Clean Label Ingredients for Food Safety

Rodrigo Tarté, Ph.D., Iowa State University

Available at: https://works.bepress.com/rodrigo_tarte/35/

This work is licensed under a Creative Commons CC_BY-NC-ND International License.
Clean Label Ingredients for Food Safety

Rodrigo Tarté, Ph.D.
Iowa State University
July 14, 2018
Objectives

- To review the factors that affect microbial growth in foods
- To present antimicrobial ingredients that may be considered “clean label”
- To present and discuss some of the challenges associated with “clean label” antimicrobials
Agenda

- Microbial growth in foods
- Food parameters that impact microbial growth in foods
- Strategies for microbial control in foods
- Antimicrobials in foods
- “Clean label” antimicrobials
- Current challenges of “clean label” antimicrobials
Microbial Growth in Foods

- **Spoilage Microorganisms**
 - Reduction of keeping quality and shelf-life \rightarrow economic losses; food waste; loss of consumer confidence and trust

- **Pathogenic Microorganisms**
 - Consumer discomfort, illness or death \rightarrow human pain, loss and grief; lost productivity; \uparrow health care costs; \downarrow consumer confidence and trust in food industry and food supply

- Except post-package sterilized foods, all foods are subject to food spoilage or loss of microbiological safety if ideal microbial growth conditions are present.
General Pattern of Microbial Spoilage

![Graph showing the general pattern of microbial spoilage over time. The graph includes lines for total microflora, specific spoilage organisms, and metabolites, with key points labeled for minimal spoilage level, chemical spoilage index, and shelf life.]

Food Parameters that Influence Microbial Growth

<table>
<thead>
<tr>
<th>Intrinsic Parameters</th>
<th>Extrinsic Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Inactivation temperature</td>
</tr>
<tr>
<td>Available Moisture</td>
<td>Storage temperature</td>
</tr>
<tr>
<td>Nutrients</td>
<td>Storage atmosphere</td>
</tr>
<tr>
<td>Antimicrobial constituents</td>
<td></td>
</tr>
<tr>
<td>Oxidation-Reduction (O/R) Potential (Eh)</td>
<td></td>
</tr>
<tr>
<td>Biological structures</td>
<td></td>
</tr>
</tbody>
</table>
pH

$pH = -\log [H^+]$

Microbes try to maintain pH within narrow range → “homeostasis”

Intracellular pH typically near neutral

Microbial classification by optimal pH range:

- Acidophiles → pH 0.5–5
- Neutralophiles → pH 5–9
- Alkaliphiles → pH 9–13

Major deviations from optimal pH disrupt pH homeostatic mechanisms

Cytoplasmic membrane relatively impermeable to H^+ and $-OH$ ions
Available Moisture

Described by water activity (a_w)

\[a_w = \frac{p}{p_o} \quad \text{(vapor pressure of food)} \]
\[a_w = \frac{p}{p_o} \quad \text{(vapor pressure of pure water)} \]

Related to equilibrium relative humidity (ERH) above the food

\[\text{ERH} = a_w \times 100 \]

Describes degree to which water is bound in food

Measures availability of water to support microbial growth and participate in chemical/biochemical reactions

a_w not same as moisture (or water) content, or percent moisture
Effect of a_w on chemical and microbial stability of foods
Minimum a_w requirements for microbial growth

<table>
<thead>
<tr>
<th>Type of Microorganism</th>
<th>Water Activity (a_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>0.85–1.00</td>
</tr>
<tr>
<td>Most yeasts</td>
<td>0.87–0.91</td>
</tr>
<tr>
<td>Molds</td>
<td>0.80–0.87</td>
</tr>
<tr>
<td>Certain yeast and molds</td>
<td>0.71–0.86</td>
</tr>
<tr>
<td>Certain yeasts</td>
<td>0.60–0.70</td>
</tr>
<tr>
<td>None</td>
<td><0.60</td>
</tr>
</tbody>
</table>
aw of Selected Foods

