
Syracuse University

From the SelectedWorks of Robert Oddy

December, 1974

Reference retrieval based on user induced
dynamic clustering.
Robert N Oddy, Syracuse University

Available at: https://works.bepress.com/robert_oddy1/19/

http://www.syracuse.edu/
https://works.bepress.com/robert_oddy1/
https://works.bepress.com/robert_oddy1/19/

•

•

-·

REFERENCE RETRIEVAL BASED ON
USER INDUCED DYNAMIC CLUSTERING.

by

Robert N Oddy

•

•

REFERENCE RETRIEVAL BASED ON

USER INDUCED DYNAMIC CLUSTERING

Robert N. Oddy

Ph.D. Thesis

University of Newcastle upon Tyne, December 1974

•

•

-·

ACKNOWLEDGMENTS

My chief debt is to Miss E.D.Barraclough, who has

been always ready to discuss the work, contributing many

stimulating ideas, and to provide encouragement. Next,

I should like to thank the staff and graduate students

of the Computing Laboratory; particularly Professor E.S.

Page, who gave me the opportunity to do the work, and

members of the OSTI-supported hledusa on-line information

retrieval project, who made data available for my

experiments.

I wish to thank those members of the staff of the

University Library who have an active interest in library

automation for numerous instructive and provocative

conversations. I have also benefited from contact with

many information and library specialists in other

institutions. I gratefully acknowledge the financial

support that I have received from the Office for Scientific

and Technical Information (OSTI).

My family have been far more patient and encouraging

than I had a right to expect and I am indebted to them all,

particularly my wife and children.

R.N.Oddy

ii

'

•

•

••

ABSTRACT

The problem of mechanically retrieving references to

documents, as a first step to fulfilling the information

need of a researcher, is tackled through the design of an

interactive computer program. A view of reference retriev­

al is presented which embraces the browsing activity. In

fact, browsing is considered important and regarded as

ubiquitous. Thus, for successful retrieval (in many circum­

stances), a device which permits conversation is needed.

Approaches to automatic (delegated) retrieval are surveyed,

as are on-line systems which support interaction. This type

of interaction usually consists of iteration, under the

user's control, in the query formulation process.

A program has been constructed to try out another

approach to man-machine dialogue in this field. The machine

builds a model of the user's interest, and chooses refer­

ences for display according to its current state. The model

is expressed in terms of the program's knowledge of the

literature of the field, namely a network of references and

associated subject descriptors, authors and any other entity

of potential interest. The user need not formulate a query

- the model varies as a consequence of his reactions to

references shown to him. The model can be regarded as a

binary classification induced by the user's messages.

The program has been used experimentally with a small

collection of references and the structured vocabulary from

the kedlars system. A brief account of the program design

methodology is also given •

iii

•

•

•

•

CONT.t<.;HTS

Chapter 1.

Chapter 2.

IHTRODUCTION

R:DF _SR~NCE RETRIEVAL

1 •

1 • 1

2.

2.1

The problem 16

Ignorance and uncertainty

Towards solutions 22

Indexing 23

2.2 Searching 28

17

2.2.1 Automation of delegated searching 31

2.2.2 Semantics 34
2.3 Associations and clusters 37

2.4

2.4.1

2.5
3.

Interaction 44
An example: l.Tedusa

Feedback 57

Summary 62

49

Chapter 3. INFOREATION HEURISTICS

1 •

2 •

Dialogues for reference retrieval

hlodelling the user's interest 68

The knowledge base 68

Retrieval by association 77

~odel of context 79

65

2.1

2.2

2.3

).

