Formulation and Reformulation of Processed Meat Products

Rodrigo Tarté, Ph.D., Iowa State University
Formulation and Reformulation of Processed Meat Products

Rodrigo Tarté, Ph.D.
Director, Research & Development
John Morrell Food Group
Lisle, Illinois, USA

Meat and Poultry Processing: A Global Perspective

Atlanta, GA | 29 January 2013
Disclaimers

The contents of this document, and the opinions expressed therein, represent the professional opinions of the author, and not necessarily those of the John Morrell Food Group, its employees or subsidiaries.

The contents of this document are provided for informational purposes only. The author assumes no liability in connection with results that may arise from reliance on this information.
Outline

I. *Formulation* Defined
II. Formula Optimization
III. Formulation in Product Development
IV. Formulation in Manufacturing
V. Reformulation
I. *Formulation* Defined
I. Formulation Defined

What is a Formula?

- Expression that describes
 1. The *resources (raw materials and ingredients)* necessary to manufacture a desired product
 2. The *proportions* in which these are combined, or allocated
 3. The *rules* that place restrictions on how resources are allocated, in response to *variable inputs* (e.g., raw material cost and availability, manufacturing asset availability)

- Although sometimes incorrectly referred to as a *recipe*, it differs in that a recipe specifies exact usage quantities which never change (ever wonder why the cookies don’t bake the same every time?).
I. Formulation Defined

What is Formulation?

- **Formula development**
 The series of tasks involved in the creation of a formula ("standard" formula) as part of the product development process.

- **Production**
 The process by which a standard formula is converted into an actual "production" formula, or batch recipe.

- Both can be aided by *Linear Programming*, or *Optimization* (a.k.a., *Least Cost Formulation*, *Least Cost Optimization*)
II. Formula Optimization
II. Formula Optimization

Linear Programming Defined

• Definition
 – A mathematical method to allocate limited resources (decision variables) in a way that optimizes a linear objective function (e.g., cost) while meeting a given a set of linear equality and inequality constraints.
 – Because linear models can involve a very large number of calculations, their solution relies on the use of optimization computer software.

• Formula Optimization Objective
 – To arrive at the formula that represents the most economical (i.e., least cost) allocation of raw materials and ingredients that meets all formula design requirements, i.e., the least cost formula (LCF)
II. Formula Optimization

Basic Elements of an LP Model

• Objective function
 – Value to be optimized (maximized or minimized)
 – Mathematically represented as \(c_1, c_2, c_3, \ldots, c_n \)
 – In most food formulation models the objective function is formula cost, and the objective is to minimize it, hence the term least cost formulation

• Decision (or problem) variables
 – Values to be determined by LP problem as it seeks to optimize the objective function (i.e., minimize cost)
 – Represent amounts or usage levels (i.e., allocation) of resources, (e.g., RMIs/ingredients), product chemical and nutritional composition, and other calculated values, such as regulated values (e.g., added water, PFF, etc.)
 – Mathematically represented as \(x_1, x_2, x_3, \ldots, x_n \)
II. Formula Optimization

Basic Elements of an LP Model

• Parameters (Inputs)
 – Fixed, uncontrollable values (i.e., constants) inherent to each variable, e.g., RM/ingredient composition, prices, etc.
 – A change in parameters changes the assumptions of the model and requires it to be re-run
 – Precision of model’s solution is directly related to completeness and accuracy of parameter data
 – Mathematically represented as $a_1, a_2, a_3, ..., a_n$

• Constraints
 – Mathematical expressions that place restrictions on the values that decision variables (and, hence, the solution) may take
 – Expressed as equalities (=, ≤, ≥) or inequalities (≠)
 – Constraints used during formula development are not the same as the rules of a standard formula, although the rules are mathematical constraints
II. Formula Optimization

Basic Elements of an LP Model

• Solution (Output)
 – Feasible solution
 • Set of values for decision variables that satisfies all constraints
 • There may be many of these sets of values and, hence, multiple feasible solutions
 – Optimal solution
 • Feasible solution where the objective function is optimized
 • In the vast majority of cases there can be only one
II. Formula Optimization

