BMI) of 31.27 (SD = 6.23). Most (82.1%) reported completing at least some college. A majority of participants (n = 72) met full-syndrome criteria for an eating disorder (BN, n = 13; BED, n = 59), and seven participants met the “lead symptom” criterion of binge eating on average at least twice a week with no gaps longer than 2 weeks but missed one of the remaining symptoms required for full-syndrome diagnosis of BN (n = 1) or BED (n = 6). Eight participants reported binge eating on average at least twice a week but missed more than one criterion for a diagnosis of either BN or BED. Thirty-six participants reported recurrent binge eating at a minimum average frequency of once a week for the preceding 3 months.

A detailed report of our recruitment approach has been published (DeBar et al., 2009). Figure 1 shows the flow of participants from screening to randomization into the trial. In brief, recruitment initially involved mailings to a random sample of male and female health plan members between 18 and 35 years of age for an epidemiological study on eating habits and body image (Striegel-Moore et al., 2009). To permit an unbiased examination of the psychometric properties of the screening instrument used for case finding, until we reached a predetermined number (100) of screen-positive respondents, the study invitation did not mention the
clinical trial, and participants who met inclusion trial criteria ($N = 29$) were consented for the clinical trial upon completion of the baseline assessment. Later mailings specifically recruited for the clinical trial and targeted female health plan members up to age 50; also, posters and brochures advertising the study were distributed in HMO clinics to supplement these latter mailed recruitment efforts. These latter efforts yielded 95 additional patients. Except for gender (a greater proportion of the patients recruited via the epidemiological phase than via the recruitments advertising the trial were male), no differences were found on demographic characteristics or eating disorder diagnosis when comparing the two recruitment approaches.

All participants underwent a two-stage case-finding procedure involving initial screening followed by a confirmatory diagnostic interview by study staff unaware of the screening status (Striegel-Moore et al., 2009). Excluded from sampling were individuals with diagnostic codes indicative of severe cognitive impairment or psychosis, individuals currently being treated for cancer, women who were pregnant or had given birth in the past 4 months, and approximately 100 plan members whose records indicated an a priori opt-out from any study participation. Additional exclusion criteria (as determined during the diagnostic assessment) were a current diagnosis of anorexia nervosa and severe obesity (BMI ≥ 45). The study was approved by all participating institutions’ human subjects review boards. The trial was registered online with the National Institutes of Health National Library of Medicine (http://clinicaltrials.gov/show/NCT00158340).

Intervention

Efron’s (1971) procedure stratifying on purging status and gender was used to randomize participants into TAU or CBT-GSH.
Participants were permitted to avail themselves of the full treatment resources offered through the HMO during the course of the study, and all service use was recorded. Following randomization, all participants were mailed a flyer detailing relevant health-plan-sponsored services, such as a regularly offered series of classes focused on nondiet approaches to healthy living and eating. In addition, participants were encouraged to contact their primary care physician for other potentially appropriate services within the health plan including visits with a nutritionist or mental health provider. CBT-GSH additionally involved eight sessions of CBT-GSH implemented over a 12-week period. The first session lasted 60 min; each subsequent session was 20–25 min in length. The first four sessions were weekly, the next four at 2-week intervals.

The treatment was based on Fairburn’s (1995) *Overcoming Binge Eating*. The book’s first part provides user-friendly information about binge eating; the second part comprises a six-step self-help program. The primary focus is on developing a regular pattern of moderate eating using self-monitoring, self-control strategies, and problem solving. To promote maintenance of behavioral change, relapse prevention is emphasized. We added a module designed to reduce body checking and body avoidance in order to explicitly address dysfunctional body shape and weight concerns (available on request from G. Terence Wilson). The main role of the therapist is to explain the rationale for CBT-GSH, develop realistic outcome expectations, and engage the patient in adhering to the manualized program.