3.1

Creation and maintenance of the model

Using the model 81

3.1.1 Document similarity

3.2 Displays and messages

3.3 ~odifying the model

4. A search (example)

5. Summary 108

88

90

94
101

Chapter 4. FUNCTIONAL DESCRIPTION OF THOh~S

1 •

1 • 1

1.2
2 •

The "data base" 109

Labels 110

Lines in the supergraph

The model 113

iv

112

80

1

16

64

109

•

•

••

3. Program function 116

3.1 The user's stateroent: GET U8ER kESSAGE 118

3.2 IlH'LUElWE STATE OF LODBL 12 2

3. 2.1
3.2.2

Monitoring performance: COMPUTE_SCORE 122
Rerrjoving points from the context c .:tph:
PRUNE CONTE~T 123

3.2.3 Adding points to the context graph:

ADD TO COJ.~TEXT 1 2 4

3.2.4 Incorporating textual requests:

FIND NODES 125
3.2.5 Establishing coherence:

UNIFY CONTEXT GRAPH 126
3.3 RESPOND TO USER 128

3.3.1 Using the context: PICK_A_DOCUljfENT 130
3.3.2 DISPLAY SI11aLAR 131
3.3.3 REVIEW COURSE 134
3.4
4.

Other features of the program

Summary 137

136

Chapter 5. DATA RECOGNITION AN.O FILE ORGANIZATION 139

1 •
1 • 1
1 • 1 • 1

~atching user's requests in the data base 140
Partitioning the bibliographic labels 143
Proper name compression 146

1 • 1 • 2
1 • 2
2.

2.1
2.2

3.

Phrase compression 149
The matching process 153
File organization 156
File processing within MTS 164
Partition organization 165
Summary 172

Chapter 6. IL1?LEJ\CENTATION

1 •

2.
2. 1

2.2

2.3
2.4

3.

Programming languages 174
The structure of the program 177
The "top-down" approach in use

Data structures 190
Implementation of data structures

Use of storage 194

179

kanagement and documentation of the

programming 195
4. Summary 198

v

174

192

Chapter 7. P 1~RF'ORJ.'JdWE 01" 'l'HE PROGRAM 200

1 • General remarks 200

2. The test collection 205

• 3. The trials 211

4. Comparison with Medusa 222

5. Further experiments 227

Chapter 8. CONCLUDING RE~~RKS 233

1 • The problem of scale 233

2. A summing-up 240

BIBLIOGRAPHY 244

•

-·

•

•

-·

Chapter 1

INTRODUCTION

Retrieving references to books, papers, reports,

and all the other forms of documentation ~~ part of

the job of a library system: prerequisite, in fact, to

delivering the actual books, or documents, to the

reader. It is a task that may be performed, partly or

in whole, by the library user himself, and its nature

will depend upon the requirement which prompted him to

go to the library, and the type of tools provided for

this purpose. We shall be discussing such a tool - an

interactive computer program - in the light of our view

of the underlying problems of reference retrieval.

Research workers• requirements for information

vary, according to the stage that their work has

reached. Sometimes one needs factual information, such

as is assembled in reference handbooks. At other times,

in contrast, one is nagged by an ill-defined need to

find stimulation either from literature or from

colleagues. There is a continuous spectrum of require­

ments between these two. The present work is concerned

with needs that have an element of ill-definition, and

that, perhaps, includes any that are not at the "factual"

extreme of the spectrum. We felt that it was important

to try to come to grips with the problem of serving a

library user who is not able to formulate a precise

query, and yet will recognize what he has been looking

for when he sees it. A man, left to his own devices

among the bookshelves, accomplishes searches of this

1

sort by browsing. Lancaster(1968) describes a type of

search which undoubtedly occurs frequently in

libraries:

"Personal searches tend to be browsi'' searches.
• • • Having found some promising references,
[the seeker] locates the documents cited and, from
the text and bibliographies of these, may be led
to other sources or made aware of additional
subject labels that might usefully be consulted in
the tools with which he began the search. During
this whole process, the 'information need' tends
to be modified, to a greater or lesser extent, by
what is found during the search, and the final set
of documents, accepted by the searcher as
'useful' in relation to his requirements, may be
somewhat different in character from the 'kinds'
of documents he visualized as useful when the
search commenced." - p181.