Mathematical Description of an LP Model

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Mathematical Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear function</td>
<td>(f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = \sum_{i=1}^{n} a_i x_i)</td>
</tr>
<tr>
<td>Objective function</td>
<td>(f(x_1, x_2, \ldots, x_n) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n = \sum_{i=1}^{n} c_i x_i)</td>
</tr>
</tbody>
</table>
| Linear constraints | \[
\begin{align*}
 a_{11} x_1 + a_{12} x_2 + \ldots + a_{1j} x_n & \leq b_1 \\
 a_{21} x_1 + a_{22} x_2 + \ldots + a_{2j} x_n & \leq b_2 \\
 a_{31} x_1 + a_{32} x_2 + \ldots + a_{3j} x_n & \leq b_3 \\
\end{align*}
\] \(\sum_{i=1}^{n} a_{ji} x_i \leq b_j \) for \(j = 1, 2, \ldots, m \) |

Definitions:
- \(x \): problem variable (e.g., RM/ingredient use level)
- \(a \): parameter (e.g., RM/ingredient composition)
- \(c \): objective (e.g., RM/ingredient price)
- \(b \): constraint value
II. Formula Optimization

Simplistic Example of an LP Model

• Constraints
 Total Fat = 28–30% (28% ≤ Fat ≤ 30%); Moisture ≤ 56%; Protein ≥ 11.5%

• Objective Function: minimize cost

• Parameters

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Price /lb</th>
<th>Fat, %</th>
<th>Moisture, %</th>
<th>Protein, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef 90 Trim</td>
<td>$2.15</td>
<td>10.0</td>
<td>69.5</td>
<td>20.0</td>
</tr>
<tr>
<td>Beef 85 Trim</td>
<td>$1.90</td>
<td>15.0</td>
<td>65.7</td>
<td>18.6</td>
</tr>
<tr>
<td>Beef 50 Trim</td>
<td>$0.80</td>
<td>50.0</td>
<td>35.6</td>
<td>13.7</td>
</tr>
</tbody>
</table>

• Linear Functions
 \[C = \$2.15/\text{lb} (\% \text{ Beef 90}) + \$1.90/\text{lb} (\% \text{ Beef 85}) + \$0.80/\text{lb} (\% \text{ Beef 50}) \]
 \[F = 0.100 (\% \text{ Beef 90}) + 0.150 (\% \text{ Beef 85}) + 0.500 (\% \text{ Beef 50}) \]
 \[M = 0.695 (\% \text{ Beef 90}) + 0.657 (\% \text{ Beef 85}) + 0.356 (\% \text{ Beef 50}) \]
 \[P = 0.200 (\% \text{ Beef 90}) + 0.186 (\% \text{ Beef 85}) + 0.137 (\% \text{ Beef 50}) \]
II. Formula Optimization

Role of Linear Programming in Formula Optimization

PRODUCT DEVELOPMENT

Formula Development

Run LP

Standard Formula

Formula Rules

MANUFACTURING

Production Schedule

Run LP

Production Formula

Development Tool

LP as

Production Tool
Key Characteristics of Formulation Linear Programs

<table>
<thead>
<tr>
<th></th>
<th>Product Development</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>• Product design requirements</td>
<td>• Master production schedule
• Production volumes
• Standard formula(s)
• Formula rules
• Yield factors
• Raw material prices
• Raw material inventory</td>
</tr>
<tr>
<td>Outputs</td>
<td>• Standard formula
• Formula rules</td>
<td>• Production formula, or recipe (batch sheet)</td>
</tr>
<tr>
<td>Type of Model</td>
<td>• Single formula</td>
<td>• Composite formula
• Multi-formula
• Multi-site</td>
</tr>
<tr>
<td>Responsible Function</td>
<td>• R&D</td>
<td>• Production Scheduling or Operations, and/or Purchasing</td>
</tr>
<tr>
<td>Frequency</td>
<td>• Unspecified; based on product development needs</td>
<td>• As specified by production planning cycle; generally weekly</td>
</tr>
</tbody>
</table>
II. Formula Optimization