<table>
<thead>
<tr>
<th>Food Item</th>
<th>aw Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh meat and fish</td>
<td>0.99–1.00</td>
</tr>
<tr>
<td>Baked cake</td>
<td>0.90–0.94</td>
</tr>
<tr>
<td>Fruit cake</td>
<td>0.73–0.83</td>
</tr>
<tr>
<td>Fresh fruits & vegetables</td>
<td>0.97–1.00</td>
</tr>
<tr>
<td>Jams and jellies</td>
<td>0.75–0.94</td>
</tr>
<tr>
<td>Hard salami</td>
<td>0.82</td>
</tr>
<tr>
<td>Natural cheeses</td>
<td>0.95–1.00</td>
</tr>
<tr>
<td>Bean paste</td>
<td>0.93</td>
</tr>
<tr>
<td>Beef jerky</td>
<td>0.78–0.82</td>
</tr>
<tr>
<td>Fluid milk</td>
<td>0.99</td>
</tr>
<tr>
<td>Caviar</td>
<td>0.92</td>
</tr>
<tr>
<td>Soy sauce</td>
<td>0.80</td>
</tr>
<tr>
<td>Pudding</td>
<td>0.97–0.99</td>
</tr>
<tr>
<td>Summer sausage</td>
<td>0.88</td>
</tr>
<tr>
<td>Dried fruit</td>
<td>0.55–0.80</td>
</tr>
<tr>
<td>Bacon</td>
<td>0.97</td>
</tr>
<tr>
<td>Uncooked rice</td>
<td>0.80–0.87</td>
</tr>
<tr>
<td>Honey</td>
<td>0.75</td>
</tr>
<tr>
<td>Cooked Ham</td>
<td>0.97</td>
</tr>
<tr>
<td>Flour</td>
<td>0.67–0.87</td>
</tr>
<tr>
<td>Peanut butter, 15% moist</td>
<td>0.70</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.97</td>
</tr>
<tr>
<td>Aged cheddar cheese</td>
<td>0.85</td>
</tr>
<tr>
<td>Dried whole egg</td>
<td>0.40</td>
</tr>
<tr>
<td>Pork sausage</td>
<td>0.97</td>
</tr>
<tr>
<td>Maple syrup</td>
<td>0.85</td>
</tr>
<tr>
<td>Cookies</td>
<td>0.30</td>
</tr>
<tr>
<td>Frankfurter</td>
<td>0.96–0.97</td>
</tr>
<tr>
<td>Fruit juice concentrates</td>
<td>0.79–0.84</td>
</tr>
<tr>
<td>Instant coffee</td>
<td>0.20</td>
</tr>
<tr>
<td>Liverwurst</td>
<td>0.96–0.97</td>
</tr>
<tr>
<td>Cake icing</td>
<td>0.75–0.84</td>
</tr>
<tr>
<td>Dried whole milk</td>
<td>0.20</td>
</tr>
<tr>
<td>Bread, white</td>
<td>0.94–0.97</td>
</tr>
<tr>
<td>Fudge sauce</td>
<td>0.83</td>
</tr>
<tr>
<td>RTE breakfast cereal</td>
<td>0.10–0.20</td>
</tr>
<tr>
<td>Cheese spread</td>
<td>0.95</td>
</tr>
<tr>
<td>Sweetened cond. milk</td>
<td>0.83</td>
</tr>
<tr>
<td>Crackers</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Nutrients

Nutrient requirements of microorganisms

1. Water
2. Energy → primarily sugars, alcohols, amino acids
3. Nitrogen → amino acids
4. Vitamins and growth factors
5. Minerals

Requirements, least to highest:
- Molds → yeasts → gram-negative bacteria → gram-positive bacteria
Oxidation-Reduction (O/R) Potential (Eh)

Ratio of oxidizing vs. reducing power of a substance
Measured in mV (pH 7.0; 30°C)

\[\downarrow \text{O}_2 \quad \Rightarrow \quad \downarrow \text{Eh} \]

