Iowa State University

From the SelectedWorks of Rodrigo Tarté

October 19, 2015

Packaging Strategies for Meat and Meat Products

Rodrigo Tarté, Ph.D., Iowa State University

This work is licensed under a Creative Commons CC BY-ND International License.

Packaging Strategies for Meat and Meat Products

Rodrigo Tarté, Ph.D.

Assistant Professor

Meat Science and Technology

Department of Animal Science

215D Meat Laboratory

Ames, IA 50011-3150

rtarte@iastate.edu

Packaging Basics Seminar
Ames, IA — 19 October 2015

Classes of Attributes in Meat Products

- Characterizing Attributes
 - Those that make a product what it is
 - Often dictated by a standard of identity or other legal definition
- Differentiation
 - Those that make a product different unique
 - Provides variety and choice
- Safety
 - Those that ensure product is safe to consume

Meat Product Attributes in Relation to Quality Characteristics

Objectives of Meat Packaging

- Containment
 - Enable apportionment
 - Facilitate storage, transportation, handling
- Protection
 - Protect food from the external environment
 - Microorganisms, water, oxygen, light, external objects, other contaminants
- Convenience and Ease-of-Use
 - Reclosability, reheatability, portability

Objectives of Meat Packaging, cont.

Communication

- Key product information
 - Name, name qualifiers, ingredients, nutrition facts, handling/cooking/heating instructions
- Marketing
 - Branding, image, claims, advertising, couponing

Meat Product Attributes in Relation to Quality Characteristics

Environmental factors that affect quality characteristics

	Color	Flavor	Microbial Control
Oxygen	✓	✓	\checkmark
Light	\checkmark	\checkmark	
Temperature	✓	\checkmark	✓

The "Perfect" Package

- From a quality perspective the "perfect" package keeps light and oxygen out
- However, this is not always practical due to the nature of the meat market
 - Visual inspection by the consumer is a key element of the purchase decision in the meat case
 - Product must be visible and attractive
- Therefore, the perfect package solution is a compromise

- Basic Meat Microbiology
 - Fresh Meats
 - Microflora affected by pre- and post-slaughter factors
 - Microflora dominated by gram-negative bacteria
 - Spoilage flora
 - Predominantly Pseudomonas, Aeromonas, Enterobacter, Acinetobacter, Moraxella, Lactobacillus and other lactic acid bacteria, Brochothrix
 - Pseudomonas can cause putrid and other off-odors
 - Pathogenic flora
 - Campylobacter, Clostridium spp., Escherichia coli,
 Aeromonas, Salmonella, Shigella spp., Listeria
 monocytogenes, Yersinia enterocolitica

- Basic Meat Microbiology
 - Cured Meats
 - Microflora dominated by gram-positive bacteria
 - Spoilage flora
 - Predominantly lactic acid bacteria, Brochothrix
 - May cause off-odors/flavors (sweet/sour), greening
 - Pathogenic flora
 - Mostly concerned with Listeria monocytogenes,
 Staphylococcus aureus, Clostridium spp.

- Control Strategies
 - Fresh Meats
 - Initial microbial counts should be as low as possible
 - Temperature must be as close to 0°C as possible
 - Anoxic packaging conditions inhibit *Pseudomonas*, but not *Lactobacillus*
 - Oxygen permeability of film and MAP atmosphere are important
 - Lactobacillus grows more slowly and is associated with sour off-odors and off-flavors, not putrid
 - Vacuum-packaged meat can be stored for >12 weeks at 0°C

- Control Strategies
 - Cured Meats
 - Must minimize post-lethality contamination
 - Temperature must be as close to 0°C as possible
 - Anoxic packaging conditions are most effective
 - Oxygen permeability of film and MAP atmosphere are important

Color

- Due to meat pigment myoglobin
 - -O₂ storage and transport protein
 - Concentration varies by:
 - Species
 - Beef > Lamb > Pork > Turkey > Chicken
 - Muscle Type
 - Higher in movement muscles
 - Animal Age (within same species)
 - Bull/Cow> Steer/Heifer > Calf > Veal
 - Hens > Broilers > Chicks
- Not well-correlated with eating quality, but still demanded by consumers

- Affected primarily by
 - Oxygen
 - Light
 - Microbial growth

Meat Color Chemistry

Source: Rust, R.E., Olson, D.G. 1973. Meat Curing Principles and Modern Practice. Kansas City, MO: Koch Supplies, Inc.