Advantages of Least Cost Formulation

<table>
<thead>
<tr>
<th>Product Development</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II. Formula Optimization

Advantages of Least Cost Formulation

<table>
<thead>
<tr>
<th>Product Development</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Permits rapid generation of multiple “what if” scenarios, which helps:</td>
<td></td>
</tr>
<tr>
<td>- shorten development time</td>
<td></td>
</tr>
<tr>
<td>- develop deeper and more thorough knowledge and understanding of</td>
<td></td>
</tr>
<tr>
<td>formula and product</td>
<td></td>
</tr>
<tr>
<td>- make more efficient use of R&D resources</td>
<td></td>
</tr>
</tbody>
</table>
II. Formula Optimization

Advantages of Least Cost Formulation

<table>
<thead>
<tr>
<th>Product Development</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Permits rapid generation of multiple "what if" scenarios, which helps:</td>
<td>• Results in most economical combination/allocation of RM\textsc{s} and</td>
</tr>
<tr>
<td>- shorten development time</td>
<td>ingredients that meets all constraints (i.e., least cost formula)</td>
</tr>
<tr>
<td>- develop deeper and more thorough knowledge and understanding of formula and product</td>
<td>• Yields predictable and consistent finished product quality</td>
</tr>
<tr>
<td>- make more efficient use of R&D resources</td>
<td>• Helps optimize RM utilization</td>
</tr>
<tr>
<td></td>
<td>• Helps optimize inventory levels</td>
</tr>
<tr>
<td></td>
<td>• Provides useful and accurate procurement information</td>
</tr>
<tr>
<td></td>
<td>• Saves time over more traditional formulation methods</td>
</tr>
</tbody>
</table>
III. Formulation in Product Development
III. Formulation in Product Development

Formula Development Flowchart

- Build LP Model
- Run LP Model
- Formula
- Prototype
 - Benchtop/Pilot Test
 - Evaluate
 - Scale Up
 - Plant Test
 - Evaluate
 - Consumer Test
 - (if required)
 - Evaluate
 - Standard Formula

MODEL CONSTRAINTS
- PROD. DESIGN REQUIREMENTS
 - Quality attributes (texture, flavor, color, appearance)
 - Regulatory (standards of identity and composition)
 - Nutritional requirements
 - Label claims (nutrient content; health; structure/function)
 - Third party certification requirements
 - e.g., AHA, NOP
 - Food safety/shelf-life
 - Cost/margin

MODEL PARAMETERS
- Raw material/ingredient attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
- Raw material/ingredient prices
- Product shrink
- OBJECTIVE FUNCTION: ↓COST

Go Decision
No-go Decision

R. Tarté – 29 Jan 2013
© 2013 Rodrigo Tarté
III. Formulation in Product Development

Formula Development Flowchart

- Build LP Model
- Run LP Model
- Formula
- Prototype Benchtop/Pilot Test
- Evaluate
- Scale Up Plant Test
- Consumer Test (if required)
- Standard Formula

MODEL CONSTRAINTS

- PROD. DESIGN REQUIREMENTS
 - Quality attributes (texture, flavor, color, appearance)
 - Regulatory (standards of identity and composition)
 - Nutritional requirements
 - Label claims (nutrient content; health; structure/function)
 - Third party certification requirements
 - e.g., AHA, NOP
 - Food safety/shelf-life
 - Cost/margin

- MODEL PARAMETERS
 - Raw material/ingredient attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
 - Raw material/ingredient prices
 - Product shrink
 - OBJECTIVE FUNCTION: ↓COST

Go Decision

No-go Decision
III. Formulation in Product Development

Formula Development Flowchart

- Build LP Model
- Run LP Model
- Formula
- Prototype Benchtop/Pilot Test
 - Evaluate
 - Scale Up Plant Test
 - Evaluate
 - Consumer Test (if required)
 - Evaluate
 - Standard Formula

MODEL CONSTRAINTS
- Product constraints
- Chemical composition
- Physical attributes
- Raw material constraints
- Meat constraints
- Restricted ingredients
- Supply constraints
- Regulatory constraints