Can be extrinsic parameter also (i.e., packaging atmosphere)

Classification of microorganisms based on Eh requirements:

<table>
<thead>
<tr>
<th>Eh range (mV)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>+500 – +300</td>
<td>Aeromonas hydrophila</td>
</tr>
<tr>
<td>+300 – -100</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>+100 – -250</td>
<td>Clostridium botulinum</td>
</tr>
<tr>
<td></td>
<td>Campylobacter jejuni</td>
</tr>
</tbody>
</table>
Biological Structures

Natural protective coverings of foods

- e.g., egg shells, nut shells, fruit peels, seed coats, animal hides/skin

In intact form, provide physical barrier to entry of microorganisms
Temperature

Classification of microorganisms based on temperature requirements:

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Growth range (°C)</th>
<th>Growth optima (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychrophiles</td>
<td>[-5]–20</td>
<td>10–15</td>
</tr>
<tr>
<td>Psychrotrophs</td>
<td>>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Mesophiles</td>
<td>10–45</td>
<td>35–40</td>
</tr>
<tr>
<td>Thermophiles</td>
<td>45–70</td>
<td>55–60</td>
</tr>
</tbody>
</table>
Effect of temperature on growth rate of microorganisms

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Enzymatic reactions at maximal possible rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Membranes gel; transport processes too slow for growth</td>
</tr>
<tr>
<td>Optimum</td>
<td>Enzymatic reaction rates increase rapidly</td>
</tr>
<tr>
<td>Maximum</td>
<td>Proteins denature; cytoplasmic membrane collapses; thermal lysis</td>
</tr>
</tbody>
</table>
Temperature

Ways to control microorganisms:

• High temperature: cooking, canning, etc.
• Low temperature: refrigeration, freezing, etc.
• Avoid temperature “danger zone” (40–140°F)

Antimicrobial Constituents

- May be:
 - Naturally-present
 - Produced by competitive microflora
 - Deliberately added as food additives
Microbial growth control strategies

<table>
<thead>
<tr>
<th>Control barrier</th>
<th>Objective</th>
<th>Example strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivation temperature</td>
<td></td>
<td>Cooking; canning</td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
<td>Refrigeration; freezing</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>Fermentation; acidification</td>
</tr>
<tr>
<td>O/R Potential (Eh)</td>
<td></td>
<td>Vacuum or modified atmosphere</td>
</tr>
<tr>
<td>Water activity (a_w)</td>
<td></td>
<td>Dehydration; addition of salt or sugar</td>
</tr>
<tr>
<td>Antimicrobial ingredients</td>
<td></td>
<td>Lactate; sorbate; diacetate; vinegar; fermentates; etc.</td>
</tr>
<tr>
<td>Competitive microflora</td>
<td></td>
<td>Starter cultures</td>
</tr>
<tr>
<td>Non-thermal processes</td>
<td></td>
<td>High pressure; irradiation; pulsed light; ultrasound; etc.</td>
</tr>
</tbody>
</table>
Antimicrobials in Foods

- Classified as “preservatives”
- Definitions:
 - Chemical preservatives (21 CFR 101.22(a)(5)):
 - “...any chemical that, when added to food, tends to prevent or retard deterioration thereof, but does not include common salt, sugars, vinegars, spices, or oils extracted from spices, substances added to food by direct exposure thereof to wood smoke, or chemicals applied for their insecticidal or herbicidal properties.”
 - “[P]revent or retard deterioration” can refer to both biological and chemical deterioration
 - Antimicrobial agents (21 CFR 170.3(o)(2)):
 - “Substances used to preserve food by preventing growth of microorganisms and subsequent spoilage, including fungistats, mold and rope inhibitors,...”
Antimicrobials in Foods