Three master’s-level therapists with experience in using CBT for depression, but no familiarity with eating disorders or CBT-GSH for treating binge eating, were trained and subsequently delivered the CBT-GSH treatment. The therapists had an average of 6 years of postgraduate clinical experience (range 4–10 years). Initial training was conducted by one of the senior investigators (G. Terence Wilson) in a 3-hr workshop. All therapists were required to complete treatment of two pilot patients and be approved before participating in the study proper. The therapists received weekly supervision on-site (Lynn DeBar) and participated in biweekly supervision conference calls as well as on-site supervision meetings three times a year with all three senior investigators (G. Terence Wilson, Lynn DeBar, Ruth H. Striegel-Moore) who listened to audio recordings of randomly selected sessions.

Measures

We assessed all participants at baseline using all instruments described below and, using only measures of primary and secondary outcomes, at 12 weeks (posttreatment), 6 months, and 12 months. Treatment expectancies were measured at Week 2. Participants could complete the screening questionnaire online and receive a $5 coffeehouse gift card or return the completed questionnaire by prepaid envelope without compensation. For all subsequent assessments, participants were compensated between $10 and $50 (depending on the length of assessment) for a total compensation of $225 plus a one-time bonus of $50 for participants completing all assessments.

For all study participants, use of HMO services during the 12 weeks’ postrandomization was extracted from the electronic medical records and coded into four mutually exclusive categories: weight-related services, eating-related services, medications for mental health problems, and “all other services.” In addition, we coded for “all medications,” and this category included medications for mental health problems.

Screening questionnaire. The screening questionnaire collected information on demographic characteristics and current height and weight, and measured eating disorder symptoms with a modified version of the Patient Health Questionnaire (Spitzer, Kroenke, & Williams, 1999) eating disorder module, which includes binary response items concerning binge eating and compensatory behaviors. Participants who reported binge eating at least once per week during the past 3 months (screen positive) were invited to participate in further assessment to verify study eligibility. As previously reported, the Patient Health Questionnaire eating disorder module had high sensitivity and specificity (Striegel-Moore et al., 2009). As evident from Figure 1, however, a large number of screened participants were found to be false-positive cases, supporting the need to conduct the confirmatory diagnostic interviews described below.

Eating pathology and psychiatric disorders. Screen-positive participants were interviewed by phone via the Eating Disorder Examination (12th ed., with text edits from the 14th and 15th editions; EDE; Fairburn & Cooper, 1993) to confirm presence of recurrent binge eating and eating disorder diagnoses based on the *Diagnostic and Statistical Manual of Mental Disorders* (4th ed., text rev.; *DSM-IV*; American Psychiatric Association, 2000). The EDE is a widely used semistructured interview, generating operationally defined *DSM-IV*-based diagnoses of eating disorders and dimensional information about eating behaviors and related attitudes. EDE items focus on the past 28 days and, for diagnostic items, also on the past 3 months (BN) or 6 months (BED).

Symptoms are measured in terms of their frequency (e.g., number of binge eating episodes during the past 28 days) or severity (rated on a scale from 0 = absent to 6 = highest level of pathology; e.g., extreme overevaluation of weight or shape). The EDE defines binge eating episodes (also referred to as OBEs) as eating episodes that involve consuming, in 2 hr or less, more than what most people would eat under similar circumstances and experiencing loss of control during the episodes. The reliability and validity of the EDE have been established in several independent studies, and these studies have consistently supported its use (Fairburn, Cooper, & O’Connor, 2008).

To reduce participant burden, the EDE was edited such that only eating patterns and diagnostic items were assessed during the telephone interview, and items composing the EDE subscales (dietary restraint, eating concern, shape concern, and weight concern) were collected via a 22-item self-report questionnaire (EDE-Q; Fairburn & Béglis, 1994, 2008). Referring to the past 28 days, the EDE-Q items ask respondents to rate the number of days on which they experienced symptoms (e.g., “Have you tried to exclude from your diet any foods you like in order to influence your weight or shape, regardless of whether you have succeeded?”) or rate the severity of the symptoms (e.g., “How dissatisfied have you been with your weight?”). Ratings range from 0 (no days, or not at all) to 6 (every day, or markedly). Items are summed across the items composing each scale, and averages are calculated by dividing the scale total by the number of items. The EDE-Q has been shown to have excellent reliability and validity except when measuring overeating or binge eating (Fairburn &
which is why the latter was measured by EDE interview. The Structured Clinical Interview for DSM-IV (nonpatient edition, with psychotic screen; SCID-I/NP; First, Spitzer, Gibbon, & Williams, 2002) was administered at baseline to measure Axis I psychiatric disorders (current and lifetime), and the borderline personality disorder module of the SCID for Axis II disorders (First, Gibbon, Spitzer, Williams, & Benjamin, 1997) was used to determine presence (lifetime) of borderline personality disorder.