MODEL PARAMETERS
- Raw material/ingredient attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
- Raw material/ingredient prices
- Product shrink
- OBJECTIVE FUNCTION: \(\downarrow \text{COST} \)

Go Decision
No-go Decision

© 2013 Rodrigo Tarté
R. Tarté – 29 Jan 2013
III. Formulation in Product Development

Formula Development Flowchart

Build LP Model → Run LP Model → Formula

Prototype Benchtop/Pilot Test → Evaluate

Evaluate → Scale Up Plant Test → Evaluate

Evaluate → Consumer Test (if required) → Evaluate

Standard Formula

MODEL CONSTRAINTS
- Product constraints
 - Chemical composition
 - Physical attributes
- Raw material constraints
 - Meat constraints
 - Restricted ingredients
 - Supply constraints
 - Regulatory constraints

MODEL PARAMETERS
- Raw material/ingredient attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
- Raw material/ingredient prices
- Product shrink
- OBJECTIVE FUNCTION: ↓COST

Go Decision
No-go Decision
III. Formulation in Product Development

Key Elements of a Formula Development LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raw material/ingredient attributes</td>
<td>• Raw material/ingredient constraints</td>
<td>• Optimal RM/ingredient allocation (i.e., Formula)</td>
</tr>
<tr>
<td>– Chemical composition</td>
<td>– Meat (e.g., species, breast /white meat, shank meat, poultry, skin, MDM/MDP,</td>
<td>• Formula (least) cost</td>
</tr>
<tr>
<td>– Physical attribute values</td>
<td>FTB/FTP, frozen)</td>
<td>• Actual product attributes</td>
</tr>
<tr>
<td>(e.g., color, bind)</td>
<td>• Restricted ingredients</td>
<td>– Chemical composition</td>
</tr>
<tr>
<td>• Raw material/ingredient prices</td>
<td>• Supply constraints</td>
<td>– Physical attribute values</td>
</tr>
<tr>
<td>• Product shrink (actual or estimated)</td>
<td>• Product constraints</td>
<td>(e.g., color, bind)</td>
</tr>
<tr>
<td>– Cook</td>
<td>– Chemical composition: moisture, fat, protein, sodium, salt, etc.</td>
<td>– Nutritional information</td>
</tr>
<tr>
<td>– Chill (chilling water/brine vs. air chilling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Objective Function defined</td>
<td>• Physical attribute values (e.g., color, bind)</td>
<td></td>
</tr>
<tr>
<td>– Minimize Cost</td>
<td>• Regulatory constraints</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– PFF, Added Water, Fat, Fat + Added Water, Moisture/Protein ratio, poultry skin,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>restricted ingredients</td>
<td></td>
</tr>
</tbody>
</table>
III. Formulation in Product Development

Key Elements of a Formula Development LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raw material/ingredient attributes</td>
<td>• Raw material/ingredient constraints</td>
<td>• Optimal RM/ingredient allocation (i.e., Formula)</td>
</tr>
<tr>
<td>– Chemical composition</td>
<td>– Meat (e.g., species, breast/white meat, shank meat, poultry, skin, MDM/MDP, FTB/FTP, frozen)</td>
<td>• Formula (least) cost</td>
</tr>
<tr>
<td>– Physical attribute values (e.g., color, bind)</td>
<td>– Restricted ingredients</td>
<td>• Actual product attributes</td>
</tr>
<tr>
<td>• Raw material/ingredient prices</td>
<td>– Supply constraints</td>
<td>– Chemical composition</td>
</tr>
<tr>
<td>• Product shrink (actual or estimated)</td>
<td>• Product constraints</td>
<td>– Physical attribute values (e.g., color, bind)</td>
</tr>
<tr>
<td>– Cook</td>
<td>– Chemical composition: moisture, fat, protein, sodium, salt, etc.</td>
<td>– Nutritional information</td>
</tr>
<tr>
<td>– Chill (chilling water/brine vs. air chilling)</td>
<td>– Physical attribute values (e.g., color, bind)</td>
<td></td>
</tr>
<tr>
<td>• Objective Function defined</td>
<td>• Regulatory constraints</td>
<td></td>
</tr>
<tr>
<td>– Minimize Cost</td>
<td>– PFF, Added Water, Fat, Fat + Added Water, Moisture/Protein ratio, poultry skin, restricted ingredients</td>
<td></td>
</tr>
</tbody>
</table>
III. Formulation in Product Development

