University of Indianapolis in Athens

From the SelectedWorks of Roddy Williams

Spring September 11, 2014

Ethics and Nuclear Weapons.pdf

Roddy Williams, University of Indianapolis in Athens

Available at: https://works.bepress.com/roddy-williams/6/
ETHICS & CAUSES OF NUCLEAR WEAPONS

Roddy Williams
Table of Contents

Introduction 3

History & Use of Nuclear Weapons 5

Nations of Nuclear Weapons 6

Nuclear Program Of Iran 14

Conclusion 16

References 17
Introduction:

War and Ethics has been the subject of much debate for many centuries. Although war and ethics are viewed by many as being contradictory, many attempts have been made dating back centuries to provide a set of guidelines on ethics during war through the establishment of “conventions” agreed to and signed by consenting parties. The Geneva Convention if the most current and most widely quoted such convention.

Throughout history the use and development of weapons has served as a means of establishing superiority over other nations and provided a means of defense, offense and also as deterrence to attack.

Wars have been won through military supremacy both tactical (strategy) and technical (weapons, manpower). The military arsenal of a nation is often viewed as a measure of its global status and the term “Super Power” was first used to refer to a nation’s military ability (linked to its Nuclear Weapons Capability). Even in Ancient China, military strategists recognized the value of superior weapons as a means to deliver swift victory over opponents with minimal time loss of me. Tsun Zsu[1] in the Art Of War stated:

“He who wishes to fight must first count the cost. When you engage in actual fighting, if victory is long in coming, then men’s weapons will grow dull and their ardor will be dampened. when your weapons are dulled, your ardor dampened, your strength exhausted and your treasure spent, other chieftains will spring up to take advantage of your extremity. Then no man, however wise, will be able to avert the consequences that must ensue... In war, then, let your great object be victory, not lengthy campaigns.”

In this statement Tsun Zsu summarizes a number of key points:

1. For every military action there are associated cost (financial, moral, and non-tangible)
2. Military technical supremacy can act as a morale booster for forces, military inferiority can act as a de-motivator
3. If a force is both military inferior and morale is low, defeat by their opponent is almost certain

In all wars; the risk of Collateral damage (the the politically correct term to address the accidental killing of civilians during war) exists and can be reduced through well define rules of

engagement for armed forces (on both sides of the conflict) through military code of conduct, and following of international guidelines or conventions such as the Geneva Convention.

Nuclear weapons while providing technical supremacy in war, do so at great financial, moral and ethical costs to all parties. Nuclear weapons, while superior to other weapons are the most indiscriminate killing enemy forces and civilians alike. Control and reduction of collateral damage” when using Nuclear Weapons is virtually impossible, and the effects to life and health of nuclear weapons even with a smaller explosion force cannot be easily contained both during the attack, and for many years after the attack as witnessed in the case of Hiroshima as an example. In fact the same is true for almost all weapons of Mass Destruction including nuclear.

Many countries that possess or seek to possess nuclear weapons capability argue that the use of such weapons would be under strict protocol, conventions and guidelines and not provide any threat to civilians of non-offensive nations, stating that international laws and regulations regarding the acquisition, development and use of such weapons would ensure this. "On the great issues of mankind the requirements of positive law and of ethics make common cause, and nuclear weapons, because of their destructive effects, are one such issue."[2]

However, by virtue of the fact the nuclear weapons are indiscriminate in the killing evenly when used discriminately, one could argue that ethical use nuclear weapons is an oxymoron, and cannot be implemented although such plans and conventions may exist on paper.

Secondly, it is important to remember that the Cuban Missile crisis in the 60s, and the arms race between Russia and the United States and now between India and Pakistan has been as a direct result of one party acquiring or threatening to acquire nuclear weapons. Today, there exists a global double standard in that nations with Nuclear weapons seek to restrict other nations that may have the same valid security needs or concerns as them from acquiring nuclear weapons not realizing that the fact that one nation posses such an ability, only motivates others that seek to establish dominance or enhance their security to try and acquire the same. "Nuclear weapons are held by a handful of states which insist that these weapons provide unique security benefits, and yet reserve uniquely to themselves the right to own them. This situation is highly discriminatory and thus unstable; it cannot be sustained. The possession of nuclear weapons by any state is a constant stimulus to other states to acquire them."[3]

