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Negative Coulomb damping, limit cycles, and self-oscillation
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An effective one-mass model of phonation is developed. It borrows the salient features of the classic
two-mass model of human speech developed by Ishizaka, Matsudaira, and Flanagan. Their model is
based on the idea that the oscillating vocal folds maintain their motion by deriving energy from the
flow of air through the glottis. We argue that the essence of the action of the aerodynamic forces on
the vocal folds is captured by negative Coulomb damping, which acts on the oscillator to energize
it. A viscous force is added to include the effects of tissue damping. The solutions to this single
oscillator model show that when it is excited by negative Coulomb damping, it will reach a limit
cycle. Displacements, phase portraits, and energy histories are presented for two underdamped
linear oscillators. A nonlinear force is added so that the variations of the fundamental frequency and
the open quotient with lung pressure are comparable to the behavior of the two-mass model. © 2006
American Association of Physics Teachers.
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I. INTRODUCTION

Peters and Pritchett1 have considered a variety of applica-
tions of oscillatory systems subject to dry sliding friction.
Their applications include the linear oscillator and the small-
amplitude pendulum, which they gave the colorful name, the
“flip-flop” pendulum. They presented a theoretical analysis
and amplitude measurements to support their observation
that a constant frictional force implies that the amplitude
decays linearly with time, rather than the exponential decay
associated with linear viscous damping. Their analysis was
based on an application of Newton’s law,

mẍ + kx = Ff sgn�x� , �1�

where m is the mass of the oscillator, k is the spring constant,
and Ff is the constant force associated with kinetic friction,
as shown in Fig. 1. The function sgn�x� denotes the sign of
the velocity and ensures that the friction term has the appro-
priate sign. Barratt and Strobel treated a mass-spring system
with dry friction on an inclined plane, with a driving force
that allows acceleration up and down the plane with different
magnitudes.2 Squire considered a rigid pendulum with dry
friction and linear and quadratic viscous forces.3 He also
discussed experimental procedures for equipping the pendu-
lum such that one of the damping mechanisms would be
dominant. By adding a fibrous rubber brake pad to the pen-
dulum, he gave a convincing demonstration of the linear de-
cay law for the pendulum’s amplitude, which is characteristic
of dry friction. Lapidus4 emphasized the conditions neces-
sary for a given number of oscillations, and Hudson and
Finfgeld5 used Laplace transform techniques to solve the
equation of motion. Oscillatory motion in the presence of dry
friction has been studied in detail in some of the classic
works of nonlinear dynamics,6,7 where it is usually called the
Coulomb frictional force.

Linear oscillating systems with Coulomb friction are iso-
chronous, that is, the period of the motion does not depend

on the magnitude of the frictional force or on the amplitude
of the motion, although the amplitude decrease is propor-
tional to the magnitude of the frictional force. �The frictional
force must be small enough to permit oscillations.4� Thus the
angular frequency of the motion described by Eq. �1� is �0
= �k /m�1/2. This behavior is in contrast to that of linear vis-
cous damping where the angular frequency depends on the
strength of the damping force according to8,9 �= �k /m
−�2�1/2, where � is the damping parameter. The linear oscil-
lator with linear damping also is isochronous in that the an-
gular frequency does not depend on the amplitude.

The Coulomb damping force in Eq. �1� changes sign as the
velocity of the oscillator changes sign. Thus the power de-
livered to the oscillator by the frictional force is negative for
both positive and negative velocities, resulting in negative
work for each cycle of the motion. This negative work de-
creases the energy of the oscillator, so that its turning points
move closer and closer to the equilibrium position. At some
point in the motion the turning point is close enough to the
equilibrium position so that the restoring force is unable to
overcome the frictional force, and the oscillator comes to
rest. These features also emerge from a straightforward
work-energy analysis of the linear oscillator with Coulomb
friction.10

Changing the sign of the force on the right-hand side of
Eq. �1� would result in positive work being done by the
driving force. Such a force, which we call negative Coulomb
damping, would add energy to the oscillator during each
cycle. The amplitude of the oscillator will grow linearly and
become unbounded. For this reason we add a viscous damp-
ing force to Eq. �1� so that there is a mechanism to add
energy �negative Coulomb damping� and a mechanism to
remove energy �viscous damping� during the motion. If an
oscillator at rest is subject to both of these forces, we would
expect increases of the amplitude and the speed until the
viscous damping losses become equal to the energy gains.
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Thus we would expect stable oscillatory behavior similar to
the limit cycles of a van der Pol oscillator or a Rayleigh
oscillator.11 In the following we show that a limit cycle
emerges from this combination of negative Coulomb damp-
ing and linear viscous resistance in the long-time limit.