Key Elements of a Formula Development LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
</table>
| • Raw material/ingredient attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
• Raw material/ingredient prices
• Product shrink (actual or estimated)
 - Cook
 - Chill (chilling water/brine vs. air chilling)
• Objective Function defined
 - Minimize Cost | • Raw material/ingredient constraints
 - Meat (e.g., species, breast/white meat, shank meat, poultry, skin, MDM/MDP, FTB/FTP, frozen)
 - Restricted ingredients
 - Supply constraints
• Product constraints
 - Chemical composition: moisture, fat, protein, sodium, salt, etc.
 - Physical attribute values (e.g., color, bind)
• Regulatory constraints
 - PFF, Added Water, Fat, Fat + Added Water, Moisture/Protein ratio, poultry skin, restricted ingredients | • Optimal RM/ingredient allocation (i.e., Formula)
• Formula (least) cost
• Actual product attributes
 - Chemical composition
 - Physical attribute values (e.g., color, bind)
 - Nutritional information |
Key Elements of a Formula Development LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raw material/ingredient attributes</td>
<td>• Raw material/ingredient constraints</td>
<td>• Optimal RM/ingredient allocation (i.e., Formula)</td>
</tr>
<tr>
<td>– Chemical composition</td>
<td>– Meat (e.g., species, breast/white meat, shank meat, poultry, skin, MDM/MDP, FTB/FTP, frozen)</td>
<td>• Formula (least) cost</td>
</tr>
<tr>
<td>– Physical attribute values (e.g., color, bind)</td>
<td>– Restricted ingredients</td>
<td>• Actual product attributes</td>
</tr>
<tr>
<td>• Raw material/ingredient prices</td>
<td>– Supply constraints</td>
<td>– Chemical composition</td>
</tr>
<tr>
<td>• Product shrink (actual or estimated)</td>
<td>• Product constraints</td>
<td>– Physical attribute values (e.g., color, bind)</td>
</tr>
<tr>
<td>– Cook</td>
<td>– Chemical composition: moisture, fat, protein, sodium, salt, etc.</td>
<td>– Nutritional information</td>
</tr>
<tr>
<td>– Chill (chilling water/brine vs. air chilling)</td>
<td>– Physical attribute values (e.g., color, bind)</td>
<td></td>
</tr>
<tr>
<td>• Objective Function defined</td>
<td>• Regulatory constraints</td>
<td></td>
</tr>
<tr>
<td>– Minimize Cost</td>
<td>– PFF, Added Water, Fat, Fat + Added Water, Moisture/Protein ratio, poultry skin, restricted ingredients</td>
<td></td>
</tr>
</tbody>
</table>

R. Tarté – 29 Jan 2013

© 2013 Rodrigo Tarté
III. Formulation in Product Development

Additional Considerations

• During product development, the formula developed must:
 1. Represent the lowest cost solution to the problem given the model’s constraints and parameters
 2. Be an adequate mathematical expression of a technically- and financially-viable product. Just because a solution is mathematically feasible or optimal does not mean that it will result in a desirable product

• Therefore, while LP is a most useful tool, it can never replace the knowledge, experience and judgment of an experienced product development scientist. A knowledgeable and experienced product developer who understands LP should be able to (1) understand how a formula on paper relates to a real finished product and (2) know how to effectively leverage this understanding.