It seems that the notion of information in this

context is extremely cou1plica ted. The concept of

information has been discussed by Belkin(1974) and

Erookes(1974), and they require that a suitable defin-

ition should take account of the state of the recipi~

ent's knowledge. It is because the information

obtained (somehow) from a document alters the mental

state of the reader, that he can conduct thi type of

browse described above. For the same reason, the

"information content" of a book is very likely to differ

from one reader to another. For the time being, there-

fore, it would seem that we need to read books and

other documents to obtain certain types of information;

and that fact retrieval from some kind of information

machine is not sufficient. In designing a mechanical

aid to literature searching, we should take the view

expressed by the eminent chemist, Lord Todd(1967):

"We must surely make the maximum use of computers
and associated automation, but if we carry it to
the point where the scientist no longer browses

•

•

•

•

-·

in the literature without first of all forriJUlat­
ing questions then I beleive we shall do harm to
science." - p9.

For some requirements - and they are not uncommon -

the ideal search strategy would appear to consist of a

visit to the shelves, and a perusal of the books

themselves. The difficulty, of course, is in determin­

ing an arrangement of the books which assists the user.

The arrangement should bring together literature on

similar topics but, for the purposes of browsing, it

need not take account of the fine detail in the subject

matter. Hierarchical classifications, such as that of

Dewey and the Universal Decimal Classification (UDC),

are frequently used by libraries to generate a shelf

order for the material. However, searching in the

shelves is generally regarded as myopic, except in the

smallest libraries, even though it is very often

effective. In a large library, books which are

potentially useful to one reader may be widely separ-

ated spacially, and the separation of the short, but

very important, documents published in the many period-

icals devoted to any particula.r subject is much more

pronounced. Hence the need for reference retrieval.

1he crucial characteristic of a reference retrieval

device is that it aims to help the user to ffiake choices

frorn among unseen documentf.. The searcher wants a

document for the (subjective) information it contains,

so we have the very difficult problem of finding a

proxy for the information, which must be very much

smaller s~d more manipulable than the document itself.

We need a symbolic description of the document - there

is no question of it being regarded as ~r alternative

form of the information contained in the docurnent, in

the sense of information that we have in ~ind here.

The most that we should aim for, at present, is a

substitute which the user will interpret as meaning

"this document may contain inforri1ation I want". This

is what class numbers (Dewey, UDC, Library of Congress,

for example) and sets of keywords do for a document.

With a good descriptor language, documents which

are relevant to a searcher's problem will have descr­

iptions which he recognizes as being promising. The

emphasis is on recognition: we are not saying that a

query can be formulated in advance by the searcher to

match those same descriptions. It seems reasonable to

assume that there will be sor:1e ~'imilari ty between the

•

descriptions of documents which are relevant to the •

same query. But the nature of the similarity may be

very subtle and hard to recognize by anybody other than

the enquirer. In any case, conventional query formul­

ation attempts to predict the descriptions of the

required documents. These are the considerations that

led the present author to the design of a reference

retrieval system which offers no facilities for query

formulation, in the usual sense, and proceeds on the

basis of the user's reaction to references and docuillent

descriptions which it shows him.

There is another important dimension to the

program design: it is the concept of dialogue used.

Frequently, an enquirer can satisfy his information

needs by talking to somebody with knowledge of an

•

•

-·

appropriate subject. Telling him the broad area in

which the problem to be solved lies, is relatively easy.

Their dialogue (in which, by definition, Aach

participates) refines the region of enquiry, until the

subject expert understands the other's problem in his

own terms. He may then be able to offer information

which may lead to a solution. The dialogue is not

always a simple question-and-answer interchaHge. The

subject expert may miss the point and give a solution

to the wrong problem; then the enquirer must ~ring him

back on course - he must learn through conversation in

what terms he should communicate his need. This is the

approach adopted for our reference retrieval program.