II. PHONATION AND THE TWO-MASS MODEL OF
ISHIZAKA, MATSUDAIRA, AND FLANAGAN

Human speech involves the use of the larynx to produce
voiced sounds such as the English vowels, voiced consonants
such as b ,d ,m , l, and other communicative sounds such as
grunts and humming. Voicing occurs when the two vocal
folds in the larynx come close to each other and are placed
into vibration by forces acting on them from the airflow
through the larynx. The tracheal air pressure is close to the
value of the lung pressure created by expiratory forces. Each
of the vocal folds is made of mucosal and muscle tissue and
thus has biomechanical properties. The two-mass model of
each of the vocal folds developed by Ishizaka, Matsudaira,
and Flanagan12,13 �IMF� was an important step in under-
standing human phonation, because it explained how energy
can be transferred from the flow of air between the vocal
folds to sustained oscillations.14 Oscillations of the vocal
folds with sufficient amplitude, which requires a threshold of
pressure, act as a valve to chop the flow of air from the lungs
into pulses of short duration. These pulses are introduced
into the vocal tract as acoustic excitations and are shaped by
the vocal tract resonances into the phonemes familiar in hu-
man speech. When the vocal folds are separated, the space
between them is called the glottis.

The two-mass model of IMF represents the vocal folds as
two sets of opposing masses, with the freedom to oscillate
laterally in response to the forces on their medial �toward the
center of the glottis� surfaces produced by the flow of air
from the lungs �see Fig. 2�. Each set of masses executes a
motion that is a mirror image of the other set, and thus the
two-mass model requires only two degrees of freedom to
describe the oscillatory behavior of the vocal folds. In re-
sponse to the flow of air, the intraglottal pressures P1 and P2,
the pressures inside the glottis, differ from the lung pressure
PL and the pressure in the vocal tract PVT. The elevated lung

pressure produces a flow of air through the glottis in accord
with the IMF treatment12,13 of the Bernoulli effect and of
viscosity.

The key to understanding the self-oscillating mechanism
of the two-mass model is knowledge of the sequence of
shapes that occur during a complete cycle of vocal fold mo-
tion. As depicted in Fig. 2�a�, the upstream mass M1, at the
leading edge of the vocal folds, is further from the midline
than the downstream mass M2 during the opening phase of
the motion, and the glottis has a converging shape when
opening. The IMF treatment of airflow gives intraglottal
pressures that are higher than the pressure in the vocal tract
for converging shapes. Thus, the net force �represented by
the large arrows� on the vocal folds is away from the midline
and in the same direction as the velocity, and the force due to
the airflow does positive work on the vocal folds during the
opening phase. As depicted in Fig. 2�b� the leading edge of
the vocal folds is closer to the midline than the trailing edge
during the closing phase of the motion, which gives a diverg-
ing shape for the glottis during the closing phase. The IMF
treatment of airflow gives intraglottal pressures that are
lower than the pressure in the vocal tract for diverging
shapes, and the net force on the vocal folds is toward the
midline, which is also in the same direction as the velocity.
Thus positive work is also done on the vocal folds by the
airflow during the closing phase. Because the air stream on
the vocal folds does positive work during both the opening
and closing phases, there is a net transfer of energy from the
air stream to the vocal folds during each cycle.15–18

We see that the effect of the airflow mechanism is similar
to the energy transfer process due to negative Coulomb
damping. Part of the appeal of the two-mass model is that the
sequence of shapes shown in Fig. 2 is a natural consequence
of the dynamics of the model, whose equations result in the
phase of the second oscillator following that of the first by
about 60°.

