Low fitness partially explains resting metabolic rate differences between African American and white women.

Robin Shook, University of South Carolina
G. A. Hand, University of South Carolina
X. Wang, University of South Carolina
A. E. Paluch, University of South Carolina
R. Moran, University of South Carolina, et al.
Full Title: Low fitness partially explains resting metabolic rate differences between African American and white women

Robin P. Shook, PhD

Gregory A. Hand, PhD, MPH

Xuewen Wang, PhD

Amanda E. Paluch, MS

Robert Moran, PhD

James R. Hébert, ScD

Damon L. Swift, PhD

Carl J. Lavie, MD

Steven N. Blair, PED

Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA (RPS, GAH, AEP, XW, SNB)

Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA (RM, JRH, SNB)

Department of Family and Preventive Medicine, University of South Carolina, Columbia, South Carolina, USA (JRH)
South Carolina Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA (JRH)

Department of Kinesiology, Center for Health Disparities, East Carolina University, Greenville, NC, USA (DLS)

John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, Louisiana, USA (CJL)

The Department of Preventive Medicine, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA (CJL)

Corresponding Author:

Robin P. Shook

Public Health Research Center

921 Assembly St.

Columbia, SC 29201

Phone: 214-448-8366

Fax: 803-777-9007

shookr@mailbox.sc.edu
Disclosures: Dr. Blair receives book royalties (<$5,000/year) from Human Kinetics; honoraria for service on the Scientific/Medical Advisory Boards for Technogym, Santech, Cancer Fit Steps for Life, and Clarity; and honoraria for lectures and consultations from scientific, educational, and lay groups. During the past 5-year period he has received research grants from the National Institutes of Health, Department of Defense, Body Media, and The Coca-Cola Company. No other authors have anything to disclose.

All authors had access to the data and a role in writing the manuscript.

Running head: Race, resting metabolic rate, and fitness

Keywords: Resting metabolic rate, fitness, physical activity, race, women
Abstract

Background: High levels of obesity among African American women have been hypothesized to be partially resultant from a lower resting metabolic rate compared to white women. The aim of the current study was to determine if differences in cardiorespiratory fitness and moderate-to-vigorous physical activity are associated with differences in resting metabolic rate among free living young adult African American women and white women.

Methods: Participants were 179 women (white women=141, African American women=38, mean age=27.7 years). Resting metabolic rate was measured using indirect calorimetry, body composition using dual energy X-ray absorptiometry (DXA), cardiorespiratory fitness via maximal treadmill test, and moderate-to-vigorous physical activity using an activity monitor.

Results: African American women had higher body mass index (BMI), fat mass and fat-free mass compared to white women, but lower levels of cardiorespiratory fitness. No differences were observed between African American and white women in resting metabolic rate when expressed as kcal/day (1390.8±197.5 vs. 1375.7±173.6 kcal/day, *P*=.64), but African American women had a lower resting metabolic rate when expressed relative to body weight (2.56±0.30 vs. 2.95±0.33 mL/kg/min, *P*<.001). After statistical adjustment for differences in body composition between groups using linear regression models, African American women had a lower resting metabolic rate compared to white women (1299.4±19.2 vs. 1400.4±9.2 kcal/day, *P*<.001). The addition of cardiorespiratory fitness reduced the differences among groups by 25%. The addition of moderate-to-vigorous physical activity did not improve the model.

Conclusions: The present study confirms African American women have a lower resting metabolic rate compared to their white peers, and low cardiorespiratory fitness explained 25% of
this difference. Variables associated with resting metabolic rate, such as cardiorespiratory fitness, represent possible points of tailored interventions designed to address high levels of obesity seen in certain demographic groups.
Introduction

African American females have the highest prevalence of overweight (82.1%) and obesity (58.6%) of any racial group in the United States,\(^1\) are more likely to gain weight,\(^2\) have a harder time losing and maintaining weight loss,\(^3\) and are more likely to regain weight\(^4\) compared to white women. A majority of studies have reported lower levels of resting metabolic rate in African American women compared to white women, ranging from 81-274 kcal/day.\(^5,6\) While these values may seem trivial, small differences in energy balance (e.g., a positive energy balance due to insufficient levels of energy expenditure) may result in long-term clinically relevant changes in energy storage (e.g. adiposity).\(^7\) Many,\(^8\) but not all,\(^13,15\) studies have found a low resting metabolic rate to be predictive of subsequent weight gain.