In an ideal world where nuclear weapons were to be used only as a deterrence against aggression and to stop large scale loss of life that would typically follow during an armed conflict then; “To fight and conquer in all your battles is not supreme excellence;

2 http://www.wagingpeace.org/articles/1999/05/00_granoff_ethics.htm International Court of Justice (ICJ) issued July 8, 1996, Judge Ranjeva
3 http://www.wagingpeace.org/articles/1999/05/00_granoff_ethics.htm reference to Canberra Commission
supreme excellence consists in breaking the enemy’s resistance without fighting.”[4]

History and use of Nuclear weapons:

As we know there is only two nuclear weapons have been used in the course of warfare, both by the United States near the end of World War II.

Categories of Nuclear weapons:

There are two basic categories of nuclear weapons: those which derive the majority of their energy from nuclear fission reactions alone, and those which use fission reactions to begin nuclear fusion reactions that produce a large amount of the total energy output. A modern thermonuclear weapon weighing little more than 2,400 pounds (1,100 kg) can produce an explosive force comparable to the detonation of more than 1.2 million tons (1.1 million tonnes) of TNT.[5] Thus, even a small nuclear device no larger than traditional bombs can devastate an entire city by blast, fire and radiation. Nuclear weapons are considered weapons of mass destruction, and their use and control have been a major focus of international relations policy since their debut.[6]

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. Both reactions release vast quantities of energy from relatively small amounts of matter. The first fission ("atomic") bomb test released the same amount of energy as approximately 20,000 tons of TNT. The first thermonuclear ("hydrogen") bomb test released the same amount of energy as approximately 10,000,000 tons of TNT.

On 6 August 1945, a uranium gun-type device code-named "Little Boy" was detonated over the Japanese city of Hiroshima. Three days later, on 9 August, a plutonium implosion-type device code-named "Fat Man" was exploded over Nagasaki, Japan. These two bombings resulted in the deaths of approximately 200,000 Japanese people—mostly civilians—from acute injuries sustained from the explosions. [7]

4 Tsun Zsu’s Art Of War

5 http://en.wikipedia.org/wiki/Nuclear_weapon#cite_note-1
6 http://en.wikipedia.org/wiki/Nuclear_weapon
7 http://en.wikipedia.org/wiki/Fat_Man
Since 1945, nuclear weapons have been detonated on over two thousand occasions during testing and for the purposes of demonstrations (in some cases as a show of strength/deterrence). Only a handful of nations possess such weapons or are suspected of trying to acquire them. Countries known to have detonated nuclear weapons and that acknowledge possessing such weapons are (chronologically by date of first test):

- the United States,
- Russia
- the United Kingdom,
- France,
- the People's Republic of China, India, Pakistan, and North Korea.

Israel is also widely believed to possess nuclear weapons, though it does not acknowledge having them. Also South Africa, has admitted to having previous fabricated nuclear weapons in the past, but has since disassembled their arsenal and submitted to international safeguards.

Nations of nuclear weapons:

Nations that are known or believed to possess nuclear weapons are sometimes referred to as the nuclear club. There are currently eight states that have successfully detonated nuclear weapons. Five are considered to be "nuclear-weapon states" (NWS) under the terms of the Nuclear Non-Proliferation Treaty (NPT). In order of acquisition of nuclear weapons these are: the United States, Russia (successor state to the Soviet Union), the United Kingdom, France, and China.

Since the NPT entered into force in 1970, three states that were not parties to the Treaty have conducted nuclear tests, namely India, Pakistan, and North Korea. North Korea had been a party to the NPT but withdrew in 2003. Israel is also widely believed to have nuclear weapons, though it has refused to confirm or deny this, and is not known to have conducted a nuclear test.

South Africa has the unique status of a nation that developed nuclear weapons but has since disassembled its arsenal before joining the NPT [8].