Because self-oscillation requires different shapes during
the opening and closing phases of the motion, we would
expect this behavior to depend sensitively on the stiffness of
the spring coupling the two masses. The parameter search by
Ishizaka and Flanagan12 shows that the self-oscillation prop-
erty disappears in the limit of large spring stiffness. Thus, the

Fig. 1. Harmonic oscillator with dry sliding friction. The dashed vertical
line represents the location of the equilibrium position of the oscillator. Fig. 2. Schematic representation of the two-mass model of Ishizaka, Mat-

sudaira, and Flanagan �Ref. 12� and its configurations during the opening
and closing motions.
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two-mass model provides a natural explanation for the diffi-
culty that Flanagan and Landgraf19 found in their attempt to
create a one-mass model of self-oscillation. Their model did
not have enough freedom to allow for the required converg-
ing and diverging shapes of the two-mass model, and hence
their model could not achieve self-oscillation unless a vocal
tract was added. Under the right circumstances, the vocal
tract enhances the effects of the lateral driving forces to the
point where self-oscillation is possible.

III. AN EFFECTIVE ONE-MASS MODEL

In spite of the difficulties encountered in Ref. 19, it should
be possible to create a one-mass model of the self-oscillating
vocal folds because a transformation from the coordinates of
the two oscillators of Fig. 2 to a set consisting of the center
of mass of the two oscillators and their relative coordinate
should not alter the physics. If we argue that the energy of
the relative coordinate does not play an essential role and
that the relative coordinate merely acts as a switch to change
the shape of the glottal channel at the appropriate times, then
the stage is set for a mechanism that gives self-oscillation. In
particular, the switch changes the glottal shape so that the
lateral aerodynamic forces acting on the vocal folds are al-
ways in phase with the velocity of the vocal folds and hence
do positive work on them, as indicated by the arrows of Fig.
2. The equation of motion for such a driven oscillator is

mẍ + rẋ + kx = F0 �x � 0� , �2�

and

mẍ + rẋ + kx = − F0/2 �x � 0� , �3�

where r measures the strength of the viscous damping. In our
model the force F0 is taken to be the lung pressure PL mul-
tiplied by the area of the medial surface of the glottis �1.2 cm
by 0.3 cm�. The pressure in the vocal tract is taken to be
atmospheric pressure.

From the right-hand sides of Eqs. �2� and �3� we see that
allowance has been made for a weaker driving force when
the oscillator moves toward the midline than when the oscil-
lator moves away from the midline. This dichotomy is a
consequence of a difference in the behavior of the pressure
distributions of the two-mass model for converging and di-
verging shapes, as explained in connection with Fig. 2. We
may obtain the ratio of these two forces from the two-mass
model by calculating the intraglottal pressures along the me-
dial surfaces of the two masses of Fig. 2 for the appropriate
converging and diverging shapes. An alternative is to exam-
ine the pressure distributions of a scaled plastic model of the
larynx16,17 for the appropriate converging and diverging
shapes. Both approaches yield a relation for the ratio of these
two driving forces that is a complicated function of the pres-
sure and the oscillator coordinates. In general, the driving
force for the inward motion is weaker than for the outward
motion, and a factor of 2 is a reasonable choice to include the
effects of this difference.

If the oscillator is assumed to be at rest at the origin when
the lung pressure is elevated at t=0, the solution of Eq. �2� is
given by

x�t� = x̄�1 − sec �e−�t cos��t + ��� , �4�

where �=r / �2m�, �= �k /m−�2�1/2, and x̄=F0 /k is the char-
acteristic displacement associated with the driving force. The

phase � is determined from the relation tan �=−� /�. Equa-
tion �4� describes the motion until the oscillator reaches the
first turning point at time t1 where ẋ�t1�=0. This point occurs
at t1=� /�, and hence the first turning point is given by

x1 = x�t1� = x̄�1 + e−��/�� . �5�

To find the second turning point, we need to solve Eq. �3�
subject to the initial conditions ẋ�t1�=0 and Eq. �5� for x�t1�.
This solution to Eq. �3� takes the form

x�t� = − x̄�3e��/�/2 + 1�sec �e−�t cos��t + �� − x̄/2, �6�

where tan �=−� /� as in Eq. �4�. �In the following equations
the phase � is the same as that in Eq. �4�.� The analytic form
of Eq. �6� allows us to find the second turning point at time
t2, which is defined by the condition ẋ�t2�=0. This point
occurs at t2=2� /�, and thus

