Iowa State University

From the SelectedWorks of Rodrigo Tarté

April 24, 2014

Formula Optimization and LCF: Lessons from the Meat Industry

Rodrigo Tarté, Ph.D., Iowa State University

This work is licensed under a Creative Commons CC BY-ND International License.

Formula Optimization and LCF: Lessons from the Meat Industry

Rodrigo Tarté, Ph.D.

John Morrell Food Group

Lisle, Illinois, USA

14th Surimi Industry Forum

Astoria, OR | 24 April 2014

Disclaimer

The contents of this presentation, and the opinions expressed during its delivery, are those of the author/presenter, and not necessarily those of his employer, its employees or subsidiaries.

What is a Formula?

- Expression that describes
 - 1. Resources (raw materials and ingredients) necessary to manufacture a desired product
 - 2. Levels in which these are combined, or allocated
 - 3. Rules, or constraints, that place restrictions on how resources are allocated, in response to *variable inputs*, such as
 - Raw material cost and availability
 - Raw material and/or ingredient chemical and physical attributes
 - Manufacturing asset availability
- Not a recipe
- Can be aided by Linear Programming, or Optimization (a.k.a., Least Cost Formulation, Least Cost Optimization)

Least Cost Linear Programming (LCLP) Defined

What is it?

- A mathematical method to allocate limited resources (decision variables) in a way that optimizes a linear objective function (e.g., cost) while meeting a given a set of linear equality and inequality constraints
- What is it used for?
 - To arrive at <u>the</u> formula, or combination of formulas, that represents the most economical (i.e., least cost) allocation of raw materials and ingredients and results in a consistent-quality product
- Who uses it?
 - Meat, cheese, ice cream, animal feed industries, among others

Advantages of Least Cost Formulation

- Results in most economical allocation possible of RMs
 - Can result in savings of 1–3% of cost of raw materials
- Yields predictable and consistent finished product quality
- Helps optimize RM utilization and inventory levels
- Saves time over more traditional formulation methods

- Parameters (Inputs)
 - Fixed, uncontrollable values (i.e., constants) inherent to each variable, e.g., RM/ingredient composition, prices, volumes, etc.
 - Change in parameters changes model assumptions and requires it to be re-run
 - Precision of model is directly related to completeness and accuracy of parameter data

Constraints

- Mathematical expressions that place restrictions on the values that decision variables (and, hence, the solution) may take
- Expressed as equalities $(=, \le, \ge)$ or inequalities (≠)
- Define the "space" or "boundaries" of the model
- Provide flexibility for the LP model to reach its optimal solution
- Must be loose enough to allow for feasible solutions and not so tight that acceptable solutions are ruled out
- Critical to ensure product quality is consistent regardless of raw materials used
- Quality of constraints determine accuracy and usefulness of LP model
- Development of good constraints requires good understanding of RM/ingredient functional properties and desired product composition

- Objective function
 - Value to be optimized (maximized or minimized)
 - There can be only <u>one</u> per model
 - In LCF, objective is to minimize formula cost

R. Tarté – 24 Apr 2014 © 2014 Rodrigo Tarté 8

- Decision (or *problem*) variables
 - Values determined by LP model
 - Values define:

R. Tarté - 24 Apr 2014

- Amounts or usage levels (i.e., allocation) of resources (raw materials (RMs)/ingredients)
 - → The "Formula"
- Product chemical and nutritional composition
- Product physical attributes (color, texture)

© 2014 Rodrigo Tarté

- Solution (Output)
 - Feasible solution
 - Set of values for decision variables that satisfies all constraints
 - There may be multiple feasible solutions
 - Optimal solution
 - Feasible solution where the objective function is optimized
 - In most cases there can be only one

Mathematical Description of an LP Model

Calculation	Mathematical Notation
Linear function	$f(x_1,x_2,,x_n) = a_1 x_1 + a_2 x_2 + + a_n x_n = \sum_{i=1}^n a_i x_i$
Objective function	$f(x_1,x_2,,x_n) = c_1 x_1 + c_2 x_2 + + c_n x_n = \sum_{i=1}^n c_i x_i$
Linear constraints	$ \begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1j} x_n \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2j} x_n \leq b_2 \\ a_{31} x_1 + a_{32} x_2 + \dots + a_{1j} x_n \leq b_3 \end{cases} \qquad \sum_{i=1}^n a_{ji} x_i \leq b_j$ $j = 1, 2, \dots, m$

x: problem variable (e.g., RM/ingredient use level)

a: parameter (e.g., RM/ingredient composition)

c: objective (e.g., RM/ingredient price)

b: constraint value

Assumptions of LP Models

- Linearity of functions
 - Proportionality
 - Contribution of any decision variable to objective function is proportional to its value
 - Additivity
 - Contribution of any decision value to objective function is independent of other decision variables
- Certainty
 - All constants, objective function and constraint coefficients are known with absolute certainty and will not change