A computer program necessarily has a very limited view

of the world; that is, the ~terms" in which it can

represent the user's problem area are rather primitive •

This program's ~knowledge~ base is a richly connected

network of references, subject terms and authors'

names. It forms a model of the searcher's interest,

derived from the network and continuously modified in

the light of his reactions to references, which have

been chosen for display according to the state of the

model.

The program, named Thomas, was written for the

IBM 360/67 at the University of Newcastle upon Tyne,

and designed to communicate with a user at an IBM 2260

CRT character display terminal. The bibliographic data

was obtained from the Medusa project in the Computing

Laboratory of the University, reorganized into the

network structure and accessed by the program from disk

storage. The literature covered is in the fic:,1:1s of

medicine and biochemistry, and records originated at

the US National Library of Medicine as Medlars

(Medical Literature Analysis and Retriev~L System)

records. The indexing vocabulary in Medlars is

strictly controlled, and each subject term in our

network either belongs to that vocabulary, or is a

synonym added to the Medusa system by the Newcastle

team.

~e now give a sample dialogue conducted by a

medical research worker - an anaesthetist. This

searcher was of the opinion that very few articles had

been written on his precise topic. However, we had

ensured that the test file contained references in his

broader field of interest.

~e shall indicate the lines supplied by the

searcher by preceding them with the symbol ~ • This

"start" symbol is used on the terminal to tell the user

that he is required to type his next input, but it does

not remain on the screen. A slight departure from the

genuine computer displays is made in the interests of

legibility in this printed form: v1e use fhe lovier case

alphabet here, whereas the IB~ 2260 terminals are

without those characters.

•

•

·-

•

•

-·

------------·----------------.

THOEAS, 1'HE REFERElWE RETIUEVAL 1)ROGRAJ;;

Help can be obtained whenever the pre,,. ·am has
displayed the start symbol by typing 1 ?'
i~nediately after it.

Please give a short name for the search:
~Alv.Resp.

Start searching:
~pulmonary alveoli

The user has named the search, so that pr·inted

output will be identifiable. He has then typed the term

for a subject related to his need. The program's model

of the user's interest is centred on the subject key-

word 'pulmonary alveoli', and includes a few references,

one of which is (carefully) chosen for immediate display:

Influence of fasting on blood gas tension, pH,
and related values in dogs.; Pickrell et al, Am
J Vet Res,34,805-8,Jun 73
T.--y:-A.Pickrell, 2. J.L.I.1auderly, 3. B.A.
IiTuggenburg, 4. U.C.Luft, 5. animal experiments,
6. animal feed, 7. arteries, 8. blood, 9. body
temperature, 10. carbon dioxide, 11. dogs, 12.
fasting, 13. hemoglobin, 14. hydroeen-ion
concentration, 15. irrisation, 16. lung, 17.
oxygen, 18. pulmonary alveoli, 19. r~spiration,
20. time factors

~?

The searcher's request for assistance is answered by a

display suited to this particular part of the

dialogue:

--·---··------~

There can be three parts to your stateuwnt (all
optional):

1. Your reaction to the reference just ;:;:}1own
(if any). This must come first:

"Yes" or "Ho"
2. A selection from the names (authors) or

terms shown, by nu~ilber. A "not" in the s ta temen t
signifies rejection of all numbers that follow
it.

3. New names or terms (terms preferably in
quotes).

The
separated
Examples:

elements of the statement should be
by commas.