- General considerations
 - **Microorganism(s) to control**
 - Desired antimicrobial spectrum of action
 - **Length of shelf-life**
 - **Characteristics of food product**
 - \(a_w, \) pH, Eh, temperature, package, etc.
 - **Cost-in-use** = Usage level \(\times \) price
“Clean Label” Antimicrobials

- **Identity criteria:**
 - Less/minimally processed
 - Recognizable and/or easy to pronounce name (not chemical)
 - ∴ isolated ingredients at disadvantage if chemical name must be used
 - “‘Tis but thy name that is my enemy.” (Romeo and Juliet, Act 2, Scene 2)
 - Sourced from nature / not synthetic
 - Preferably multi-use ingredient (e.g., flavoring and antimicrobial)
 - Helps shortening of ingredients statements
 - Other criteria:
 - e.g., organic, country of origin, local, environmental footprint
“Clean Label” Antimicrobials

- Many currently-used antimicrobials are found in nature
 - e.g., acetic acid (vinegar), benzoic acid (cranberries), propionic acid (Swiss cheese), lactic acid (many fermented foods)

- However, even when isolated and purified from natural sources or produced by processes that could be considered natural (e.g., fermentation), the use of their chemical names in food labels may exclude them from “clean label” consideration

“Clean Label” Antimicrobials

<table>
<thead>
<tr>
<th>Animal</th>
<th>Plant</th>
<th>Microbial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozyme</td>
<td>Spices and essential oils</td>
<td>Bacteriocins</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>Berries</td>
<td>Fermentates</td>
</tr>
<tr>
<td>Lactoperoxidase system</td>
<td>Olives</td>
<td>Protective cultures</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Hops</td>
<td>Vinegar</td>
</tr>
<tr>
<td></td>
<td>Mustard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alliums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lemon juice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherry powder</td>
<td></td>
</tr>
</tbody>
</table>
Organic Acids and Salts

Short-chain organic acids
Weak acids

Antimicrobial activity is pH-dependent
 - Increases as environmental pH approaches pKa
 - When pH = pKa, half of the acid molecules are dissociated
 - At pH < pKa, more of the acid is undissociated (and thus more effective)

In undissociated state, organic acids enter cell, dissociate and decrease cytoplasmic pH. In effort to maintain homeostasis, cellular ATP is depleted.

Organic acids are lipophilic and therefore difficult to solubilize in water phase; therefore they are more commonly added in their salt forms.
Commonly-used organic acids

<table>
<thead>
<tr>
<th>Organic acid</th>
<th>MW</th>
<th>pK_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic</td>
<td>60.50</td>
<td>4.75</td>
</tr>
<tr>
<td>Propionic</td>
<td>74.08</td>
<td>4.88</td>
</tr>
<tr>
<td>Lactic</td>
<td>90.08</td>
<td>3.08</td>
</tr>
<tr>
<td>Phosphoric</td>
<td>98.00</td>
<td>2.21</td>
</tr>
<tr>
<td>Sorbic</td>
<td>112.13</td>
<td>4.80</td>
</tr>
<tr>
<td>Fumaric</td>
<td>116.70</td>
<td>3.03</td>
</tr>
<tr>
<td>Benzoic</td>
<td>122.12</td>
<td>4.19</td>
</tr>
<tr>
<td>Malic</td>
<td>134.09</td>
<td>3.40</td>
</tr>
<tr>
<td>Caprylic (octanoic)</td>
<td>144.21</td>
<td>4.89</td>
</tr>
<tr>
<td>Citric</td>
<td>192.12</td>
<td>3.14</td>
</tr>
</tbody>
</table>
Organic Acids and Salts

Combinations of organic acids (or with other antimicrobials) can sometimes be more effective than a single one.

Commercial applications:
- Decontamination of fresh meat or carcasses
- Processed meats

Lactate (usage ≈ 2–3%), sometimes in combination with diacetate, has been used effectively in processed meats for many years. Recently benzoate and propionate have gained popularity due to their lower cost-in-use (usage ≈ 0.2–0.3%).