LP Example Calculations

Constraints

Shear Stress = 38.0 - 50.0; Shear Strain ≥ 2.30; Whiteness ≥ 75.0

Objective Function: minimize blend cost

Parameters

Raw material	Price/lb	Shear Stress	Shear Strain	Whiteness
Surimi A	\$0.95	64.5	2.65	75.5
Surimi B	\$0.80	28.2	0.93	81.0
Surimi C	\$1.05	52.5	2.75	78.0

Linear Functions

Cost/lb = \$0.95 (% Surimi A) + \$0.80 (% Surimi B) + \$1.05 (% Surimi C) Shear Stress = 64.5 (% Surimi A) + 28.2 (% Surimi B) + 52.5 (% Surimi C) Shear Strain = 2.65 (% Surimi A) + 0.93 (% Surimi B) + 2.75 (% Surimi C) Whiteness = 75.5 (% Surimi A) + 81.0 (% Surimi B) + 78.0 (% Surimi C)

OTHER WHITE MEAT Surimi Company

Surimi Blending Sheet

Surimis ↓				
Surimi A				
Surimi B				
Surimi C				
Surimi D				
Surimi E				
Surimi F				
Surimi G				
Surimi H				
Surimi I				
Surimi J				
Blend Total				

R. Tarté – 24 Apr 2014 © 2014 Rodrigo Tarté

OTHER WHITE MEAT Surimi Company Surimi Blending Sheet

					Shear				
Surimis ↓	Price (\$/lb)	Protein	Moisture	Fat	Stress (kPa)	Shear Strain	Whiteness (L*-3b*)	Durity	
		(%)	(%)	(%)				Purity	
Surimi A	0.95	15.0	76.0	0.9	64.5	2.65	75.5	8	
Surimi B	0.80	15.0	76.0	0.9	28.2	0.93	81.0	9	
Surimi C	1.05	15.0	76.0	0.9	52.5	2.75	78.0	7	
Surimi D	0.75	15.0	76.0	0.9	23.5	0.85	67.0	8	
Surimi E	1.15	15.0	76.0	0.9	39.0	2.85	75.0	8	
Surimi F	1.10	15.0	76.0	0.9	43.0	2.75	82.0	8	
Surimi G	0.75	15.0	76.0	0.9	24.0	1.80	65.0	0	
Surimi H	0.58	15.0	76.0	0.9	25.0	0.90	53.0	8	
Surimi I	1.50	15.0	76.0	0.9	50.0	2.60	57.0	8	
Surimi J	1.05	15.0	76.0	0.9	50.0	2.55	62.0	9	

Blend Total

Parameters

OTHER WHITE MEAT Surimi Company Surimi Blending Sheet

						Shear			
	Price	Min Max	Protein	Moisture	Fat	Stress	Shear	Whiteness	
Surimis ↓	(\$/lb)	(%) (%)	(%)	(%)	(%)	(kPa)	Strain	(L*-3b*)	Purity
Surimi A	0.95	0.0 100.0	15.0	76.0	0.9	64.5	2.65	75.5	8
Surimi B	0.80	0.0 100.0	15.0	76.0	0.9	28.2	0.93	81.0	9
Surimi C	1.05	0.0 100.0	15.0	76.0	0.9	52.5	2.75	78.0	7
Surimi D	0.75	0.0 100.0	15.0	76.0	0.9	23.5	0.85	67.0	8
Surimi E	1.15	0.0 100.0	15.0	76.0	0.9	39.0	2.85	75.0	8
Surimi F	1.10	0.0 100.0	15.0	76.0	0.9	43.0	2.75	82.0	8
Surimi G	0.75	0.0 100.0	15.0	76.0	0.9	24.0	1.80	65.0	0
Surimi H	0.58	0.0 100.0	15.0	76.0	0.9	25.0	0.90	53.0	8
Surimi I	1.50	0.0 100.0	15.0	76.0	0.9	50.0	2.60	57.0	8
Surimi J	1.05	0.0 100.0	15.0	76.0	0.9	50.0	2.55	62.0	9