Map of nuclear weapons countries of the world:

- NPT nuclear-weapon States (China, France, Russia, UK, USA)
- Other States with nuclear weapons (India, Pakistan, North Korea)
- Other States believed to have nuclear weapons (Israel)
- NATO nuclear weapons sharing states
- States suspected of having a nuclear weapons program (Iran, Syria)

States formerly possessing nuclear weapons (Belarus, Kazakhstan, Ukraine, South Africa)

<table>
<thead>
<tr>
<th>Country</th>
<th>Warheads active/total</th>
<th>Year of first test</th>
<th>CTBT status</th>
</tr>
</thead>
<tbody>
<tr>
<td>The five nuclear-weapon states under the NPT:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>1,950 / 8,500</td>
<td>1945 ("Trinity")</td>
<td>Signatory</td>
</tr>
<tr>
<td>Russia</td>
<td>2,430 / 11,000</td>
<td>1949 ("RDS-1")</td>
<td>Ratifier</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>160 / 225</td>
<td>1952 ("Hurricane")</td>
<td>Ratifier</td>
</tr>
<tr>
<td>France</td>
<td>290 / 300</td>
<td>1960 ("Gerboise Bleue")</td>
<td>Ratifier</td>
</tr>
<tr>
<td>China</td>
<td>~180 / 240</td>
<td>1964 ("596")</td>
<td>Signatory</td>
</tr>
<tr>
<td>Non-NPT nuclear powers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>n.a. / 80–100</td>
<td>1974 ("Smiling Buddha")</td>
<td>Non-signatory</td>
</tr>
<tr>
<td>Pakistan</td>
<td>n.a. / 90–110</td>
<td>1998 ("Chagai-I")</td>
<td>Non-signatory</td>
</tr>
<tr>
<td>North Korea</td>
<td>n.a. / <10</td>
<td>2006 (2006 test)</td>
<td>Non-signatory</td>
</tr>
<tr>
<td>Undeclared nuclear powers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>n.a. / 80-200</td>
<td>possibly 1979 (See Vela Incident)</td>
<td>Signatory</td>
</tr>
</tbody>
</table>

Table 1: List of Nuclear Weapon Countries [^9]

Image 1: An early stage in the "Trinity" fireball, the first nuclear explosion, 1945.

The United States developed the first atomic weapons during World War II in co-operation with the United Kingdom and Canada as part of the Manhattan Project, out of the fear that Nazi Germany would develop them first. It tested the first nuclear weapon in 1945 ("Trinity"), and remains the only country to have used nuclear weapons against another nation, during the atomic bombings of Hiroshima and Nagasaki. It was the first nation to develop the hydrogen bomb, testing an experimental version in 1952 ("Ivy Mike") and a deployable weapon in 1954 ("Castle Bravo"). Throughout the Cold War it continued to modernize and enlarge its nuclear arsenal, but from 1992 on has been involved primarily in a program of Stockpile stewardship. At its Cold War height, the US nuclear arsenal is estimated to have contained over 32,000 warheads (in 1966).
• **Russian Federation**

The Soviet Union tested its first nuclear weapon ("Joe-1") in 1949, in a crash project developed partially with espionage obtained during and after World War II (see: Soviet atomic bomb project). The USSR was the second nation to have developed and tested a nuclear weapon. The direct motivation for their weapons development was to achieve a balance of power during the Cold War. It tested its first megaton-range hydrogen bomb ("RDS-37") in 1955. The Soviet Union also tested the most powerful explosive ever detonated by humans, ("Tsar Bomba"), with a theoretical yield of 100 megatons, intentionally reduced to 50 when detonated. After its dissolution in 1991, the Soviet weapons entered officially into the possession of the Russian Federation.

At its maximum, the Soviet nuclear arsenal is estimated to have contained some 45,000 warheads (in 1988).

• **United Kingdom**

The United Kingdom tested its first nuclear weapon ("Hurricane") in 1952, drawing largely on data gained while collaborating with the United States during the Manhattan Project. The United Kingdom was the third country in the world after the USA and USSR to develop and test a nuclear weapon. Its programme was motivated to have an independent deterrent against the USSR, while also maintaining its status as a great power. It tested its first hydrogen bomb in 1957 (Operation Grapple), making it the third country to do so after the USA and USSR.

The UK maintained a fleet of V-bomber strategic bombers and ballistic missile submarines (SSBNs) equipped with nuclear weapons during the Cold War. It currently maintains a fleet of four 'Vanguard' class ballistic missile submarines equipped with Trident II SLBMs. The British government announced a replacement to the current system to take place between 2007-2024.