• The quality of the model can only be as good as the quality of the data fed into it.
IV. Formulation in Manufacturing
IV. Formulation in Manufacturing

Manufacturing Formulation Flowchart

MODEL INPUTS
- Production schedule
- Production volumes
- Formula specification
 - Standard formula(s)
 - Formula rules
- Raw material inventory
- Raw material prices
- Yield factors

MODEL CONSTRAINTS
- Formula rules
- Raw material inventory levels

Run LP Model

Production Formula(s)
IV. Formulation in Manufacturing

Key Elements of a Manufacturing Formulation LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Production schedule</td>
<td>• Formula rules</td>
<td>• Production formula(s)</td>
</tr>
<tr>
<td>• Production volumes</td>
<td>• Raw material inventory levels</td>
<td>– Batch sheets or batch recipes</td>
</tr>
<tr>
<td>• Standard formula(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Formula rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material/ingredient attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Chemical composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Physical attribute values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g., color, bind)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material prices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Yield factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. Formulation in Manufacturing

Key Elements of a Manufacturing Formulation LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Production schedule</td>
<td>• Formula rules</td>
<td>• Production formula(s)</td>
</tr>
<tr>
<td>• Production volumes</td>
<td>• Raw material inventory levels</td>
<td>– Batch sheets or batch recipes</td>
</tr>
<tr>
<td>• Standard formula(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Formula rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material prices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Yield factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. Formulation in Manufacturing

Key Elements of a Manufacturing Formulation Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Production schedule</td>
<td>• Formula rules</td>
<td>• Production formula(s)</td>
</tr>
<tr>
<td>• Production volumes</td>
<td>• Raw material inventory levels</td>
<td>– Batch sheets or batch recipes</td>
</tr>
<tr>
<td>• Standard formula(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Formula rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Raw material prices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Yield factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2013 Rodrigo Tarté
IV. Formulation in Manufacturing

Key Elements of a Manufacturing Formulation LP Model

<table>
<thead>
<tr>
<th>Parameters (Inputs)</th>
<th>Constraints (Limits)</th>
<th>Solution (Outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production schedule</td>
<td>Formula rules</td>
<td>• Production formula(s)</td>
</tr>
<tr>
<td>Production volumes</td>
<td>Raw material inventory levels</td>
<td>– Batch sheets or batch recipes</td>
</tr>
<tr>
<td>Standard formula(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw material inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw material prices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. Formulation in Manufacturing

Formula Rules

• Most are mathematical constraints applied to standard formula, but are not the same as formula development constraints.

• Derived from knowledge and restrictions of the standard formula, product composition and regulatory specifications, as well as process capabilities.

• Provide flexibility for the LP model to reach its optimal solution.

• Specify values such as composition, regulatory limits and alternate raw materials (i.e., raw materials permitted to be used when primary raw materials are unavailable).
IV. Formulation in Manufacturing

When to use LCF in Manufacturing

- LCF can be used at one or more of several business stages
 - Purchasing
 - LCF used to optimize purchasing decisions based on formula and production requirements, and raw material pricing and availability
 - Most effective and powerful stage at which to use LCF, since it is the point at which raw material costs are truly controlled; once they’re purchased, they must be used
 - Production scheduling
 - LCF used to optimize allocation of existing inventories and guarantee formula targets are met for consistent quality
 - Limited usefulness, but still valuable
 - Batch adjustments and corrections
 - LCF used in individual batches to correct deviations from formula targets caused by compositional variations in raw materials
 - Little to no value in terms of controlling costs
V. Reformulation
V. Reformulation

Definition

• What it’s not
 – Normal and expected variations in raw material and ingredient allocations that occur during formula optimization at the manufacturing level according to the requirements of the standard formula and formula rules, i.e., change in production formula or recipe

• What it is
 – Change in formula beyond the requirements of the standard formula and formula rules
 – Implies a need to return to formula development stage
Common Reasons to Reformulate

Product Quality
- Reason: Quality, or some aspect of it, no longer acceptable
- Consumer/customer feedback
- Product performance issues
- Quality improvement initiative

Financial
- Reason: Change in actual or desired product cost
- Significant change in RM/ingredient pricing (cost avoidance)
- Improve contribution margin (cost improvement)

Supply
- Reason: Change in RM/ingredient availability
- Change in RM/ingredient functional quality (e.g., new supplier, new ingredient SKU)

Operational
- Reason: Formula and process no longer “aligned”
- Change in process capabilities (e.g., equipment change, process modification, changes in standard yields)

Should be done carefully and with clearly-stated objectives in mind.
Thank You