Blend Total

=

		>=	>=	>=	>=	>=	>=	>=
Minimum	Target	0.0	0.0	0.0	38.0	2.30	75.0	7.5
		<=	<=	<=	<=	<=	<=	<=
Maximum	Target	100.0	100.0	100.0	50.0	100.0	100.0	10.0

Constraints

OTHER WHITE MEAT Surimi Company Surimi Blending Sheet

							Shear			
	Price Optimal	Min	Max	Protein	Moisture	Fat	Stress	Shear	Whiteness	
Surimis ↓	(\$/lb) Blend	(%)	(%)	(%)	(%)	(%)	(kPa)	Strain	(L*-3b*)	Purity
Surimi A	0.95	0.0	100.0	15.0	76.0	0.9	64.5	2.65	75.5	8
Surimi B	0.80	0.0	100.0	15.0	76.0	0.9	28.2	0.93	81.0	9
Surimi C	1.05	0.0	100.0	15.0	76.0	0.9	52.5	2.75	78.0	7
Surimi D	0.75	0.0	100.0	15.0	76.0	0.9	23.5	0.85	67.0	8
Surimi E	1.15	0.0	100.0	15.0	76.0	0.9	39.0	2.85	75.0	8
Surimi F	1.10	0.0	100.0	15.0	76.0	0.9	43.0	2.75	82.0	8
Surimi G	0.75	0.0	100.0	15.0	76.0	0.9	24.0	1.80	65.0	0
Surimi H	0.58	0.0	100.0	15.0	76.0	0.9	25.0	0.90	53.0	8
Surimi I	1.50	0.0	100.0	15.0	76.0	0.9	50.0	2.60	57.0	8
Surimi J	1.05	0.0	100.0	15.0	76.0	0.9	50.0	2.55	62.0	9

Blend Total

=

Minimum	Target	>= 0.0	>= 0.0	>= 0.0	>= 38.0	>= 2.30	>= 75.0	>= 7.5
Maximum	Target	<= 100.0	<= 100.0	<= 100.0	<= 50.0	<= 100.0	<= 100.0	<= 10.0

Objective Function

OTHER WHITE MEAT Surimi Company Surimi Blending Sheet

	Б.					Б		- .	Shear	01	14/1:4	
Surimis ↓	Price (\$/lb)	Optimal Blend	Dual Value	Min (%)	Max (%)	Protein (%)	Moisture (%)	Fat (%)	Stress (kPa)	Shear Strain	Whiteness (L*-3b*)	Purity
Surimi A	0.95		0.00	0.0	100.0	15.0	76.0	0.9	64.5	2.65	75.5	8
Surimi B	0.80		0.00	0.0	100.0	15.0	76.0	0.9	28.2	0.93	81.0	9
Surimi C	1.05		0.03	0.0	100.0	15.0	76.0	0.9	52.5	2.75	78.0	7
Surimi D	0.75		0.07	0.0	100.0	15.0	76.0	0.9	23.5	0.85	67.0	8
Surimi E	1.15		0.07	0.0	100.0	15.0	76.0	0.9	39.0	2.85	75.0	8
Surimi F	1.10		0.00	0.0	100.0	15.0	76.0	0.9	43.0	2.75	82.0	8
Surimi G	0.75		0.00	0.0	100.0	15.0	76.0	0.9	24.0	1.80	65.0	0
Surimi H	0.58		0.00	0.0	100.0	15.0	76.0	0.9	25.0	0.90	53.0	8
Surimi I	1.50		0.65	0.0	100.0	15.0	76.0	0.9	50.0	2.60	57.0	8
Surimi J	1.05		0.16	0.0	100.0	15.0	76.0	0.9	50.0	2.55	62.0	9
Blend Total		100.00%	-	-	- (-	-	-			

		>=	>=	>=	>=	>=	>=	>=
Minimum	Target	0.0	0.0	0.0	38.0	2.30	75.0	7.5
	Dual Value	\$0.00	\$0.00	\$0.00	\$0.00	(\$0.20)	(\$0.01)	(\$0.01)
		<=	<=	<=	<=	<=	<=	<=
Maximum	Target	100.0	100.0	100.0	50.0	100.0	100.0	10.0
	Dual Value	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Decision Variables