x2 = x�t2� = − x̄�3e−��/�/2 + e−2��/� + 1/2� . �7�

As time progresses beyond t2, the equation of motion again
becomes Eq. �2�. This equation is subject to the initial con-
ditions ẋ�t2�=0 and Eq. �7� for x�t2�. Its solution is

x�t� = − x̄�3e��/�/2 + 3e2��/�/2 + 1�sec �e−�t

�cos��t + �� + x̄ . �8�

As before, we can find the time t3=3� /� at which the third
turning point occurs. The expression for x3 is

x3 = x�t3� = x̄�3e−��/�/2 + 3e−2��/�/2 + e−3��/� + 1� . �9�

From Eqs. �5� and �9� one may infer that all odd-numbered
turning points are maxima and all even-numbered turning
points are minima. The nth oscillation begins at time t2n−1
and ends at time t2n+1.

The condition ẋ�tn�=0 requires that tn=n� /�. The relation
between the height of the maximum at tn and the minimum at
tn+1 is given by

xn+1 + x̄/2 + �xn + x̄/2�e−��/� = 0 �n odd� . �10�

By considering the second half of this oscillation, we obtain
a relation between the minimum xn+1 and the next maximum

xn+2 − x̄ + �xn+1 − x̄�e−��/� = 0. �11�

Equations �10� and �11� may be used to relate the amplitudes
of two successive maxima,

xn+2 = xne−2��/� + x̄�1 + 3e−��/�/2 + e−2��/�/2� . �12�

We can solve the recurrence relation in Eq. �12� to find an
explicit expression for the maximum at tn, namely,

xn = x̄�1 + 3�e−��/� + e−2��/� + ¯ + e−�n−1���/��/2

+ e−n��/�� . �13�

The geometric series in the parentheses of Eq. �13� may be
summed. For large n the last term becomes unimportant, and
Eq. �13� approaches the limit,

xn → x̄�1 + 3�e��/� − 1�−1/2� �n odd� . �14�

A similar procedure yields the following result for the mini-
mum at tn+1:

388 388Am. J. Phys., Vol. 74, No. 5, May 2006 Fulcher et al.

 This article is copyrighted as indicated in the abstract. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.1.62.221 On: Tue, 22 Oct 2013 16:20:05



xn+1 → − x̄�1/2 + 3�e��/� − 1�−1/2� . �15�

From Eqs. �14� and �15� a center of oscillation xc= �xn

+xn+1� /2= x̄ /4 may be defined and the large-n difference of
the maxima and minima may be determined,

xn+2 − xn+1 = 3x̄ ctnh���/2��/2. �16�

If we subtract the value of the center of oscillation from the
expressions for xn and xn+1 in Eqs. �14� and �15�, we see that
the oscillation is symmetric about this center in the limit of
large n.

Inspection of Eqs. �14�–�16� reveals that none of these
limits depends on n, and thus in the large n limit, all refer-
ence to the history of the motion disappears.20 This behavior
is consistent with the requirements of a limit cycle.11,21

IV. LIMIT OF NO VISCOUS DAMPING

The limit �→0 in Eq. �12� leads to the simplified expres-
sion,

xn+2 = xn + 3x̄ . �17�

If Eq. �17� is combined with the �→0 limit of Eq. �5�, we
obtain the sequence

xmax = �2x̄,5x̄,8x̄,11x̄, ¯ � , �18�

for the maxima at the first, third, fifth, etc., turning points. An
analogous sequence may be found for the minima at the
second, fourth, sixth, etc., turning points, that is

xmin = �− 3x̄,− 6x̄,− 9x̄,− 12x̄, ¯ � . �19�

These sequences show that the maxima and the minima ex-
hibit linear laws of growth as we would expect.1–5 We can
obtain Eqs. �18� and �19� from Eq. �20� of Ref. 2 by making
the substitution 	−=F0 /m for the acceleration down the in-
cline and 	=F0 / �2m� for the magnitude of the acceleration
up the incline.