• **France**

France tested its first nuclear weapon in 1960 ("Gerboise Bleue"), based mostly on its own research. It was motivated by the Suez Crisis diplomatic tension vis-à-vis both the USSR and the Free World allies United States and United Kingdom. It was also relevant to retain great power status, alongside the United Kingdom, during the post-colonial Cold War. France tested its first hydrogen bomb in 1968 ("Opération Canopus"). After the Cold War, France has disarmed 175 warheads with the reduction and modernization of its arsenal that has now evolved to a dual system based on submarine-launched ballistic missiles (SLBMs) and medium-range air-to-surface missiles (Rafale fighter-bombers). However new nuclear weapons are in development and reformed nuclear squadrons were trained during Enduring Freedom operations in Afghanistan. In January 2006, President Jacques Chirac...
stated a terrorist act or the use of weapons of mass destruction against France would result in a nuclear counterattack.

- **China**

China tested its first nuclear weapon device ("596") in 1964 at the Lop Nur test site. The weapon was developed as a deterrent against both the United States and the Soviet Union. China would manage to develop a fission bomb capable of being put onto a nuclear missile only two years after its first detonation. It tested its first hydrogen bomb ("Test No. 6") in 1967, a mere 32 months after testing its first nuclear weapon (the shortest fission-to-fusion development known in history). The country is currently thought to have had a stockpile of around 240 warheads, though because of the limited information available, estimates range from 100 to 400. China is the only NPT nuclear-weapon state to give an unqualified negative security assurance due to its "no first use" policy.

- **India**

India is not a Party to the Nuclear Non-Proliferation Treaty. India tested what it called a "peaceful nuclear explosive" in 1974 (which became known as "Smiling Buddha"). The test was the first test developed after the creation of the NPT, and created new questions about how civilian nuclear technology could be diverted secretly to weapons purposes (dual-use technology). India's secret development caused great concern and anger particularly from nations, such as Canada, that had supplied it nuclear reactors for peaceful and power generating needs. It appears to have been primarily motivated as a general deterrent, as well as an attempt to project India as a regional power. Though India maintained that its nuclear capability was primarily "peaceful", it apparently weaponized two dozen nuclear weapons for delivery by air between 1988 and 1990. But it was not until 1998 that India tested weaponized nuclear warheads ("Operation Shakti"), including a thermonuclear device.

In July 2005, U.S. President George W. Bush and Indian Prime Minister Manmohan Singh announced plans to conclude an Indo-US civilian nuclear agreement. This came to fruition through a series of steps that included India's announced plan to separate its civil and military nuclear programs in March 2006. the passage of the United States-India Peaceful Atomic Energy Cooperation Act by the U.S. Congress in December 2006, the conclusion of a U.S.-India nuclear cooperation agreement in July 2007, approval by the IAEA of an India-specific safeguards agreement, agreement by the Nuclear Suppliers Group to a waiver of export restrictions for India, approval by the U.S. Congress and culminating in the signature of U.S.-India agreement for civil nuclear cooperation in October 2008. The U.S. State Department said it made it "very clear that we will not recognize India as a nuclear-weapon state". The United States is bound by the Hyde Act with India and may cease all cooperation with India if India detonates a nuclear explosive device. The US had further said it is not its intention to assist India in the design, construction or operation of sensitive nuclear
technologies through the transfer of dual-use items. In establishing an exemption for India, the Nuclear Suppliers Group reserved the right to consult on any future issues which might trouble it. As of June 2011, India was estimated to have had a stockpile of around 80–100 warheads.

- **Pakistan**

Pakistan also is not a Party to the Nuclear Non-Proliferation Treaty. Pakistan covertly developed nuclear weapons over many decades, beginning in the late 1970s. Pakistan first delved into nuclear power after the establishment of its first nuclear power plant near Karachi with equipment and materials supplied mainly by western nations in the early 1970s. Pakistani Prime Minister Zulfiqar Ali Bhutto promised in 1965 that if India can build nuclear weapons then Pakistan would too, "even if we have to eat grass." The United States continued to certify that Pakistan did not possess nuclear weapons until 1990, when sanctions were imposed under the Pressler Amendment, requiring a cutoff of U.S. economic and military assistance to Pakistan. In 1998, Pakistan conducted its first six nuclear tests at the Chagai Hills, in response to the five tests conducted by India a few weeks before. Over the years, Pakistan has developed into a crucial nuclear power.