All interviews (EDE and SCID) were conducted by telephone by assessors blind to participants’ initial screening responses and randomization assignment. Assessor training included the 11-hr SCID video series (http://www.scid4.org), 12 hr of training workshops with an expert SCID trainer, 20 hr of workshops with an expert EDE trainer, and interviews with pilot participants. For both the SCID and the EDE, assessors continued practice interviews until they achieved three consecutive interviews with 100% expert agreement. Ongoing biweekly supervision continued throughout the data collection period. Five percent of the EDE interviews were randomly selected to be coded by one of the two most experienced assessors to determine reliability. Interrater reliability was very high for EDE diagnoses ($\kappa = .961$) as well as assessment of OBE days (intraclass correlation coefficient = .997) and number of OBEs (intraclass correlation coefficient = .999) during the past 28 days.

Psychosocial functioning. Self-report was used to assess depression, with the 21-item Beck Depression Inventory (BDI; Beck, Steer, & Garbin, 1988), and functional impairment, with the five-item Work and Social Adjustment Scale (Mundt, Marks, Shear, & Greist, 2002).

Data Analyses

Comparisons between the TAU and intervention groups at baseline were conducted with chi-square and t tests. Multilevel modeling with HLM 6.0 was used to test for differences between the TAU and intervention groups across time for the primary and secondary outcomes. A quadratic model for time (baseline and 12, 26, and 52 weeks) was used to capture nonlinear change across time. Therefore two parameters, linear slope and quadratic slope, characterize the change across time. The linear slope describes the initial rate of change, and the quadratic slope reflects the degree to which the change slowed (or increased) over time. Both slope parameters are estimated simultaneously in the model. Multilevel modeling allows the inclusion of all participants regardless of missing data across time, consistent with an intent-to-treat approach. Number-needed-to-treat (NNT) effect sizes were computed for the primary outcome (Kraemer & Kupfer, 2006). In the context of this study, NNT answers the question “How many more patients would need to be treated with CBT-GSH in order to avoid one more failure (i.e., patient continues to binge eat) that would have occurred had the patient been treated as usual?” For the secondary outcomes, we computed Cohen’s d (Cohen, 1988) using change from baseline to 52 weeks. We used repeated measures analysis of variance for additional analyses to examine the relationship between abstinence over time and BMI. Using baseline measures, we conducted exploratory analyses to identify potential nonspecific predictor or moderator variables, including demographic characteristics, type or severity of eating disorder symptomatology, baseline BMI and “weight suppression” (i.e., the difference between current and highest adult BMI; F. A. Carter, McIntosh, Joyce, & Bulik, 2008; Lowe, 1993), comorbid psychiatric disorders (any comorbid disorder or total number, as well as borderline personality disorder), self-reported depression, and treatment expectancies.

Results

Preliminary Analyses

We verified that the TAU and CBT-GSH groups did not differ at baseline, which suggested that randomization created initially equivalent groups. Specifically, as shown in Table 1, the groups did not differ at baseline on age, gender, BMI, education, race, ethnicity, depression, EDE diagnosis, presence of borderline personality disorder, Axis I disorder without eating disorder, or major depressive disorder.

Table 2 illustrates that the proportion of participants using health services during the 12 weeks following randomization did not differ significantly between the two groups in terms of use of services to treat an eating-related problem, a weight-related problem, use of prescription medications for mental health, use of any prescription medications, or all other health services (excluding the aforementioned categories). Weight-related services included participation in health education weight management and healthy-eating group classes as well as individual visits with health plan nutritionists.