'posture', 'circulatory system'
Yes, not 11,12
No, 7,13,4
'heart rate•
Yes ·

Press enter key when you are ready to proceed~

~hen he has finished with the instructions, the user

returns to the dialogue:

• • • 10. carbon dioxide, 11 • dogs, 12.
fasting, 13. hemoglobin, 14. hydrogen-ion
concentration, 15. irrigation, 16. lung, 17.
oxygen, 18. pulmonary alveoli, 19. respiration,
20. time factors

~?
f;.No, 10,17,19,20

The reference is not what he wants, although it has

interesting aspects - carbon dioxide, oxygen,

respiration and time factors. The model changes, and a

new reference is displayed:

•

•

·-

•

•

-·

The arterial-alveolar nitrous oxide difference:
a measure of ventilation-perfusion mirmatch
during anesthesia.; Markello et al, Anesth Analg
(Cleve),52,347-50,May-Jun 73
1. R.~arkello, 2. K.Schuder, 3. D.Schrader, 4. E.
~hite, 5. aged, 6. anesthesia, inhalation, 7.
blood, 8. carbon dioxide, 9. cardiac output, 10.
human, 11. hydrogen-ion concentration, 12.
methods, 13. middle age, 14. nitrous oxide, 15.
oxygen, 16. partial pressure, 17. pulmonary
alveoli, 18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio

t> Yes

The enquirer was pleased to see this reference. It

appeared to be an authoritative account of a different

school of thinking on his own problem. The effect of

his response is to enrich the model, drawing on the

"knowledge" base, in the region of this document •

A Positive E'1.d-Expiratory Pressure - Hasal-Assist
Device (PEEP-NAD) for treatment of respiratory
distress syndro1ae.; Tummons, Anesthesiology, 38,
592-5,Jun 73
1. J.L.Tum~ons, 2. blood, 3. carbon dioxide, 4.
human, 5. hydrogen-ion concentration, 6. infant,
newborn, 7. masks, 8. methods, 9. nose, 10.
oxygen, 11. oxygen inhalation therapy, 12.
positive-pressure respiration, 13. respiration,
14. respiratory distress syndrome

~Yes, 13, not 6

He has mentioned 'respiration' for the second time now,

but that makes no difference. l~otice that the term that

he first thought of - 'pulmonary alveoli' - is absent

from this document's description.

----------------------------------·------------

Effects of continuous negative pressure on lung
mechanics in idiopathic respiratory distress

·syndrome.; Baucalari et al, Pediatric2,57,485-
93,l/ar 73 -- ----
1. E.Baucalari, 2. O.L.Garcia, 3. ~.J.Jesse, 4.
bicarbonates, 5. carbon dioxide, 6. esophagus,
7. female, 8. gestational ase, 9. human, 10.
hydrogen-ion concentration, 11. infant, newborn,
12. lung compliance, 13. male, 14. methods, 15.
oxygen, 16. partial pressure, 17. pulmonary
alveoli, 18. respiration, 19. respiration,
artificial, 20. respiratory distress syndrome,
21. ventilation-perfusion ratio, 22. vital
capacity

., No, 19

This reference is judged not relevant, but the user

makes it known that artificial respiration interests

him. The term 'infant, newborn' (no.11) is present,

implying that the reference has been chosen for

display inspite of the fact that one of its descriptors

has previously been explicitly rejected by the user.

•

The assurr.ption made about the user'::: intention when he •

says "not X" is that he does not want references to be

selected on the basis of association with X, rather

than th2.t he does not wish to see anything to do with

------------------------- ·--------------------

Decrease in pulmonary capacity durine lipid
infusion in healthy men.; Sundstrom et al, J
tppl ?hysiol,34,816-20,Jun 73 --- -

• 0.~undstrom, 2. C.W.Zauner, 3. M.Arborelius,
4. adult, 5. carbon 1,1onoxide, 6. dietary fats,
7. human, 8. hyperlipemia, ~. male, 10. middle
age, 11. oils, 12. oxygen, 13. parental feeding,
14. pulmonary alveoli, 15. pulmonary diffusing
capacity, 16. respiration, 17. soy beans, 18.
triglycerides, 19. ventilation-perfusion ratio

~ [no reaction - user enters a null lin~

•

•

-·

1'he searcher prefers not to cornmi t hinsclf to a

judge;uent on this reference. It is interestinc:,

though not really pertinent to his presenT require-

went. '.L'he model is not affected very I!luch by this

type of response: the user is saying, in effect, "no

comment, give me another".