Most are approved as GRAS.
Organic Acids and Salts

Final word:

• Although generally not consumer-friendly due to their chemical name, they constitute the basic antimicrobial components of many natural or “clean label” antimicrobial ingredients
Lysozyme

Muraminidase enzyme that breaks down peptidoglycan of bacterial cell walls

- Active against gram-positive bacteria (Clostridium, Bacillus, Micrococcus, specific strains of Lactobacillus spp. and L. monocytogenes)
- By itself, ineffective against gram-negative bacteria
- Activity can be enhanced by combining with other antimicrobials

Commerially obtained from egg white albumin and milk

Approvals

- FDA: affirmed GRAS; approved for direct addition to foods
- USDA: casings; cooked RTE meat and poultry products
Lactoferrin

Iron-binding transferrin protein
Commercially obtained from whey protein
Levels increased in:
 • Unmilked animals
 • Udder infection
Effective against bacteria, fungi and viruses
Competes with bacteria for available iron
Approved in U.S. for decontamination of beef carcasses and parts
Lactoperoxidase system

System components:

- **Lactoperoxidase**: enzyme found in mammalian secretions (raw milk, saliva, colostrum, etc.)
- **Thiocyanate**: found in secretions; derived from the diet
- **Hydrogen peroxide**: produced by bacteria

LP catalyzes reaction of thiocyanate ion with H_2O_2 to produce antimicrobial compound *hypothiocyanate*, which disrupts bacterial inner membrane

\[
\text{SCN}^- + \text{H}_2\text{O}_2 \rightarrow \text{OSCN}^- + \text{H}_2\text{O}
\]
Lactoperoxidase system

Bactericidal to many gram-negatives (e.g., *E. coli* and *Salmonella*); bacteriostatic vs. gram-positives; antifungal activity

Promoted for preservation of raw milk

Also tested in vegetable juices, liquid whole egg and beef

Not very effective *in vivo*; must add thiocyanate and H$_2$O$_2$ to increase effectiveness
Chitosan

Derived from shellfish chitin via deacetylation

Effective against bacteria, yeasts and molds, although MIC varies widely (0.01%–5.0%)

Mode of action not totally understood
Spice Extracts and Essential Oils

Efficacy demonstrated in extracts and essential oils obtained from various plants

• Most active: cinnamon (cinnamaldehyde, eugenol), oregano (carvacrol), cloves (eugenol), thyme (thymol, carvacrol)
• Also active: rosemary, sage, basil, coriander, nutmeg, lemongrass, marjoram, cumin, others

General susceptibility

• Fungi > gram-positives > gram-negatives
Spice Extracts and Essential Oils

Efficacy can be affected by high protein and fat
Efficacy favored by low a_w, high NaCl, organic acids

Chemical types:
 - Phenols: eugenol, isoeugenol, carnosol, rosmanol, isorosmanol, rosmarinic acid, borneol
 - Aldehydes: cinnamaldehyde
 - Terpenes: thymol, carvacrol
 - Thiosulfinates: allicin
Berries

Rich in antimicrobial polyphenolics and organic acids
Cranberry, raspberry, strawberry, bilberry, cloudberry
Olives

Olea europae

Rich in biophenols, such as oleuropein and others

Oleuropein active against gram+ and gram– bacteria, several fungi and enveloped viruses

Mode of action not yet fully understood
Hops

Used to impart bitterness in brewing

Two types of bitter compounds: α-acids and β-acids

β-acids have antimicrobial activity against *L. monocytogenes*, *Streptococcus* spp., and *E. coli*

Work by disrupting cell membrane
Mustard

Active component: isothiocyanates (R–N=C=S)

- R side group = allyl, ethyl, methyl, benzyl, phenyl
- Inhibit gram-positives, gram-negatives and fungi
- Low flavor threshold, but effective at very low concentrations (ng/L)
- Mechanism of action believed to be related to inhibition of sulfhydryl-containing enzymes
Alliums