R. Tarté – 24 Apr 2014 © 2014 Rodrigo Tarté 18

Surimi LP Example Model - Solved

OTHER WHITE MEAT Surimi Company Surimi Blending Sheet

									Shear			
	Price	Optimal	Dual	Min	Max	Protein	Moisture	Fat	Stress	Shear	Whiteness	
Surimis ↓	(\$/lb)	Blend	Value	(%)	(%)	(%)	(%)	(%)	(kPa)	Strain	(L*-3b*)	Purity
Surimi A	0.95	52.54%	0.00	0.0	100.0	15.0	76.0	0.9	64.5	2.65	75.5	8
Surimi B	0.80	10.16%	0.00	0.0	100.0	15.0	76.0	0.9	28.2	0.93	81.0	9
Surimi C	1.05		0.03	0.0	100.0	15.0	76.0	0.9	52.5	2.75	78.0	7
Surimi D	0.75		0.07	0.0	100.0	15.0	76.0	0.9	23.5	0.85	67.0	8
Surimi E	1.15		0.07	0.0	100.0	15.0	76.0	0.9	39.0	2.85	75.0	8
Surimi F	1.10	22.18%	0.00	0.0	100.0	15.0	76.0	0.9	43.0	2.75	82.0	8
Surimi G	0.75	7.52%	0.00	0.0	100.0	15.0	76.0	0.9	24.0	1.80	65.0	0
Surimi H	0.58	7.60%	0.00	0.0	100.0	15.0	76.0	0.9	25.0	0.90	53.0	8
Surimi I	1.50		0.65	0.0	100.0	15.0	76.0	0.9	50.0	2.60	57.0	8
Surimi J	1.05		0.16	0.0	100.0	15.0	76.0	0.9	50.0	2.55	62.0	9 /
Blend Total	0.925	100.00%	-	-	-	15.0	76.0	0.9	50.00	2.30	75.0	7.5

		>=	>=	>=	>=	=>=	=>=	=>=
Minimum	Target	0.0	0.0	0.0	38.0	2.30	75.0	7.5
	Dual Value	\$0.00	\$0.00	\$0.00	\$0.00	(\$0.20)	(\$0.01)	(\$0.01)
		<=	<=	<=	=<=	<=	<=	<=
Maximum	Target	100.0	100.0	100.0	50.0	100.0	100.0	10.0
	Dual Value	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Parameters

Constraints

Decision Variables

Objective Function

R. Tarté – 24 Apr 2014 © 2014 Rodrigo Tarté

Key Elements of a Formulation LP Model

Parameters (Inputs)	Constraints (Limits)	Solution (Outputs)
 Standard formula(s) Raw material inventory Raw material/ingredient attributes Chemical composition Physical attribute values (e.g., color, shear stress, shear strain) Raw material prices Yield factors 	 Batch sizes Raw material/ingredient constraints Surimi (e.g., species, nonfish protein, fresh vs. frozen) Restricted ingredients Product constraints Chemical composition: moisture, fat, protein, sodium, salt, etc. Physical attribute values (e.g., color, shear stress, shear strain) Regulatory/standard of identity constraints 	 Optimal Formula(s) Batch sheets or batch recipes Formula (least) cost Finished product attributes Chemical composition Physical attribute values (e.g., color, bind) Nutritional information

When to use LCF in the Business Cycle

Production Planning

- To optimize purchasing decisions based on formula and production requirements, and raw material pricing and availability
- Most impactful stage at which to use LCF, since it is the point at which raw material costs are truly controlled

Production Scheduling

- To optimize allocation of existing inventories and guarantee formula targets are met for consistent quality
- Limited usefulness in terms of cost control, but still valuable

Batch Adjustments

- To correct deviations from formula targets caused by compositional variations in raw materials in-hand
- Little to no value in terms of controlling costs

Commercial LCF Software Suppliers*

- Sunsphere Software (Optimal)
- Least Cost Formulations, Ltd. (Least Cost Formulator)
- Owl Software (TechWizard)
- Arrow Scientific (ROI Formulation System)

^{*} Not an exhaustive list

Thank You