- Effects of Oxygen
 - Fresh meats
 - Pigment oxidation is highest at around oxygen tension of 4–6 mmHg and lower below and above this level
 - Lower at O₂ tension below and above this level
 - → discoloration decreases with increasing O₂ partial pressure
 - Cured meats
 - Pigment oxidation is directly proportional to increasing
 O₂ tension
 - \rightarrow discoloration increases with increasing O₂ pressure

- Effects of Oxygen
 - Control Strategies
 - Package under high O₂ or anoxic conditions
 - Avoid low oxygen tensions
 - Because high O₂ promotes spoilage bacteria, low O₂
 MAP is a good option
 - CO₂ effective at controlling Gram-negative, aerobic, psychotropic bacteria (e.g., *Pseudomonas*); less effective against LAB
 - Increasing effectiveness up to about 20%
 - Cured meats
 - Anoxic packaging (vacuum, low-oxygen MAP) protects cured meat pigment

- Effects of Light
 - Some inconsistencies in the literature
 - -Generally, more light means less shelf-life

Effects of Light

- Discoloration affected by:
 - Heat
 - Increases discoloration, so avoid hot light sources
 - Intensity
 - Too high increased discoloration
 - Too low inadequately illuminated product
 - Wavelength
 - Wavelengths near the red end of the spectrum (>550 nm) are protective
 - Ultraviolet (UV) wavelengths promote discoloration and should be avoided
 - As a rule, seek light sources with high emissions in the red end of the spectrum and low emissions in the blue

- Effects of Microbial Growth
 - Microbial metabolic products react with meat pigments to produce undesirable discoloration
 - Hydrogen sulfide (H₂S) → sulphmyoglobin
 - Hydrogen peroxide $(H_2O_2) \rightarrow \text{yellow/green pigments}$

Flavor Deterioration

- Primarily centered around Lipid Oxidation
 - Results in rancidity, off-odors, off-flavors, discoloration, texture deterioration
 - Believed to be initiated by oxidation of highlyunsaturated membrane phospholipids
 - Hydroperoxides (primary oxidation products)
 - Break down into hydrocarbons, ketones, aldehydes, alcohols
- Fresh meats
 - Over-wrapped trays allow odor volatiles to escape
 - In MAP, odor volatiles are retained and could be detected by consumers upon opening
 - High O₂ atmospheres can induce lipid oxidation

Flavor Deterioration

- Cooked meats (uncured)
 - Lipid oxidation still proceeds due to residual O₂
 - Warmed-over Flavor (WOF)
- Cured meats
 - Knowledge base still evolving
 - Cured meat flavor is believed to be due to the antioxidative properties of nitrite
 - Fewer total volatiles in cured meats vs. uncured
 - Higher carbonyls in volatile fraction of uncured meats
 - Flavor deterioration generally related to loss of flavor over time.

Flavor Deterioration

- General Control Strategy
 - Exclude oxygen!

- Vacuum Packaging
- Controlled/Modified Atmosphere Packaging (MAP)

- Vacuum Packaging
 - Fresh Meats
 - Residual O₂ consumed by meat, resulting in CO₂ production
 - Headspace of good vacuum: <1% O₂, 10–20% CO₂
 - Restricts *Pseudomonas*, favors *Lactobacillus* and *B.* thermosphacta, which are slower growers and less offensive spoilers
 - Extends refrigerated shelf-life by weeks
 - Not always suitable for retail display meat (due to formation of purplish deoxymyoglobin)
 - Cured Meats
 - High vacuum is highly desirable

- Controlled/Modified Atmosphere Packaging (MAP)
 - -Typically a mixture of CO₂, O₂ and/or N₂
 - $-O_2$
 - maintains meat pigment in oxymyoglobin state (O₂ tension > 240mmHg
 - Accelerates lipid oxidation and microbial growth
 - Carbon dioxide
 - Inhibits microbial growth up to ≈25%
 - Effectiveness increases with decreasing temperature
 - Nitrogen
 - Inert gas: used to displace O₂ and as a filler gas

- Controlled/Modified Atmosphere Packaging (MAP)
 - Fresh Meats
 - High O₂ MAP
 - Typical gas mixture: 60–80% O₂, 20–40% CO₂
 - Oxidative conditions encourage lipid oxidation and color degradation, so shelf-life is short
 - More suitable for retail display
 - Low O₂ MAP
 - Typically >65% CO₂ with balance as N₂
 - Due to purple color, more suitable for centralized packing
 - -Cured Meats
 - Achieving low residual O₂ is key
 - Typical gas mixture: 70% N₂, 30% CO₂

Common Packaging Systems

	Atmosphere	Fresh Meats	Processed Meats
Store wrap	Air	✓	
Case-ready pack	Air/MAP	\checkmark	
Formed pouch	Vacuum/MAP	✓	✓
Heat shrink	Vacuum	\checkmark	✓
Thermoforming trays	Vacuum	✓	✓
Skin pack	Vacuum	\checkmark	✓
Formed trays	MAP	✓	✓

Technically Effective Meat Package