In 2004, the Pakistani metallurgist A.Q. Khan, a key figure in Pakistan's nuclear weapons program, confessed to heading an international black market ring involved in selling nuclear weapons technology. In particular, Khan had been selling gas centrifuge technology to North Korea, Iran, and Libya. Khan denied complicity by the Pakistani government or Army, but this has been called into question by journalists and IAEA officials, and was apparently later contradicted by statements from Khan himself.

- **North Korea**

North Korea was a Party to the Nuclear Non-Proliferation Treaty, but announced a withdrawal on January 10, 2003, after the United States accused it of having a secret uranium enrichment program and cut off energy assistance under the 1994 Agreed Framework. In February 2005 the North Koreans claimed to possess functional nuclear weapons, though their lack of a test at the time led many experts to doubt the claim. However, in October 2006, North Korea stated that due to growing intimidation by the USA, it would conduct a nuclear test to confirm its nuclear status. North Korea reported a successful nuclear test on October 9, 2006 (see 2006 North Korean nuclear test). Most U.S. intelligence officials believe that North Korea did, in fact, test a nuclear device due to radioactive isotopes detected by U.S. aircraft; however, most agree that the test was probably only partially successful. The yield may have been less than a kiloton, which is much smaller than the first successful tests of other powers; however, boosted fission weapons may have an unboosted yield in this range, which is sufficient to start deuterium-tritium fusion in the boost gas at the center; the fast neutrons from fusion then ensure a full fission yield. North Korea conducted a second, higher yield test on May 25, 2009.
Israel is not a party to the Nuclear Non-Proliferation Treaty and refuses to officially confirm or deny having a nuclear arsenal, or having developed nuclear weapons, or even having a nuclear weapons program. Israel has pledged not to be the first country to introduce nuclear weapons into the region, but is also pursuing a policy of strategic ambiguity with regard to their possession. This is sometimes called a policy of "nuclear opacity": Israel neither confirms nor denies that it possesses nuclear weapons, in what has been interpreted as an attempt to get the benefits of deterrence with a minimum political cost. In the late 1960s, Israeli Ambassador to the US Yitzhak Rabin informed the United States State Department, that its understanding of "introducing" such weapons meant that they would be tested and publicly declared, while merely possessing the weapons did not constitute "introducing" them. Israel claims that the Negev Nuclear Research Center near Dimona is a research center. However, there is extensive evidence Israel has nuclear weapons or a near-ready nuclear weapons capability. Extensive information about the program in Dimona was also disclosed by technician Mordechai Vanunu in 1986.

According to the Natural Resources Defense Council and the Federation of American Scientists, Israel likely possesses around 75–200 weapons. Imagery analysts can identify weapon bunkers, mobile missile launchers, and launch sites in satellite photographs. may have tested a nuclear weapon along with South Africa in 1979, but this has never been confirmed, and interpretation of the evidence is controversial (see Vela Incident).

Nuclear program of Iran

The nuclear program of Iran was launched in the 1950s with the help of the United States as part of the Atoms for Peace program. The support, encouragement and participation of the United States and Western European governments in Iran's nuclear program continued until the 1979 Iranian Revolution that toppled the Shah of Iran.

After the 1979 revolution, the Iranian government temporarily disbanded elements of the program, and then revived it with less Western assistance than during the pre-revolution era. Iran's nuclear program has included several research sites, two uranium mines, a research reactor, and uranium processing facilities that include three known uranium enrichment plants.

After delays, Iran's first nuclear power plant, Bushehr I reactor was officially opened in a ceremony on 12 September 2011. There are no current plans to complete the Bushehr II reactor, although the construction of 19 nuclear power plants is envisaged. Iran has announced that it is working on a new 360 MWe nuclear power plant to be located in
Darkhovin. Iran has also indicated that it will seek more medium-sized nuclear power plants and uranium mines for the future.