-------·-----·-·-----

Cardiovascular function after pulwonary surgery.;
Wronne, Int Anesthesiol Clin,10,27-3~,~inter 7~
1. B.'l/ron:De, 2. adult, 3. aged, 4. arrhyth;:-:ia,
5. blood pressure, 6. blood volume, 7. brccchial
neoplasms, 8. cardiac output, 9. cardiovascvl~r
system, 10. human, 11. lung, 12. middle age,
13. postoperative complications

..,No

Changes of venous admixture with inspired oxygen
in hyaline r,;embrane disease and foetal aspiration
pneumonia.; Corbet et al, Anst Paediatr J,9,25-
30,Feb 73 -- --- - -
1. A.J.Corbet, 2. E.D.Eurnard, 3. anoxemia, 4 •
fetal diseases, 5. human, 6. hyaline membrane
disease, 7. infant, newborn, 8. oxygen, 9.
pneumonia, aspiration, 10. pregnancy, 11.
pulmonary alveoli, 12. pulmonary circulation, 13.
respiration, 14. ventilation-perfusion ratio

~No
'----·---------------------···---··----·-------·---------)

~---------------------------------·--··--·-···-

The anti-atelectasis factor of the lung. I;
Lachmann et al, Z Erkr A tmungson;ane, 137,267-87,
Feb 73
1. B.Lachmann, 2 • .K.',Hnsel, 3. H.R.eutgen, 4.
animal experiments, 5. carbon dioxide, 6. extra­
corporeal circulation, 7. human, 8. lung, 9. lung
compliance, 10. 111ice, 11. microscopy, electron,
scanning, 12. models, theoretical, 13. pulmonary
alveoli, 14. pulmonary embolism, 15. pulmonary
surfactant, 16. rats, 17. respiration, 18.
respiration, artificial, 19. review, 20. surface
tension, 21. vagotomy, 22. ventilation-perfusion
ratio, 23. work of breathing

l>Yes, not 11

~he dialocue continued until a further 15 refernrceE

had been displayed, as the user was obviously enjoying

it, but no more relevant ones were found. We shall not

follow the search in detail through to t:-;•,: point at

which the user felt that he had seen all that the

proeram had to offer. Before leaving the example, let

us jump forward a few steps in the dialo~ue. The

situation is that the user has rejected several

references in a row and the program, which measures its

own performance in the task of extracting favo :.)·able

reactions from the user, now makes an attempt to get

back on course. It shows him again a reference that

he has previously judbed relevant:

We are not doing so well now. You may already
have the important references.
Please reconsider this document:

A Positive End-Expiratory .Pressure - Hasal-Assist
Device (PEEP-NAD) for treatment of respiratory
distress syndrome.; Tummons, .Anesthesiology,38,
592-5,Jun 73
1. J.L.Tummons, 2. blood, . . .

14. respiratory distress syndrome

l ~ Ho

~ow, this judgement is a complete reversal of the

earlier one, so the program has not succeeded in its

course correction. The next display is:

•
:l

1.1

•

•

-·

------------------------ ----------------------~

We are not making progress.
Please reconsider this document:

The &rterial-alveolar nitrous oxide dllference:
a measure of ventilation-perfusion mismatch
during anesthesia.; Uarkello et al, Anesth Analg
(Cleve), 52,34 7-50, I1iay-Jun 73 - - -
1. H.~arkello, 2. R.Schuder, •••

•

18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio

l>Yes, 1, not 19,20
1---------------------------------------· -- -------

This was still the most important reference seen.

The user had noted that the term 'time factors' was

attached to several of the references, and had a wide

variety of meanings, so he now stated that he was no

longer interested in it. The response enabled the

program to display a few more new references on topics

in anaesthetics.