V. NUMERICAL SOLUTION

Although the analytic solutions of Sec. III are straightfor-
ward, it is simpler to solve the equations of motion numeri-
cally, especially if we use the Euler half-step method.22 We
have verified that the implementation of the half-step method
with a spreadsheet gives stable, oscillatory solutions to Eqs.
�2� and �3�. Reference 12 is used as a guide for parameters
suitable for the human vocal folds. Hence we choose m
=0.125 g, k=80 000 dynes/cm, and a pressure difference be-
tween the lungs PL and the vocal tract PVT of
7840 dynes/cm2 �the pressure required to support a column
of water 8 cm high�. The time step 
=0.0001 s is sufficient,
although 
=0.000 02 s is required to achieve an accuracy of
three significant figures.

In Fig. 3 we show the displacements of the one-mass
model with r=20 g/s and r=60 g/s. For comparison, the
driving force �F0=2822 dynes� divided by k is also shown.
For v�0 this ratio gives the fundamental length x̄, and for
v�0 this ratio gives −x̄ /2. Figure 3 makes it clear that the
driving force is in phase with the oscillator motion and de-
livers energy to the oscillator, resulting in an energy gain
until the limit cycle is reached. From Fig. 3�a� it is apparent
that the onset time, that is, the time required for the oscilla-
tion to reach its limit cycle, is about 50 ms or longer for the

smaller damping parameter. The more strongly damped case
of Fig. 3�b� achieves its limit cycle in 15 to 20 ms, in rea-
sonable agreement with Fig. 7 of Ref. 12. The horizontal line
near x=−0.009 cm in Fig. 3�b� represents the position of the
midline of Fig. 2 relative to the equilibrium value of the
oscillator. The oscillator must move past the midline to shut
off the flow of air from the lungs. According to Ref. 12,
1960 dynes/cm2 �2 cm of water� is a reasonable value for
the phonation threshold pressure, and Eq. �15� yields xmin=
−0.0089 cm for this pressure. From the location of this line,
we can infer that the oscillator spends 4.9 ms of its 8.2 ms
period open and 3.3 ms closed, which gives an open quotient
of 0.60.

The phase portraits of Fig. 4 show that both systems ap-
proach a limit cycle with well-defined trajectories in phase
space, consistent with our expectations from Eqs. �14� and
�15�. These trajectories, with their outward spirals, suggest a
self-limiting behavior characteristic of a limit cycle. To show
that this behavior is that of a limit cycle, we must establish
that any phase trajectory that begins inside the closed curve
of the limit cycle spirals outward to the limit cycle and that
any phase trajectory that begins outside the closed curve of
the limit cycle spirals inward to the limit cycle. Our numeri-
cal simulations with different initial conditions have shown
this behavior to be the case, and we conclude that the stable
pattern of oscillation exhibited in Figs. 3 and 4 is a limit
cycle.

It is apparent that the oscillations in Figs. 3 and 4 have an
asymmetry that favors positive displacements, which yields a
center of oscillation to the right of the origin, in accord with

Fig. 3. Displacements of the effective one-mass model for two damping
constants. The saw-tooth pattern provides a measure of the driving force.
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the result for xc following Eqs. �14� and �15�. Figure 4�b�
shows that the limit cycle emerges after about two complete
oscillations for r=60 g/s. The rapid development of the limit
cycle for the more heavily damped oscillator is also manifest
in Fig. 5, where the time dependence of the sum of the ki-
netic and potential energies for each oscillator is depicted.
Note that the same driving force builds up a much larger
average energy for lighter damping than for heavier damp-
ing, consistent with the requirement of a longer onset time.
Thus the ratio of the amplitude of oscillation to the average
energy in Fig. 5�a� is much smaller than in Fig. 5�b�.

VI. WORK-ENERGY CONSIDERATIONS

If we multiply Eq. �3� by ẋ and integrate the resultant
equation over a half-cycle of the motion during the closing
phase �tn to tn+1�, we find

E�tn+1� − E�tn� = �xn − xn+1�F0/2 − r�
tn

tn+1

ẋ2 dt �n odd�

�20�

where E�t�=mẋ2 /2+kx2 /2 is the total mechanical energy of
the oscillator. We multiply Eq. �2� by ẋ and integrate the
result over the half-cycle of the motion �tn+1 to tn+2� and
obtain

E�tn+2� − E�tn+1� = �xn+2 − xn+1�F0 − r�
tn+1

tn+2

ẋ2 dt . �21�

Adding Eqs. �20� and �21� and taking the limit of long times
�where E�tn+2�=E�tn� and xn+2=xn� gives the result