Acceptability and Treatment Expectancies

The majority of the CBT-GSH group (71.2%) attended all eight sessions, 74.6% attended at least seven sessions, and 81.4% attended at least six sessions. The mean number of sessions attended was 6.75 ($SD = 2.39$), and only 11.9% attended two or fewer sessions. There were minimal missing data, with 83.7% of the total sample having data on the primary outcome at all four time points (84.4% TAU, 83.1% CBT-GSH), 90.2% with three or more time points, and 95.1% with two or more time points. At 52 weeks, 56 of the 64 TAU patients and 53 of the 59 CBT-GSH patients had data on the primary outcome.

When asked at Session 2 how suitable participants thought their options were for treating binge eating on a scale from 1 (not at all suitable) to 5 (extremely suitable), the CBT-GSH group found their options to be significantly more suitable ($M = 4.16, SD = 0.65$) than the TAU group ($M = 2.71, SD = 1.22$), $t(82) = 7.09, p < .001$, $d = 1.25$. The CBT-GSH group was also more confident ($1 = not at all confident, 5 = extremely confident$) that their treatment options would be successful ($M = 3.78, SD = 0.82$) than the TAU group ($M = 2.65, SD = 0.98$), $t(82) = 5.75, p < .001$, $d = 1.09$. In subgroup analyses for the TAU and CBT-GSH groups, neither question was predictive of abstinence at 52 weeks (TAU suitable, $\chi^2 = 0.15, p = .700$; TAU confidence, $\chi^2 = 2.39, p = .122$; CBT-GSH suitable, $\chi^2 = 1.68, p = .195$; CBT-GSH confidence, $\chi^2 = 1.14, p = .286$).

Proportion Abstaining From Binge Eating

The CBT-GSH and TAU groups were significantly different on the pattern of change in the primary outcome of abstinence from
binge eating over time. The improvement in abstinence was greater for CBT-GSH than TAU, with a greater rate of change from baseline ($B = 0.122, p < .001$) for the CBT-GSH group, which also slowed more over time ($B = -0.002, p < .001$) in comparison with that of the TAU group (see Figure 2). At 12 weeks, 28.3% of the TAU group and 63.5% of the CBT-GSH group were abstinent from binge eating ($x^2 = 13.91, p < .001, NNT = 3$); at 26 weeks, 44.1% of the TAU group and 74.5% of the CBT-GSH group were abstinent from binge eating ($x^2 = 10.42, p < .001, NNT = 3$); and at 52 weeks, 46.6% of the TAU group and 64.2% of the CBT-GSH group were abstinent from binge eating ($x^2 = 4.17, p < .041, NNT = 5$). These group differences reflected large effects: At 6 months, for every three patients treated with CBT-GSH, one more treatment failure (i.e., the patient would have continued to binge eat) was avoided (Kraemer & Kupfer, 2006).

Secondary Outcomes

As shown in Table 3, the two groups differed significantly in the pattern of restraint ($B = -0.555, p < .004, d = 0.30$), eating concern ($B = -0.068, p < .001, d = 0.54$), shape concern ($B = -0.045, p < .038, d = 1.01$), and weight concern ($B = -0.048, p = .017, d = 0.49$). The CBT-GSH group showed more improvement than TAU over time for each of these subscales. The CBT-GSH group reported less eating restraint and fewer eating, shape, and weight concerns at the follow-ups than the TAU group. The CBT-GSH group also showed greater improvement in depression as measured by the BDI ($B = -0.330, p < .007, d = 0.56$) and work and social adjustment as measured by the Work and Social Adjustment Scale ($B = 0.142, p < .038, d = 0.58$). There were no significant differences in the acceleration or deceleration of the changes over time between the two groups for any of the secondary outcomes. The two groups did not differ significantly on the change in BMI over time. Because of the apparent absence of a relationship between improvements in BMI in the CBT-GSH group compared with the TAU group, we conducted an unplanned exploratory analysis examining the effect of abstinence from binge eating on BMI using data from both groups. Participants were classified as being abstinent at 26 weeks and 52 weeks or not. A group (those who were abstinent vs. those who were not abstinent at Weeks 26 and 52) by time (baseline and 52 weeks) repeated measures analysis of variance was conducted with BMI as the dependent variable. Forty-one individuals were abstinent at both 26 and 52 weeks; 58 individuals were not abstinent at both 26 and 52 weeks or were abstinent at 26 weeks and not at 52 weeks; and 49 individuals were abstinent at 52 weeks and not at 26 weeks. There were no significant differences among the three groups in BMI at any time point.