Garlic (*Allium sativum*) and onions (*Allium cepa*)

Active component: allicin (garlic); thiopropanal-S-oxide (onion)

Inhibit growth and toxin production by numerous microorganisms (*C. botulinum* type A, *B. cereus*, *E. coli*, *L. plantarum*, *Salmonella*, *Shigella* spp., *S. aureus*, *A. flavus*; *C. albicans*, *Saccharomyces*, *Torulopsis*)

Mechanism of action (allicin) believed to be related to inhibition of thiol-containing enzymes
Lemon Juice

Active components: citric acid, ascorbic acid
Not considered a preservative
Available as lemon juice solids and lemon powder
Cherry Powder

Obtained from Acerola cherries
Active components: malic acid, ascorbic acid
Not considered a preservative
Primary use in meat products is as replacement for erythorbate or ascorbate
Vinegar

Active component: acetic acid
Very significant antimicrobial activity, but not considered a preservative
Available in liquid and powdered form
Buffered vinegar typically used to mitigate effects on product pH
Popular in meat products as replacement for sodium diacetate
Quintessential pantry ingredient → very “label-friendly”
Bacteriocins

Heat-stable antimicrobial peptides produced by bacteria (lactic acid bacteria and others)

Advantages

• Can be used when fermentation conditions are not desired
• Permit more exact dosification
Nisin

- Class I bacteriocin (lantabiotic) produced by *Lactococcus lactis* subsp. *lactis*
- Inhibits growth of wide number of gram-positives as well as germination of spores of *Clostridium* and *Bacillus*
- Inhibits cell wall biosynthesis and forms pores in cytoplasmic membrane, leading to disruption of proton motive force
- First bacteriocin approved for food use
- GRAS status in U.S.; approved in pasteurized process cheese, cooked RTE meat & poultry products & soups, egg products
Bacteriocins, cont.

Natamycin
• Antimycotic produced by *Streptomyces natalensis*
• Affects cell membrane permeability, resulting in leakage of ions and peptides and, ultimately, cell lysis
• Approved in U.S. as mold inhibitor in cheese

Other bacteriocins
• e.g., pediocin, lacticin, lactocin, lactococcin, leuconocin, sakacin
• LAB bacteriocins are of special interest due to potential GRAS status
Fermentates

Products of fermentation of ingredients such as sugar, dextrose, milk, whey, by lactic acid bacteria
Active components: organic acids (e.g., lactic, propionic, acetic) and/or bacteriocins
Activity dependent on fermenting culture used
Many commercial preparations for meat & poultry products consists of blends with vinegar
Protective (antagonistic) cultures

LAB (primarily *Lactobacillus* spp.) or other bacteria (primarily *Bifidobacterium* spp.)

Work by:

• Production of antibacterial components such as bacteriocins, enzymes, organic acids, diacetyl, ethanol, free fatty acids, H$_2$O$_2$
• Outcompeting other microorganisms

As opposed to fermentates, production of active component(s) takes place in the food

Generally GRAS
Current Challenges of “Clean Label” Antimicrobials

- **Cost-in-use**
 - Generally higher than synthetic
 - Must weigh CIU vs. need/desirability of ingredient

- **Toxicological/allergenic aspects**
 - Natural ≠ Safe
 - How safe are they at levels required for antimicrobial activity?

- **Activity validation and predictive modeling**
 - Valid results require consistent concentration of antimicrobial component(s)
 - Natural variations may make this difficult or impossible
Current Challenges of “Clean Label” Antimicrobials

- **Sensory effects**
 - Two main issues:
 - Lack of refinement may leave sensory-objectionable components
 - May require high usage level for antimicrobial effectiveness
 - May lead to negative sensory attributes (flavor, color, odor, texture) at concentrations required for desired antimicrobial activity

- **Interaction with other food components**
 - Sometimes activity level observed *in vitro* is not observed in food product
Is it approved?

Select Ingredients
References

Thank you.