3F0�xn+2 − xn+1�/2 − r�
tn

tn+2

ẋ2 dt = 0, �22�

which embodies the balance between the work done by the
aerodynamic forces and the energy dissipated by the viscous
forces, after the limit cycle has been reached. The substitu-
tion of Eq. �16� into Eq. �22� gives an explicit expression for
the energy lost during a complete oscillation,

Elost = r�
cycle

ẋ2 dt = 9F0
2 �ctnh���/2���/�4k� . �23�

The behavior required for the applicability of Eqs. �22� and
�23� is apparent from Figs. 3�b� and 5�b�, after the limit cycle
is achieved, because the maxima of the oscillations there
have the same amplitude, as do the minima of the oscilla-
tions. For the parameters of Fig. 5�b� we obtain Elost
=490 ergs, which is 2.75 times larger than the maximum of
the total mechanical energy, Emax=178 ergs,23 showing that
the oscillator with r=60 g/s is heavily damped, but not
damped enough to be critically damped �for which r
=200 g/s�. Dividing Elost by the period of the motion gives

Fig. 4. Phase portraits of the effective one-mass model.

Fig. 5. Time dependence of the total mechanical energy of the oscillating
mass in the effective one-mass model.
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an average power loss of 5.95 mW, after the oscillator has
achieved its limit cycle.

It is instructive to compare these numbers with the other
average powers in the problem. To calculate the energy input
from the lungs, we require the average volume velocity Ugavg
of flow through the glottis. This velocity may be estimated
from the Bernoulli relation for the pressure drop within the
glottis, that is


P = �Ugavg
2 /�2.0Agavg

2 � , �24�

where � is the density of air, and Agavg is the glottal area
averaged over a complete cycle of vocal fold motion. The
quantity Agavg is the product of the glottal length �1.2 cm�
and the averaged glottal diameter davg, which may be taken
from Fig. 3�b�. Choosing davg=0.068 cm yields Agavg
=0.082 cm2 and Ugavg=296 cm3/s. Multiplying Ugavg by the
pressure in the vocal tract �7840 dynes/cm2� gives an aver-
age power input to the larynx of 232 mW, a level far above
that required to drive the vocal folds at their limit cycle am-
plitudes.

It is also instructive to estimate how much of this input
power finds its way into acoustical energy. The data collected
in Ref. 24 on the vocal intensity characteristics of elderly and
normal speakers furnishes a convenient means of doing so.
The sound pressure levels for both groups at a distance of
15 cm from the mouth was measured and the lung pressures
and the peak values of the airflow rate were also recorded.
For one of their groups at the maximum level of effort, the
sound pressure level was about 85 decibels for a recorded
lung pressure of 7.96 cm H2O, a value close to that used to
calculate the results of Figs. 3–5. Assuming that this sound
pressure level is more or less uniform over a hemisphere
centered on the mouth, the average acoustical energy output
is 0.045 mW, less than 1% of the value required to drive the
vocal folds. Our model does not predict other important en-
ergies in the phonation process, such as energy losses in the
vocal tract and the kinetic energy associated with the airflow
out of the mouth.

VII. NONLINEAR FORCES

As we have discussed, an important property of the oscil-
lator described by Eqs. �2� and �3� is its isochronous prop-
erty, that is, the frequency of the oscillator does not depend
on the strength of the driving force, although the amplitude
of the oscillation does. One of the important accomplish-
ments of the two-mass model12,13 was an explanation of the
dependence of the fundamental frequency of oscillation on
the driving force of the lung pressure. Because the frequency
of the linear oscillator depends only on the mass, the spring
constant, and the damping constant, the linear oscillator does
not allow any variation of the frequency with the strength of
the driving force, which is directly proportional to the lung
pressure. To incorporate a variation of fundamental fre-
quency with lung pressure into their model, Ishizaka and
Flanagan introduced a nonlinear spring force. In effect, their
spring constant k became dependent on position

k�x� = k�1 + 
x2� , �25�

where 
=100 cm−2.12 Our calculation of the effect of the
lung pressure on the fundamental frequency, determined by
substituting Eq. �25� for the factor k in Eqs. �2� and �3�, is
depicted in Fig. 6, where the behavior of the nonlinear cal-

culation is compared with the isochronous property of the
linear oscillator of Secs. III and V. The results from Fig. 11
of Ref. 12 are also presented in Fig. 6 to provide a compari-
son with the effective one-mass model. Error bars of 2% are
added to our results to allow for possible numerical errors.23