Table 1

Baseline Characteristics of Study Sample by Treatment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TAU (N = 64)</th>
<th>CBT-GSH (N = 59)</th>
<th>Test statistic</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>36.64</td>
<td>37.81</td>
<td>-0.834^{a}</td>
<td>.406</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>92.2</td>
<td>91.5</td>
<td>0.018a</td>
<td>.893</td>
</tr>
<tr>
<td>Education (some college or more)</td>
<td>79.7</td>
<td>84.7</td>
<td>0.533a</td>
<td>.465</td>
</tr>
<tr>
<td>Race (White)</td>
<td>93.3</td>
<td>98.3</td>
<td>0.874a</td>
<td>.331</td>
</tr>
<tr>
<td>Ethnicity (Hispanic)</td>
<td>3.1</td>
<td>3.4</td>
<td>0.007b</td>
<td>.934</td>
</tr>
<tr>
<td>Eating disorder (ED) diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulimia nervosa: Purging</td>
<td>4.7</td>
<td>5.1</td>
<td>0.459b</td>
<td>.928</td>
</tr>
<tr>
<td>Bulimia nervosa: Nonpurging</td>
<td>6.3</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binge eating disorder</td>
<td>45.3</td>
<td>50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent binge eating</td>
<td>43.8</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline personality disorder</td>
<td>4.7</td>
<td>1.7</td>
<td>0.915b</td>
<td>.633</td>
</tr>
<tr>
<td>Axis I disorder without ED</td>
<td>60.9</td>
<td>59.3</td>
<td>0.033b</td>
<td>.855</td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td>10.9</td>
<td>15.3</td>
<td>0.523b</td>
<td>.770</td>
</tr>
<tr>
<td>EDE-Q restraint</td>
<td>2.74</td>
<td>2.60</td>
<td>0.568a</td>
<td>.571</td>
</tr>
<tr>
<td>EDE-Q eating concern</td>
<td>3.58</td>
<td>3.51</td>
<td>0.300b</td>
<td>.765</td>
</tr>
<tr>
<td>EDE-Q shape concern</td>
<td>4.67</td>
<td>4.84</td>
<td>-1.025a</td>
<td>.308</td>
</tr>
<tr>
<td>EDE-Q weight concern</td>
<td>4.10</td>
<td>4.20</td>
<td>-0.508a</td>
<td>.612</td>
</tr>
<tr>
<td>Beck Depression Inventory</td>
<td>18.63</td>
<td>19.63</td>
<td>-0.670a</td>
<td>.499</td>
</tr>
<tr>
<td>Work and Social Adjustment</td>
<td>17.37</td>
<td>17.28</td>
<td>0.068b</td>
<td>.946</td>
</tr>
<tr>
<td>Body mass index</td>
<td>30.88</td>
<td>31.68</td>
<td>-0.710a</td>
<td>.479</td>
</tr>
</tbody>
</table>

Note

TAU = treatment as usual; CBT-GSH = cognitive behavioral therapy guided self-help; EDE-Q = Eating Disorder Examination Questionnaire.