The primary cause of lower resting metabolic rate appears to be due to individual differences in fat free mass compartments, with African American women possessing larger levels of skeletal muscle mass and bone mass and lower levels of residual mass (including the brain, liver, heart, and kidneys) compared to white women.\(^16\) Fat free mass is not energetically homogenous; for example, the metabolic rate of bone and skeletal muscle (approximately 2.3 and 13 kcal/kg of tissue/day, respectively) are drastically lower compared to other organs, including the brain, kidneys, heart, and liver (approximately 330 kcal/kg of tissue/day).\(^22,24\) Most analyses only measure fat free mass, rather than the individual compartments described above, may not accurately identify sources of variation in resting metabolic rate among groups.\(^5,18,25\)

Another potential cause of low resting metabolic rate levels in African American women may be low cardiorespiratory fitness, as unfit sedentary individuals often have a 5-20% lower resting metabolic rate compared to those with high levels of cardiorespiratory fitness and
moderate to vigorous physical activity. Indeed, previous analyses from the National Health and Nutrition Examination Survey (NHANES) and elsewhere indicate African Americans have lower levels of cardiorespiratory fitness compared to whites by 5-10%, particularly among women. It is possible the low levels of cardiorespiratory fitness in African American women may augment existing low levels of resting metabolic rate due to differences in metabolically active tissues.

The aim of the current study was to compare resting metabolic rate between African American and white women, adjusting for differences in body compartments and levels of cardiorespiratory fitness and moderate-to-vigorous physical activity.

Methods

The design and rationale for this study have been described in detail. All study protocols were approved by the University of South Carolina Institutional Review Board, and informed consent was obtained from each participant prior to data collection. Individuals were excluded if they had a major medical condition (diabetes, hypertension, thyroid condition, etc.). All women were eumenorrheic. Given no widely accepted nomenclature exists for classification of race in academic and journalistic writing, we have adopted the categories utilized in the 2010 US Census, ‘Black or African American’ and ‘White’, (self-identified by participants and only one category could be selected).

Dual-energy X-ray absorptiometry (DXA) provided measurements on bone mineral density, fat mass, and fat free mass, both whole body and various regions (arms, legs, etc.) using a Lunar DPX system (version 3.6; Lunar Radiation Corp, Madison, WI). Skeletal muscle mass
was estimated from appendicular lean soft tissue mass using the following linear regression equation:

\[
\text{Skeletal mass} = (1.13 \times \text{appendicular lean soft tissue}) - (0.02 \times \text{age}) + (0.61 \times \text{sex}) + 0.97
\]

where sex= 0 for females.\(^{34}\) This equation was developed (N=321) and validated (N=93) with ethnically diverse men and women using magnetic resonance imaging (MRI) and DXA. Correlation between skeletal mass derived from the equation and MRI were high (r= 0.96, \(P<0.0001\)).\(^{34}\) Residual mass, representing brain, liver, kidneys, heart gastrointestinal tract, and other organs and tissues, was then calculated using the following equation:\(^{21}\)

\[
\text{Residual mass} = \text{body weight} - \text{fat mass} - \text{skeletal mass} - \text{bone mass}
\]

Cardiorespiratory fitness was assessed by maximal treadmill test (Modified Bruce protocol) with respiratory gases sampled using a TrueOne® 2400 Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah). Resting metabolic rate was measured via indirect calorimetry using a ventilated hood and an open-circuit system, TrueOne® 2400 Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah). An initial stabilization period of 15 minutes was followed by a 30-minute data collection period. Participants arrived for a morning visit (<9:00am) following a 12-hour dietary fast and at least 24 hours after the last bout of structured exercise.

Total daily energy expenditure was measured using a validated arm-based activity monitor (SenseWear® Mini Armband, BodyMedia Inc. Pittsburgh, PA).\(^{35}\) The participants wore the armband for 10 consecutive days and compliance criteria for adequate wear time were set at 7 days with at least 23 hours of daily wear time. Time spent in physical activity was classified by intensity according to the estimated metabolic equivalent of task (MET) based on the following
criteria: Sedentary, 1.0 to ≤1.5 METs; Light, >1.5 to ≤3.0 METs; Moderate, >3.0 to ≤6.0 METs; Vigorous, >6.0 METs. Due to low amounts of time spent in vigorous activity among participants, all activity >3.0 METs was also summed to identify moderate-to-vigorous physical activity. Energy intake was measured using interviewer-administered 24-hour dietary recalls using the Nutrient Data System for Research® software (NDSR, Version 2012). Prior to data collection, study participants underwent a brief training (10-15 minutes) to estimate portion sizes of commonly eaten foods. Three interviews were conducted on randomly selected, non-consecutive days over a 14-day sampling window.

Statistical significance for comparison between groups was tested using t-tests. Linear regression analyses were performed to determine relationships among covariates and potential confounders and effect modifiers with the dependent variable resting metabolic rate expressed as kcal/day. Analysis of covariance (ANCOVA) was used to compare adjusted resting metabolic rate between African American and white women. Linear modeling results are presented as least squares (i.e., multivariable-adjusted) means with standard errors, and were adjusted for multiple comparisons using the Tukey-Kramer procedure. Statistical significance was set at \(P < .05 \) (two-sided) for all analyses. All aforementioned analyses were performed using SAS 9.3 (Cary, N.C.). Due to differences in sample size between the groups, a post hoc power analysis was performed using G*Power 3 (Germany) which yielded a power of 0.78 to detect differences between group means based on an effect size of 0.5.

Results

Participant characteristics are presented in Table 1, including 179 individuals (141 white and 38 African American; mean age of 27.7 years). African American women had higher BMI,
body weight, body fat percentage, fat mass, and fat free mass compared to white women; fat free mass was then compartmentalized into bone mass, skeletal mass, and residual mass, with the latter including visceral organs which have higher rates of metabolic activity compared to fat, bone, and skeletal muscle. Skeletal mass was significantly higher in African American women compared to white women in kg, but lower relative to total body mass. There were no differences among groups for residual mass in kg, but African American women had a lower proportion of residual mass when expressed relative to total body mass. African American women had higher absolute bone mass, with no statistically significant difference when expressed relative to body mass. There was no difference in resting metabolic rate between groups of women when expressed as kcal/day, but when expressed relative to body mass (mL/kg/min), African American women were significantly lower than white women (Table 2). Peak oxygen consumption was also lower among African American women, both absolute and relative to body mass.

Compliance with the activity monitor was excellent, with 23.2±0.75 hours of daily wear time and no significant difference between groups. There was no difference in total daily energy expenditure between the groups. African American women spent significantly more time in sedentary and light activity, and less in moderate-to-vigorous physical activity (Table 3). Energy intake and diet composition (percent of total kcals for each macronutrient) also did not differ between groups, except for percent of kcals from alcohol (Table 3), consistent with previous findings.36

Due to statistically significant differences in body compartments among groups, linear models were created to adjust resting metabolic rate (Table 4), including the covariates race and age, which have previously been shown to influence resting metabolic rate, and four body compartments (skeletal muscle mass, residual mass, fat mass, and bone mass) were added
individually in subsequent models. Adjusted resting metabolic rate values were calculated for each group from each model. The initial model which included race, age, and skeletal muscle mass explained 51% of the variance in resting metabolic rate, and adding residual mass explained 52%. After the addition of fat mass 66% of resting metabolic rate variability was explained, and the adjusted mean resting metabolic rate became significantly lower for African American women compared to white women (1299.8±18.9 kcal/day vs. 1400.3±9.1 kcal/day, \(P<.001\)). Adding bone mass to the model did not significantly improve the model. The differences in resting metabolic rate among groups after adjustment for differences in body compartments are displayed in Figure 1.

To determine the role of aerobic capacity, cardiorespiratory fitness (L/min) was added to the model and reduced the difference in adjusted mean resting metabolic rate between African American and white women by 25% (Table 4 model 4, difference between African American and white women= 101.0 kcals/day; model 5, difference between African American and white women= 76.2 kcals/day). This approach was repeated to determine the influence of activity on resting metabolic rate, with time spent in moderate-to-vigorous physical activity replacing cardiorespiratory fitness in the model, but was not statistically significant. The individual components of energy expenditure related to physical intensity (time spent in sedentary, light, moderate, and vigorous activity) were also entered into the model both separately and together, but none were statistically related to resting metabolic rate (results not shown). This process was repeated for dietary information, and neither energy intake nor any diet variables were statistically related to resting metabolic rate (results not shown).

Discussion
The primary finding of the present study is low cardiorespiratory fitness explains 25% of the difference in resting metabolic rate between African American and white young adult women. After statistically adjusting for lower amounts (relative to body mass) of skeletal mass and residual mass and higher amounts of fat mass, African American women had a lower resting metabolic rate than white women by 101 kcal/day. After additional adjustments for lower cardiorespiratory fitness among African American women, this difference was reduced to 76 kcal/day. These findings emphasize the independent role of cardiorespiratory fitness on resting metabolic rate and partially explain the variances previously observed between African American women and white women. The differences in resting metabolic rate between groups are clinically significant and the role of low fitness in the etiology of this difference represents a possible intervention point for public health obesity campaigns.

While differences in kcals between groups (i.e., between ≈ 100 kcal/day) may seem trivial, they are clinically significant for several reasons. A joint task force including the American Society for Nutrition currently advocates for a ‘small-changes framework’ of obesity prevention, encouraging individuals to make small lifestyle changes to reduce energy intake and increase physical activity. While these recommendations focus on lifestyle interventions and not physiological processes such as resting metabolic rate, they are based on the role of small ‘energy gaps’ (approximately 50 kcals/day) in influencing obesity at a population level. Second, there is known heterogeneity in response to weight loss and physical activity interventions between racial groups; by identifying differences in the physiological components of the energy balance equation, tailored interventions can be created to maximize clinical effectiveness. Finally, low resting metabolic rate levels have been shown to be associated with
low total daily energy expenditure9 and with modulatory hormones such as adiponectin,39-41 reinforcing the role of resting metabolic rate within a broader regulatory system of body weight.

African American women in our study had levels of cardiorespiratory fitness in the bottom 20\% of a widely cited fitness classification system42 representing ‘low’ cardiorespiratory fitness, while white women possessed levels corresponding to the middle 20\%, representing ‘moderate’ cardiorespiratory fitness. When cardiorespiratory fitness was entered into the linear regression model adjusted for differences in body composition, differences in resting metabolic rate between African American and white women were reduced by 25\% (101.0 kcals/day vs. 76.2 kcals/day, Table 4). This suggests low levels of cardiorespiratory fitness partially explain the low resting metabolic rate observed in African American women, suggesting a positive relationship between cardiorespiratory fitness and resting metabolic rate.43,44 The mechanisms are not well understood, but cardiorespiratory fitness likely influences regulation of the sympathetic nervous system,45 changes in muscle cell structure,46 and substrate cycling,47,48 which may influence resting metabolic rate. Other variables thought to be responsible for low cardiorespiratory fitness levels in African American women compared to white women, such as plasma hemoglobin and muscle fiber type,49,50 may also contribute to resting metabolic rate differences.

Low resting metabolic rate may be positively associated with obesity via reductions in total daily energy expenditure,9 resulting in a chronic, positive energy balance if EI levels are not actively or passively reduced by similar levels. Additionally, low cardiorespiratory fitness is associated with higher levels of adiposity51,52 and is predictive of weight gain over time.53 While several studies have described a lower resting metabolic rate in African American women,5,6 cardiorespiratory fitness is rarely explored as a potential mediator. Hunter et al. explored racial
differences in resting metabolic rate and cardiorespiratory fitness between African American (n=18) and white women (n=17) women and found a 7% lower resting metabolic rate in African American women after adjustment for fat free mass and cardiorespiratory fitness. Our results extend these findings, utilizing a larger sample size and participants possessing a broader range of body weights, body compositions, and cardiorespiratory fitness levels. We found no relationship between resting metabolic rate and minutes of moderate-to-vigorous physical activity. To our knowledge, this is the first study to explore the role of objectively measured physical activity on resting metabolic rate.

By using DXA we were able to compartmentalize the body according to the metabolic activity of tissues: skeletal mass, residual mass, fat mass, and bone mass. Previous studies involving MRI-derived measurement of highly metabolic organs (liver, kidney, spleen, brain) found lower levels in African American women compared to white women by 8.8% (0.3 kg), and this difference explained approximately half of the difference in resting metabolic rate between African American and white participants. We did not directly measure specific organs, a limitation to our study, but estimated residual mass including the liver, kidney, and spleen in addition to other tissues, and found lower levels among African American women by 3.8% compared to white women (Table 1).

Despite the strengths of our study, there are limitations. Specifically, uncertainty exists regarding the role of resting metabolic rate levels on subsequent weight gain, in addition to the role of cardiorespiratory fitness on resting metabolic rate, and we cannot identify causality given the cross-sectional study design. Additionally, we did not statistically control for differences in menstrual cycle phase in the present study. However, findings in the existing literature are highly varied, with some studies observing elevated resting metabolic rate following ovulation.
though others have not,18 including perhaps the most thorough examination which found no significant difference in resting metabolic rate between the follicular and luteal phases of the menstrual cycle.57

In summary, African American women had a lower resting metabolic rate than white women after adjustment for differences in body composition, including a higher residual mass and lower fat mass. Additionally, cardiorespiratory fitness was independently associated with resting metabolic rate after adjustment for body composition, but time spent in moderate-to-vigorous physical activity was not. The differences in resting metabolic rate on a daily timeframe could have clinically significant influences on body weight gain over time. Additionally, racial differences in variables associated with resting metabolic rate, such as cardiorespiratory fitness, represent possible points of tailored interventions designed to address the current obesity epidemic.

\textbf{Acknowledgements:} The authors thank the participants and the project staff, specifically Patrick Crowley, Madison Demello, Beth Lach, Reena Patel, and Sarah Schumacher.

\textbf{Funding sources:} This work was funded by an unrestricted research grant from The Coca-Cola Company, who had no role in the design, protocol development, or in the conducting of the trial, data collection, data analysis, or preparation of the manuscript. Dr. Hébert was supported by an Established Investigator Award in Cancer Prevention and Control from the Cancer Training Branch of the National Cancer Institute (K05 CA136975).
References

Figure Legend

Figure. After adjustment for differences in body composition African American women had a significantly lower resting metabolic rate compared to white women (difference for slopes $P=0.014$, difference for Y-intercept $P=0.001$)
<table>
<thead>
<tr>
<th>Table 1. Participant anthropometric characteristics overall and by race.</th>
<th>All (N=179) (mean±SD)</th>
<th>White (N=141) (mean±SD)</th>
<th>African American (N=38) (mean±SD)</th>
<th>P value between group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>27.7±3.8</td>
<td>27.3±3.4</td>
<td>29.0±4.8</td>
<td>.06</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>25.5±4.3</td>
<td>24.6±3.9</td>
<td>28.8±4.1</td>
<td><.001</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>165.8±6.2</td>
<td>166.2±5.8</td>
<td>164.6±7.3</td>
<td>.17</td>
</tr>
<tr>
<td>Total Body Mass (kg)</td>
<td>70.2±12.4</td>
<td>68.0±11.3</td>
<td>78.3±13.0</td>
<td><.001</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>25.4±9.6</td>
<td>23.7±9.1</td>
<td>31.7±8.7</td>
<td><.001</td>
</tr>
<tr>
<td>Fat mass (%) *</td>
<td>35.0±8.1</td>
<td>33.8±8.2</td>
<td>39.8±6.0</td>
<td><.001</td>
</tr>
<tr>
<td>Fat free mass (kg)</td>
<td>45.0±5.6</td>
<td>44.5±5.1</td>
<td>47.0±6.9</td>
<td>.04</td>
</tr>
<tr>
<td>Skeletal mass (kg)</td>
<td>21.3±3.1</td>
<td>20.9±2.7</td>
<td>22.6±3.8</td>
<td>.01</td>
</tr>
<tr>
<td>Skeletal mass (%) *</td>
<td>30.7±4.3</td>
<td>31.1±4.4</td>
<td>28.9±3.4</td>
<td>.01</td>
</tr>
<tr>
<td>Residual mass (kg)</td>
<td>21.0±2.7</td>
<td>20.9±2.5</td>
<td>21.3±3.3</td>
<td>.48</td>
</tr>
<tr>
<td>Residual mass (%) *</td>
<td>30.4±4.2</td>
<td>31.2±4.0</td>
<td>27.4±3.2</td>
<td><.001</td>
</tr>
<tr>
<td>Bone mass (kg)</td>
<td>2.7±0.4</td>
<td>2.7±0.4</td>
<td>3.0±0.5</td>
<td><.001</td>
</tr>
<tr>
<td>Bone (%) *</td>
<td>3.9±0.5</td>
<td>4.0±0.5</td>
<td>3.9±0.6</td>
<td>.70</td>
</tr>
</tbody>
</table>

*Percentages (%) based as a fraction of total body weight
Table 2. Oxygen consumption at rest and peak exercise overall and by race.

<table>
<thead>
<tr>
<th></th>
<th>All (N=179)</th>
<th>White (N=141)</th>
<th>African American (N=38)</th>
<th>P value between group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting energy expenditure (kcals/day)</td>
<td>1378.9±178.4</td>
<td>1375.7±173.6</td>
<td>1390.8±197.5</td>
<td>.64</td>
</tr>
<tr>
<td>Resting metabolic rate (mL/kg/min)</td>
<td>2.87±0.36</td>
<td>2.95±0.33</td>
<td>2.59±0.30</td>
<td><.001</td>
</tr>
<tr>
<td>Resting metabolic rate (mL/kg of fat free mass/min)</td>
<td>4.43±0.41</td>
<td>4.47±0.42</td>
<td>4.28±0.36</td>
<td>.01</td>
</tr>
<tr>
<td>Respiratory quotient</td>
<td>0.79±0.05</td>
<td>0.79±0.4</td>
<td>0.79±0.06</td>
<td>.79</td>
</tr>
<tr>
<td>Cardiorespiratory fitness (mL/kg/min)</td>
<td>33.4±7.8</td>
<td>35.3±7.4</td>
<td>26.2±4.2</td>
<td><.001</td>
</tr>
<tr>
<td>Cardiorespiratory fitness (L/min)</td>
<td>2.30±0.48</td>
<td>2.37±0.48</td>
<td>2.05±0.41</td>
<td>.002</td>
</tr>
</tbody>
</table>
Table 3. Energy expended by physical activity intensity and energy intake by macronutrient.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>White</th>
<th>African American</th>
<th>P value</th>
<th>between group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=179)</td>
<td>(N=141)</td>
<td>(N=38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean±SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total daily energy expenditure</td>
<td>2419.7±291.1</td>
<td>2413.6±296.0</td>
<td>2442.5±274.7</td>
<td>.59</td>
<td></td>
</tr>
<tr>
<td>(kcal/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedentary (min/day)</td>
<td>1086.0±80.7</td>
<td>1080.4±85.0</td>
<td>1106.7±58.7</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Light (min/day)</td>
<td>242.0±58.3</td>
<td>237.1±57.9</td>
<td>260.0±56.8</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>MVPA (min/day)</td>
<td>110.7±62.8</td>
<td>121.5±110.6</td>
<td>70.6±25.7</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Energy intake (kcal/day)</td>
<td>1801.9±457.3</td>
<td>1827.6±450.7</td>
<td>1706.6±475.0</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (% of total kcals)</td>
<td>48.1±8.4</td>
<td>47.9±8.6</td>
<td>48.6±8.0</td>
<td>.66</td>
<td></td>
</tr>
<tr>
<td>Fat (% of total kcals)</td>
<td>32.7±6.7</td>
<td>32.3±6.8</td>
<td>33.9±6.3</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>Protein (% of total kcals)</td>
<td>16.7±3.5</td>
<td>16.6±3.5</td>
<td>17.0±3.5</td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>Alcohol (% of total kcals)</td>
<td>2.7±4.3</td>
<td>3.3±4.6</td>
<td>0.5±1.1</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

MVPA= Moderate to vigorous activity
Table 4. Analysis of covariance comparing resting metabolic rate between races controlling for body compartments (kg), cardiorespiratory fitness (L/min) and time spent in physical activity (minutes/day) (mean±standard error).

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>African American</th>
<th>R²</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted (mean±sd)</td>
<td>1375.7±14.6</td>
<td>1390.8±32.0</td>
<td>NA</td>
<td>.64</td>
</tr>
<tr>
<td>1. Race + age + skeletal muscle</td>
<td>1391.5±10.8</td>
<td>1332.4±21.3</td>
<td>0.51</td>
<td>.16</td>
</tr>
<tr>
<td>2. Race + age + skeletal muscle + residual mass</td>
<td>1388.5±10.6</td>
<td>1343.5±21.2</td>
<td>0.52</td>
<td>.07</td>
</tr>
<tr>
<td>3. Race + age + skeletal muscle + residual mass + fat mass</td>
<td>1400.3±9.1</td>
<td>1299.8±18.9</td>
<td>0.66</td>
<td><.001</td>
</tr>
<tr>
<td>4. Race + age + skeletal muscle + residual mass + fat mass + bone mass</td>
<td>1400.4±9.2</td>
<td>1299.4±19.2</td>
<td>0.66</td>
<td><.001</td>
</tr>
<tr>
<td>5. Race + age + skeletal muscle + residual mass + fat mass + bone mass + cardiorespiratory fitness</td>
<td>1395.1±9.3</td>
<td>1318.9±20.3</td>
<td>0.67</td>
<td>.002</td>
</tr>
<tr>
<td>6. Race + age + skeletal muscle + residual mass + fat mass + bone mass + physical activity minutes</td>
<td>1399.9±9.2</td>
<td>1301.3±19.3</td>
<td>0.66</td>
<td><.001</td>
</tr>
</tbody>
</table>

*P value represents between group differences
Body Weight (kg)

Adjusted resting metabolic rate (kcal/day)

White

African American