Unlike our calculation, the two-mass calculation of Ish-
izaka and Flanagan12 used the flow pulses generated by the
valve action of the two-mass model as input for a model
vocal tract, taken to be a series of four cylinders of total
length 16 cm and different cross sections. Their vocal tract
was assigned shapes characteristic of different English vow-
els, such as e and i. For each vowel the environment that the
glottal flow pulses encounter on their way to becoming the
phonemes of spoken English is different, because each char-
acteristic shape has a distinct set of resonances. The interac-
tion of these resonances with the input flow pulse molds this
excitation into the correct form to produce the intended
sound. Among other effects, the initial flow pulse experi-
ences a modification of its fundamental frequency, whose
magnitude depends on the shape of the vocal tract. For ex-
ample, near 10 cm H2O, Ishizaka and Flanagan find the fun-
damental frequency to be 1% or 2% higher for e than for i.
Our results reproduce the linear trend of the two-mass model
at higher pressures with a slight difference in the slope. The
main differences between our results and the two-mass re-
sults are found at lower pressures, where the effects of the
interaction with the vocal tract are the largest. The error bars
attached to the IMF results of Fig. 6 reflect the frequency
spreads associated with the shape of the vocal tract and the
difficulties of reading accurately the numbers from Fig. 11 of
Ref. 12.

The IMF result for 
=0 in Fig. 6 exhibits the same kind of
pressure dependence as their nonlinear result at lower pres-
sures. The influence of the vocal tract on the IMF result for

=0 almost disappears at higher pressures, resulting in a
linear behavior that is nearly parallel to the constant behavior
of our 
=0 result.

Our results for the open quotient of the nonlinear one-
mass model are presented in Fig. 7 and compared with those
of the two-mass calculation. The threshold for both calcula-
tions is P=2.0 cm H2O, near the minimum subglotal pres-
sure necessary for vowel production. Both curves exhibit
monotonic decreases to values just under 0.6, indicating that

Fig. 6. Pressure dependence of the fundamental frequency for the nonlinear
and linear effective one-mass models. The dashed curves are taken from
Ref. 12.
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the vocal folds are closed about 40% of the time during the
cycle when the driving pressures are large. The open quotient
is one of the physiological parameters often monitored in a
detailed examination of vocal intensity characteristics.24 It
plays an important role in determining the sharpness of the
flow peak, a factor that controls the intensity of the sound
radiated.

VIII. SUMMARY

Most treatments of the damped harmonic oscillator focus
on viscous damping because of its simplicity, although a con-
stant frictional force also allows an analytical treatment. If
the sign of the constant frictional force is changed so that the
Coulomb damping force becomes a negative Coulomb
damping force, then it can add energy to the oscillator in-
stead of removing it. Adding a viscous damping term makes
steady state motion possible. We show that in the long-time
limit the analytic solutions approach a limit cycle, and the
amplitude and velocity lose their dependence on the history
of the motion.

The connection of negative Coulomb damping and viscous
friction with the aerodynamic forces on the vocal folds dur-
ing phonation developed in Refs. 12 and 13 was explored.
We explained how an elevated lung pressure gives rise to a
flow of air through the glottis and produces a series of alter-
nating converging and diverging shapes of the vertical di-
mensions of the vocal folds. The pressure distributions in the
glottis resulting from this series of shapes are alternately
higher and lower than the pressures in the vocal tract. More-
over, these pressure variations are in phase with the motion
of the vocal folds, and thus they add energy to the oscillator
in the same way as negative Coulomb damping does. The
limit cycle of the oscillator with negative Coulomb damping
provides a natural explanation of the self-oscillation property
of the two-mass model.

Adding a nonlinear driving force to the effective one-mass
model eliminates its isochronous property and allows com-
parison with the results for the pressure dependence of the
fundamental frequency and the open quotient obtained with
the IMF model. The comparison of Figs. 6 and 7 shows the
promise of the effective one-mass model in reproducing
more subtle aspects of phonation,24 in addition to providing a
satisfying qualitative explanation of how aerodynamic forces
transfer energy to the vocal folds.
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