Table 2

Health Services Use (%) Among Participants in the 12 Weeks Following Randomization by Health Services Category and Treatment

<table>
<thead>
<tr>
<th>Health services category</th>
<th>TAU (N = 64)</th>
<th>CBT-GSH (N = 59)</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight-related services</td>
<td>4.7</td>
<td>1.7</td>
<td>0.874</td>
<td>0.350</td>
</tr>
<tr>
<td>Eating-disorder-related services</td>
<td>10.9</td>
<td>5.1</td>
<td>1.408</td>
<td>0.235</td>
</tr>
<tr>
<td>Medications for mental health</td>
<td>45.3</td>
<td>47.5</td>
<td>0.057</td>
<td>0.812</td>
</tr>
<tr>
<td>All medications</td>
<td>71.9</td>
<td>81.4</td>
<td>1.532</td>
<td>0.216</td>
</tr>
<tr>
<td>All other health services</td>
<td>64.1</td>
<td>64.4</td>
<td>0.002</td>
<td>0.968</td>
</tr>
</tbody>
</table>

Note

TAU = treatment as usual; CBT-GSH = cognitive behavioral therapy guided self-help.
missing data on abstinence at one of those time points. The Time × Group interaction was significant, $F(1, 97) = 4.44, p < .038, d = 0.12$, with those who were not abstinent at 26 and 52 weeks showing an increase in BMI ($M = 31.16, SD = 6.77$, at baseline; $M = 31.82, SD = 7.10$, at 52 weeks) and those abstinent at both time points showing a decline in BMI ($M = 31.01, SD = 5.22$, at baseline; $M = 30.91, SD = 5.57$, at 52 weeks).

![Proportion Abstinence from Binge Eating for the Last 4 Weeks](image)

Figure 2. Abstinence rates at posttreatment, 6-month, and 12-month follow-up. Treatment as usual (TAU) and cognitive behavioral therapy guided self-help (GSH-CBT) are significantly different at each follow-up time point (Weeks 12 and 26: $p < .001$; Week 52: $p = .041$).

Table 3

<table>
<thead>
<tr>
<th>Secondary Outcomes by Treatment and Assessment Time</th>
<th>Baseline</th>
<th>Week 12</th>
<th>Week 26</th>
<th>Week 52</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>EDE-Q restraint</td>
<td>TAU</td>
<td>2.74</td>
<td>1.39</td>
<td>2.08</td>
<td>1.51</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>2.60</td>
<td>1.44</td>
<td>1.48</td>
<td>1.38</td>
<td>1.27</td>
</tr>
<tr>
<td>EDE-Q eating concerns</td>
<td>TAU</td>
<td>3.58</td>
<td>1.19</td>
<td>2.31</td>
<td>1.51</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>3.51</td>
<td>1.29</td>
<td>1.43</td>
<td>1.43</td>
<td>1.24</td>
</tr>
<tr>
<td>EDE-Q shape concerns</td>
<td>TAU</td>
<td>4.67</td>
<td>0.94</td>
<td>3.86</td>
<td>1.36</td>
<td>3.79</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>4.84</td>
<td>0.94</td>
<td>3.23</td>
<td>1.63</td>
<td>3.09</td>
</tr>
<tr>
<td>EDE-Q weight concerns</td>
<td>TAU</td>
<td>4.10</td>
<td>1.81</td>
<td>3.36</td>
<td>1.31</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>4.20</td>
<td>1.01</td>
<td>2.70</td>
<td>1.43</td>
<td>2.60</td>
</tr>
<tr>
<td>Beck Depression Inventory</td>
<td>TAU</td>
<td>18.63</td>
<td>8.32</td>
<td>14.63</td>
<td>9.23</td>
<td>13.77</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>19.74</td>
<td>7.68</td>
<td>10.54</td>
<td>8.37</td>
<td>9.23</td>
</tr>
<tr>
<td>Work and Social Adjustment</td>
<td>TAU</td>
<td>17.37</td>
<td>7.24</td>
<td>14.53</td>
<td>7.13</td>
<td>12.17</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>17.28</td>
<td>7.13</td>
<td>9.57</td>
<td>5.79</td>
<td>9.79</td>
</tr>
<tr>
<td>Body mass index</td>
<td>TAU</td>
<td>30.88</td>
<td>6.71</td>
<td>30.91</td>
<td>6.87</td>
<td>30.85</td>
</tr>
<tr>
<td></td>
<td>CBT-GSH</td>
<td>31.74</td>
<td>5.67</td>
<td>31.10</td>
<td>5.79</td>
<td>31.04</td>
</tr>
</tbody>
</table>

Note. The p values are for difference between the groups in change over time. EDE-Q = Eating Disorder Examination Questionnaire; TAU = treatment as usual; CBT-GSH = cognitive behavioral therapy guided self-help.
Nonspecific Predictors and Moderators

Exploratory analyses testing for nonspecific predictors or moderators of treatment outcome were nonsignificant for age, education, income, number of binge eating episodes at baseline, eating disorder diagnosis (recurrent binge eating, BN, BED), severity of depressed mood (BDI scores), any or total number of comorbid psychiatric disorders, borderline personality disorder, baseline BMI or obesity (BMI ≥ 30), and weight suppression (data available upon request).

Discussion

This study examined the acceptability and efficacy of a brief guided self-help program, based on cognitive behavioral principles, for the treatment of recurrent binge eating relative to treatment as usual. Our study employed a randomized clinical trial design, yet involved features more commonly found in effectiveness studies, including delivering the treatment in a primary care context and by staff with less education than is typical in efficacy studies, and adopting a broader definition of eating disorders (i.e., allowing for greater variability in diagnoses and thereby more closely capturing eating disorder cases that might present in routine clinical practice). As summarized in Table 1, 48% of the sample was diagnosed with BED, 10.6% met criteria for BN, and 41.6% of the sample met our criteria for recurrent binge eating. Exploratory moderator analyses failed to show differential treatment effects across eating disorder diagnoses, yet we caution that the percentage of individuals with BN was too small to detect differences. Previous research has shown CBT-GSH to be effective with both BED (Wilson et al., 2010) and BN (Mitchell et al., 2006), yet the latter study awaits replication. Hence, until further studies are conducted in which power is adequate to test the efficacy of CBT-GSH for the treatment of BN, we conservatively conclude that CBT-GSH is a viable treatment for recurrent binge eating in individuals who do not meet criteria for BN or anorexia nervosa.

Although the particular outreach approach to health plan members proved highly challenging, requiring large-scale mailings (DeBar et al., 2009), once participants agreed to enter the trial, acceptability of the CBT-GSH program as reflected in attendance rates was high. Dropout was low and consistent with completion rates reported in other trials providing guided self-help for the treatment of binge eating disorder that found dropout rates of 10% (J. C. Carter & Fairburn, 1998) and 13% (Grilo & Masheb, 2005). Moreover, participants appeared to agree with the rationale for CBT-GSH that was presented during the first session: The mean expectancy rating for the suitability of this treatment for their eating problem (obtained at Session 2) was 4.16 on a scale where 5 was the maximum score. Of note, suitability ratings were not predictive of treatment outcome. Our design does not permit testing the hypothesis that suitability ratings would be predictive of relatively greater adherence to CBT-GSH versus another treatment because our comparison condition, TAU, did not require patients to follow a specific regimen.

Treatment in this study was delivered by master’s-level therapists with experience in using CBT for depression. A majority of patients in our study exhibited comorbid Axis I diagnosis; 15% of the CBT-GSH group were diagnosed with major depression. Rates of comorbid borderline personality disorder were low. The level of therapist training and skill necessary for effective administration of CBT-GSH remains undetermined (Sysko & Walsh, 2008). Inexperienced and unsupervised health care providers with minimal training in CBT-GSH appear ineffective (Walsh, Fairburn, Mickley, Sysko, & Parides, 2004). Even if successful CBT-GSH requires specific therapist selection, training, and supervision, it would still provide a brief, less costly, and more readily disseminable intervention to a wider range of health care providers than specialty psychotherapy (Wilson et al., 2010).

The primary aim of our study was to evaluate CBT-GSH against TAU. All participants were informed about the HMO’s options for treating binge eating. Our data show that most participants in both conditions used health services during the 12 weeks following randomization and thus had opportunity to request specific services for their eating problem. The large number of participants receiving psychotropic medications (typically antidepressants and, to a lesser degree, anxiolytics) speaks to the considerable level of distress or comorbid psychopathology in this sample. Yet, as shown in Table 2, only a few participants were treated specifically for an eating disorder outside the context of the CBT-GSH treatment condition. Similar to services offered in most health care settings, treatment for eating disorders within the health plan largely consisted of nonspecific case management rather than the provision of evidence-based CBT treatment for eating disorders. Indeed, several studies have documented the infrequent use of care targeted specifically to treating the eating disorder (Striegel-Moore et al., 2008; Striegel-Moore et al., 2000).