After public allegations about Iran's previously undeclared nuclear activities, the IAEA launched an investigation that concluded in November 2003 that Iran had systematically failed to meet its obligations under its NPT safeguards agreement to report those activities to the IAEA, although it also reported no evidence of links to a nuclear weapons program. The IAEA Board of Governors delayed a formal finding of non-compliance until September 2005, and (in a rare non-consensus decision) reported that non-compliance to the UN Security Council in February 2006. After the IAEA Board of Governors reported Iran's noncompliance with its safeguards agreement to the United Nations Security Council, the Council demanded that Iran suspend its enrichment programs. The Council imposed sanctions after Iran refused to do so. A May 2009 U.S. Congressional Report suggested "the United States, and later the Europeans, argued that Iran's deception meant it should forfeit its right to enrich, a position likely to be up for negotiation in talks with Iran."

In exchange for suspending its enrichment program, Iran has been offered "a long-term comprehensive arrangement which would allow for the development of relations and cooperation with Iran based on mutual respect and the establishment of international confidence in the exclusively peaceful nature of Iran's nuclear program." However, Iran has consistently refused to give up its enrichment program, arguing that the program is necessary for its energy security, that such "long term arrangements" are inherently unreliable, and would deprive it of its inalienable right to peaceful nuclear technology. Currently, thirteen states possess operational enrichment or reprocessing facilities, and several others have expressed an interest in developing indigenous enrichment programs. Iran's position was endorsed by the Non-Aligned Movement, which expressed concern about the potential monopolization of nuclear fuel production.

To address concerns that its enrichment program may be diverted to non-peaceful uses, Iran has offered to place additional restrictions on its enrichment program including, for example, ratifying the Additional Protocol to allow more stringent inspections by the International Atomic Energy Agency, operating the uranium enrichment facility at Natanz as a multinational fuel center with the participation of foreign representatives, renouncing plutonium reprocessing and immediately fabricating all enriched uranium into reactor fuel rods. Iran's offer to open its uranium enrichment program to foreign private and public participation mirrors suggestions of an IAEA expert committee which was formed to investigate the methods to reduce the risk that sensitive fuel cycle activities could contribute to national nuclear weapons capabilities. Some non-
governmental U.S. experts have endorsed this approach. The United States has insisted that Iran must meet the demands of the UN Security Council to suspend its enrichment program. In every other case in which the IAEA Board of Governors made a finding of safeguards non-compliance involving clandestine enrichment or reprocessing, the resolution has involved (in the cases of Iraq and Libya) or is expected to involve (in the case of North Korea) at a minimum ending sensitive fuel cycle activities. According to Pierre Goldschmidt, former deputy director general and head of the department of safeguards at the IAEA, and Henry D. Sokolski, Executive Director of the Nonproliferation Policy Education Center, some other instances of safeguards noncompliance reported by the IAEA Secretariat (South Korea, Egypt) were never reported to the Security Council because the IAEA Board of Governors never made a formal finding of non-compliance. Though South Korea's case involved enriching uranium to levels near weapons grade South Korea said it had voluntarily reported an isolated activity and Goldschmidt has argued "political considerations also played a dominant role in the board's decision" to not make a formal finding of non-compliance. \[10\]

\[10\] http://en.wikipedia.org/wiki/Nuclear_program_of_Iran
Conclusion:

Nuclear weapons while providing technical supremacy in war, do so at great financial, moral and ethical costs to all parties. Nuclear weapons, while superior to other weapons are the most indiscriminate killing enemy forces and civilians alike. Control and reduction of collateral damage” when using Nuclear Weapons is virtually impossible, and the effects to life and health of nuclear weapons even with a smaller explosion force cannot be easily contained both during the attack, and for many years after the attack.

Many countries that possess or seek to possess nuclear weapons capability argue that the use of such weapons would be under strict protocol, conventions and guidelines and not provide any threat to civilians of non-offensive nations, stating that international laws and regulations regarding the acquisition, development and use of such weapons would ensure this.

A fine balance between ethics and nuclear weapons can be achieved but it requires all countries under the UN to be signatories to such a Treaty, and a firm plan of action endorsed by all members of the UN Security Council for any transgressions of the treaty, regardless of political alliances.
References:

