Edutainment: Using Media and Video Instruction as Methods of Disseminating Content in Science, Technology, Engineering and Mathematics (STEM) Instruction

William H. Robertson
EDUTAINMENT: USING MEDIA AND VIDEO INSTRUCTION AS METHODS OF DISSEMINATION CONTENT IN SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS (STEM) INSTRUCTION

William H. Robertson, Ph.D. ¹

¹ Teacher Education Department, The University of Texas at El Paso, El Paso, Texas, USA
robertson@utep.edu

Abstract

Edutainment has recently been a major growing area of education, showing great promise to motivate students with relevant activities. The author is among a group of innovators who have developed cutting-edge fusions of popular culture and science, mathematics, engineering and technology (STEM) concepts to engage and to motivate middle school students, using vehicles such as skateboarding. The importance of using relevant and practical methods of instruction and curriculum delivery that build on student interests and increase enjoyment in the learning process is critical at the middle school level, especially in the STEM fields. The use of edutainment in this manner is meant to inspire broader interest in STEM, especially in science for middle school students and to develop a culture of education that makes learning more accessible to all students. This paper surveys and illustrates the use of such immersive modalities to involve middle school students actively with concepts and suggests further directions for the use of demonstrations and videos in educational settings.

Keywords: action, science, technology, video, edutainment, STEM

INTRODUCTION

Edutainment has recently been a major growing area of education, showing great promise to motivate students with relevant activities. The importance of using relevant and practical methods of instruction and curriculum delivery that build on student interests and increase enjoyment in the learning process is critical at the middle school level, especially in the STEM fields. The use of edutainment in this manner is meant to inspire broader interest in mathematics and science for middle school students and to develop a culture of education that makes learning more accessible to all students. This paper surveys the use of such immersive modalities (including some specific vignettes) to involve middle school students actively with concepts and suggests further directions for the use of demonstrations and videos in educational settings.

Throughout history, there have been abundant examples of entertainment education (also called by its portmanteau, edutainment), especially for health and social issues (e.g., Singhal, Wang, & Rogers, 2012 [1]). The purpose of this article is to focus on edutainment in the specific context of STEM education, chronicling large-scale interactions (as opposed to, for example, digital games individuals can play) with students, teachers and community members involving relevant content in student-centered contexts.

The focus on edutainment is restricted to examples where the entertainment value is significant, but not overshadowing the educational content. This position is also in agreement with Resnick (1987, p. 1 [2]), who purports to avoid implying that education is a “bitter medicine that needs the sugar-coating of entertainment to become palatable” or that education and entertainment are “services that someone else provides for you” rather than “things that you do.”

PARTICULAR NEED FOR MOTIVATION IN STEM FIELDS IN THE MIDDLE GRADES
The use of strategies of edutainment in STEM as a mechanism for integrating transformative education is an approach that appears to be enhancing the interest and motivation of middle school students in science. It is the purpose of immersive and entertaining educational opportunities to positively impact achievement for middle school students in STEM, especially in the areas of science and mathematics knowledge and skills. By immersing students in a learning approach that is based on appealing delivery of content and focuses on the goals and objectives in middle school science and mathematics, the process skills and overall content knowledge of the students have the potential to greatly increase. Studies have shown that students, who are involved in active learning in meaningful contexts, acquire knowledge and become proficient in problem solving. The long-term prospects of this research area will seek to determine how the implementation of curriculum approaches integrating strategies in edutainment and built around student interests such as skateboarding and music can impact student achievement in the area of science and mathematics content and conceptual understandings.

Each learner understands content and concepts differently based on his or her previous experiences, and the materials help to provide a context for understanding both science concepts and real world connections. So much fascinating content is at the fingertips of learners everywhere, and with computer access and technology becoming more affordable, more information is accessible. The main emphasis is to engage students in the exploration of STEM topics in a real world context and to link education to delivery methods that integrate entertainment value and presentation. The students need opportunities to address misconceptions and to develop concepts in real world situations. “Students come to school with their own ideas, some correct and some not, about almost every topic they are likely to encounter” (Rutherford & Algren, 1990, p. 198 [3]). Learning is the responsibility of the learner, but the teacher guides the student into developing meaning from content material and classroom experience.

In the classroom, constructivist curriculum must be designed so that it reflects real life situations (Bentley, 1995 [4]), and the use of relevant contexts helps to contextualize the concepts, as well as help provide connections across subject areas (Hofstein & Yager, 1982 [5]). Research scientists and mathematicians cross over the barriers between academic disciplines all the time, and seldom operate solely on isolated areas of content, but integrate the use of language, knowledge and process application. STEM programs that emphasize investigation give students the ability to retain facts through critical thinking by working through problems logically and making connections to the real world.

It is important to engage learners in learning situations that effectively integrate their own experiences and familiar materials that students can use to better understand specific concepts, especially in the STEM fields (Eisenkraft, 2003 [6]). For example, students who enjoy skateboarding can be given opportunities to explore the concepts of velocity, acceleration, center of gravity, and moment of inertia. They may also use the skateboard and a local skatepark to investigate topics such as inclined planes, levers, fulcrums and screws. The purpose of this approach is to allow the students to explore meaningful science topics set in the context of something they enjoy doing.

SCIENTIFIC SKATEBOARDING

Dr. Skateboard’s Action Science is a curriculum supplement for middle school (6-8) students that is designed to address content and process objectives in physical science for the Texas Essential Knowledge and Skills (TEKS). The video instruction and twenty classroom activities provide the teacher with a series of instructional tools and content information that can be used to explore and explain the concepts found in the areas of forces, motion, Newton’s Laws of Motion, and simple machines. It is the purpose of this research project to determine what impact Dr. Skateboard’s Action Science has on a sample of Middle School students in the area of physical science knowledge and skills.

Dr. Skateboard’s Action Science maps to the physical science TEKS in which all middle school students need to be engaged. Dr. Skateboard’s Action Science explores scientific concepts in a curriculum that is designed to address both physical science content and process skills. The video instruction focuses on the physical science concepts found in the areas of motion, forces, Newton’s Laws of Motion, and simple machines. The main purpose is to provide an interesting method of engaging students in the exploration of science in a real world context. The overarching theme for Dr.
Skateboard’s Action Science is the appeal of action sports as teaching and learning vehicles for students, teachers, and the community.

Dr. Skateboard’s Action Science is an example of transformative education, a student-centered curriculum supplement built around interesting content linked to specific physic knowledge and skills in science. The videos and classroom materials provide the classroom teacher with an instructional series rich in science and including topics such as centrifugal and centripetal forces, inertia, center of gravity, and momentum. The purpose is to contextualize the classroom process of acquiring critical knowledge, developing proficiency in problem solving, engaging in self-directed learning, and participating in collaborative teams.

The activities and materials are designed for students to interact in small teams, and this sharing within cooperative groups is a fundamental constructivist strategy that allows the teacher to facilitate the learning process. As a student-centered approach, it also helps to develop a common base of experiences on which to help students make connections to content. In the classroom, problem-solving strategies depend on the development of conceptual understandings, and hands-on explorations of simple topics combined with collaborative interactions among learners help to build an understanding of processes and concepts (Apple, 1993 [7]). It is important for educators to not merely regard the learner’s point of view alone as fully complete and significant (Dewey, 1970 [8]), but to guide the students in the analysis and synthesis of content information. The learner is always defining meaning within the context of action and reflection (Brooks & Brooks, 1993 [9]), and the social situations, including discussion, explanations and hands-on experiences, provide the context for knowledge construction.

The video segments themselves do provide action, but also relevant content for the classroom, and complement the activities that teachers can implement in the classroom, and in tandem, can help reinforce the conceptual emphasis in a lesson. For example, the teacher can utilize the portion of the “Newton’s Laws” video that covers the concepts of force, mass and acceleration, which is designed as an effective introduction to the activity “Force Makes a Mass Move”. This brief video segment serves as a hook in order to introduce the activity and additionally as a review for the content covered in class. In that sense, the materials serve both pre-activity and post-activity purposes, and allow the teacher the flexibility to have students explain fundamental physics as well as pursue inquiry extensions. Each activity contains both a teacher section and a student section. The teacher section provides standards alignment information, background knowledge, guiding questions with answers and extensions for student enrichment. The student section contains the classroom science activity, connections to real world examples, explanations of concepts and actual photographs of BMX riders and skateboarders in action.

Action Science is designed to teach fundamental science concepts in physics in an approach that utilizes transformative educational strategies, which help students move from memorizing facts and content to constructing knowledge in meaningful and useful manners. The activities associated with Action Science address both the objectives and enduring knowledge of physical science in content and process skills for both the United States of America (USA) National Science Standards and the Texas Essential Knowledge and Skills (TEKS) state standards.

The materials in Dr. Skateboard’s Action Science were also designed to emphasize inquiry in classroom explorations. As a foundation for discovery, the teacher can use the video segment in the “Simple Machines” episode that relates to fulcrums and levers, and then have the students perform the classroom activity “Skateboards Have Levers and Fulcrums.” After the activity, the teacher may revisit these ideas and then create an extension inquiry exercise for the students to do in teams. The teacher can provide the students with the same materials used in the activity such as rulers, tape, plastic spoons, rubber bands, and modeling clay and challenge the students to design a simple machine made of at least three of the provided that uses a lever and a fulcrum and can propel a small marshmallow the farthest distance.

In making this transition in class, the teacher guides the students towards developing their own ideas and within a given time period, has the students create and test their unique designs. By engaging students in a design competition, there is a spirit of enthusiasm and excitement among the groups. There are also excellent opportunities to develop cooperative group skills and to have students use critical thinking to solve the problem presented. “Students should know what it feels like to be completely absorbed in a problem. They seldom experience this feeling in school” (Bruner, 1962, p. 50 [10]). Finally, the teams of students have to not only launch the marshmallow, but they also have to record the distances, calculate the average distances travelled and identify the lever and fulcrum
within their machine. In this manner, the students have to present their ideas, justify their understandings and support their findings with experimental data.

Another classroom example in the design of the series is the use of the video segment in the “Forces” video that focuses on the concept of center of gravity, which additionally bridges the concepts of gravity and lift. Prior to showing the video segment, the teacher can use open-ended questions with students in order to activate their previous knowledge concerning this content. Sample questions could include, “What do you do when you ride a skateboard or a bicycle?”, “How do you balance on a skateboard or bike?” and “What forces are acting on you as you are trying to ride a bike or skateboard?” Additionally, previously marginalized students who have experience in these activities, but may struggle in science, can become experts in this discussion and contribute greatly to the classroom investigations.

Finally, the teacher should conclude the series of questions by asking, “What is the center of gravity and why is it important?”, and then facilitate the conversation in order to introduce the segment in the “Forces” video that covers gravity, lift and the center of gravity. This approximately 4-minute segment of the video then serves as the engagement to the activity “Flatland BMX and the Center of gravity” in which students create irregular cardboard shapes and determine the object’s center of gravity through a series of step by step procedures. Students exploring a concept should be given opportunities to work with hands-on materials so that they can have experiences that are real and fundamental. Hands-on learning plays a valuable role in the constructivist paradigm, as it is the process of learning by doing (Dewey, 1970 [1]) that is utilized in explorations and experiments.

Next, students modify their shapes either by adding paper clips (which increases the mass) or by cutting off part of some cardboard (which decreases the mass). In turn, they come to see that there is a fundamental relationship between the center of gravity and the mass of an object, and that the center of gravity will move in relation to an increase or a decrease in mass. After the classroom lesson, the teacher can revisit the activity by asking the students to explain their findings and the relationships they discovered. As students explore concepts, they develop a broader understanding of those concepts. When they relate what they are learning, seeing or doing to others, they can begin to see similarities in their understandings, as well as self identify misconceptions they may have about content material (Bybee, 2006 [2]). Finally, there is a list of open-ended questions for students to answer, as well as extensions that they can engage in if there is additional time and motivation to explore these concepts. This entire activity can be done in the timeframe of a normal class period with minimal setup and cleanup, and can provide both teachers and students an interesting alternative to exploring these fundamental physics ideas.

OTHER EXAMPLES OF EDUTAINMENT IN SCIENCE

Another example is the delivery of STEM content in a children’s television show. In mid-September 2011, El Paso PBS-affiliate KCOS-TV began airing a weekday locally-produced children’s educational show (Blast Beyond) that includes a seasoned television host, a three-piece rock band, and a live on-stage audience of children ages 6-9 from a local school. Past episodes are accessible on the KCOS-TV website (http://www.kcostv.org/blastbeyond.html). Sample video of the educational aspects from the show are available online and can be used to emphasize the types of interactions done within an television show entertainment format designed to actively engage young students in educational content. In addition to television, the author has also appeared on a number of other television and radio programs in order to promote edutainment and to demonstrate various concepts in physics using skateboarding.

As an aside, there are many aspects of such engaging education for middle school students that also enhance the work university professors like us more commonly do, including: identifying a compelling “hook” to generate initial engagement for a lesson (whether the lesson will be 5 or 50 minutes long), identifying the main point or essence of a lesson/concept (which helps greatly when one is interviewed by TV or newspaper reporters), identifying ways to make a lesson interactive (i.e., through building in questions asked to the student audience, or questions asked by the show host, having demos, etc.), developing more confidence in having a “plan” for a lesson but also in being able to make on-the-fly adjustments when all the moving parts or background knowledge of the audience is not quite what you thought it would be.
Additionally, large-scale live demonstrations have been utilized in order to engage students in multimedia-enhanced stadium settings, which were recorded and edited in order to produce video content that has been utilized in classroom instruction and to increase student motivation in STEM-related topics. In these events, a team of professional athletes specializing in the areas of skateboarding and BMX were utilized to demonstrate the action scenes that appear throughout the videos, which were then translated into short STEM related videos on concepts such as creativity and imagination integrated with content such as the center of gravity and simple machines. This various members of this edutainment effort, with their extensive experience delivering performances in educational settings, form the backbone of each video, as well as serve as a link to the science content that is taught. The athletes perform highflying maneuvers that demonstrate science concepts, such as the relationships between velocity and acceleration. Without the athletes, the action would not be as complete, and this also is another pathway that invites learners to learn, in that they may not be ultimately attracted to science, but recognize and respect the difficulty of the maneuvers performed in the video. The videos produced from the demonstrations provide participating teachers and students with a series of instructional opportunities and relevant content information that can be used to explore and explain the given content information as well as engage the students in classroom activities.

As part of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEARUP), a five-year program funded by the Department of Education, large live demonstrations were done in arena settings for thousands of area Middle School students. The first attempt at this approach produced an effort in which over 3500 Eighth graders from the Ysleta Independent School District (YISD) in attendance learned more about basic scientific theories tested by several professional skateboarders, BMX riders and an inline skater during GEAR UP National Day on September 17, 2009 in the Don Haskins Center at UTEP. The second attempt at this high scale edutainment with action sports was done on May 3, 2012, at which a team of professional action sports athletes in both the disciplines of BMX and skateboarding performed a live demonstration, which will be done in order to engage local students in explorations of mathematics and science in the context of edutainment. This latest large-scale demonstration utilizing professional BMX and skateboarding athletes was done for approximately 8,000 area middle school students and demonstrated the power of motivation in STEM through edutainment.

CONCLUSION

The use of educational materials contextualized in the form of entertainment has a long history, and has been certainly gaining momentum as delivery methods of content have grown to utilize multimedia and video. The connection of STEM education to real world topics is vital in order to effectively engage students and to provide them with a reason to delve into deeper conceptual understandings. Edutainment, and its implied synthesis of elements of education and entertainment have great potential at the Middle School level in order to serve as a primary motivational and engagement strategy for STEM efforts. Additionally, the potential to reach wider audiences in STEM utilizing edutainment strategies, can help to transform STEM education by integrating both informal and formal learning in ways that increase student interest and provide pathways to stimulate learners to pursue STEM fields academically, and ultimately as professions.

REFERENCES