The posttreatment and 1-year follow-up abstinence rates from binge eating (our primary outcome variable) for CBT-GSH of 63% and 64%, respectively, are consistent with findings from recent research on the efficacy of CBT-GSH for the treatment of BED. For example, Wilson et al. (2010) obtained rates of 58% and 60% at posttreatment and 1-year follow-up. Moreover, favorable results were also observed for several of the secondary outcomes, including improvements on measures of eating-related psychopathology (specifically, eating, weight, and shape concerns and restraint), as well as on measures of depression and functional impairment.

The effect size estimates for abstinence from binge eating further underscore the clinical significance of our results. For every three patients (at 6 months) or five patients (at 12 months) treated with CBT-GSH, one more failure (i.e., a patient who did not achieve abstinence) was observed in TAU. Even though CBT-GSH lost some of its superiority over TAU over time (NNT decreased from three at posttreatment and 6-month follow-up to five at 12 months), this relative decline in superiority is modest. Moreover, we note that the relative decline in superiority appeared to occur because of improvements in the TAU group rather than because of a loss of earlier gains in the CBT-GSH group. The cost-effectiveness of CBT-GSH relative to TAU is the subject of a separate report (Lynch et al., in press). The results also compare favorably with outcomes for BED of specialty psychological therapies such as manual-based CBT and interpersonal psychotherapy (Wilson et al., 2007). As such, they add to the accumulating evidence that recurrent binge eating can be effectively treated with a brief and easily disseminable treatment.

Similar to studies of CBT or CBT-GSH for the treatment of BED (Grilo & Masheb, 2005; Wilson et al., 2010), for a population...
for which overweight or obesity is common and weight loss is therefore a desirable treatment outcome (Wilfley, Bishop, Wilson, & Agras, 2007), our study found that CBT-GSH had no significant effect on weight. In part this may reflect the fact that the intervention does not target weight loss (although we point out that participants in the Grilo and Masheb, 2005, study also did not lose significant amounts of weight in the BWL condition). An unplanned post hoc analysis found a small effect for BMI when comparing participants who had achieved abstinence from binge eating versus those who had not. Of note, the latter group experienced a slight weight gain over the course of the study. This finding is consistent with data from a longitudinal study of women with bulimia nervosa or binge eating who were found to gain weight at an accelerated rate compared with healthy women (Fairburn et al., 2003).

Several limitations need to be considered. These include the insufficient power for testing predictors or moderators of treatment outcome. Surprisingly, we did not find a significant predictor effect of negative affect (defined by BDI scores) given previous studies in which high negative affect predicted a poorer treatment response (Masheb & Grilo, 2008; Stice, Bolton, Marti, & Fischer, 2008). Another limitation was the demographic homogeneity of our sample. Men or individuals representing ethnic minority populations have been shown to suffer from binge eating disorders (Alegria et al., 2007; Cachelin & Striegel-Moore, 2006; Hudson, Hiripi, Pope, & Kessler, 2007; Taylor, Caldwell, Baser, Faison, & Jackson, 2007), yet few men or Hispanic individuals were included in our sample despite outreach efforts and the availability of assessment and intervention materials in Spanish language for Hispanic health plan members (the largest ethnic minority group in the HMO’s geographic area). The strengths of the study include the HMO setting, the use of the EDE, good retention of patients in the sample through follow-up, and a broader sample of patients (including many with eating disorder not otherwise specified) than more narrowly defined BED or BN samples from previous studies of CBT-GSH. As such, we have provided novel findings for the disseminability of evidence-based CBT-GSH.

References

* Received June 5, 2009

Revision received December 2, 2009

Accepted December 7, 2009