Naturally there are many aspects of the program

which are not illustrated in the dialoglle above.

Nevertheless, it should give the reader an impression

of the simplicity of dialogues with proGram Thomas.

It can be seen that the program is not suitable in

itself for large-scale, exhaustive literature

searches. Even for such req_uire:nents, however, it may

be a useful tool for getting a search ~Dderway.

Finding a few references will help the searcher to

decide what he is looking for, and should also provide

a lead-in to the literature through chains of

citations.

A full description of the procram cor;;mences in

Chapter 3, and occupies three chapters. Firstly,

there is an account and discussion of the desien,

which attelfJpts to explain why the program is the v:ay it •

is. This is followed, in Chapter 4, by a more formal

description, or specification, of the important features

of the data base and program. Methods of recognizing

subject terms, titles or names requested by the

searcher, and the way in w~ich the data base is

organized in storage are matters that have rec2ived no

mention so far in this introduction to the work. They

are dealt with in Chapter 5. The process of recogniz­

ing user-supplied data is that of finding the record

in the data base which best matches tl1at data.

Chapter 6 is something of a digression. It was

considered worthwhile to include an account of the

methodology of desit:;n and programrr!ing used to imple-

ment Thomas. The principles of top-down, structured

programming were applie~ to the construction of the

software in a low-level language. The method was

s:1ccessful for experimental programming in an

application field which does not fit conveniently

within the scope of any established progra~ming

language.

In Chapter 7, we discuss the retrieval perform-

ance of the program and present the results of the

trial searches. The evaluation of an on-line

information retrieval system is difficult. One must

decide whether to separate, for the purposes of

measurement, the machine's contribution from the

•

•

•

•

user's. If we do not, then we are regarding the user

as part of the system, and the evaluation must take into

account his aims and performance. It has not been

possible to observe a significant number of genuine

searches, conducted by real users, within this project.

Eefore we embark on the material specific to our

own work, however, we present a view of the subject of

reference retrieval - the problems and some of the

techniques used to tackle them. Chapt~r 2 is devoted

to this •

1 •

Chapter 2

REFERENCE RETRIEVAL

The problem

Documentation, or "inforwation science", is not a

discipline in its own right, but rather a problem

oriented field. Reference retrieval is one of the

problems in its domain: how can an individual, with a

desire to inform himself by reading, be aided in the

selection of satisfying material from a large document

collection? It may not be at all easy to reco6nize,

objectively, a good solution (Kunz & Rittel,1972).

From the enquirer's point of view, a retrieval device

should not waste his time by presenting items that are

not to the point, and it should not withhold items

which would be influential in his current activities.

Several disciplines and technologies have been

brouGht to bear upon the problem, either in attempts

to understand it or to provide workable solutions:

various branches of mathematics, including loeic (e.g.

Fairthorne 1961, N~edham 1965, Hillman 1964, Ear-Hillel

1964); lincuistics lreviews by ~ontgomery 1972 and Kay

& Sparck Jones 1971, for example); psychology (e.g.

Farradane 1967, Miller 1968, Treu 1971); engineering in

various forms, including computer, communications and

optical hardware (e.g. Overhage & Reintjes 1974),

programming techniques and data organization (e.g.

Salton 1968), and systems engineering (e.g. Vickery 1973,

Kraft 1973). There are as many statements of the problem

of reference retrieval, as approaches to the topic. ~e

•

•

•

•

-·

shall now try to tive an expression of the problem

which is more :;-)recise tand manipulable) than that given

above. It is based on the arguments cone~: ··nine the

classification of dynamic collections given by

Fairthorne\1956 and 1958).

1.1 Ignorance and uncertainty

Fairthorne brought Boolean algebraic models of the

retrieval process (from growing collections) into dis­

repute by pointing out that the principle of the

"excluded middle" is violated in any realistic classif­

ication. In classical sentence logic, the principle of

the excluded middle is that, for any proposition, p,

pV ~P ti.e. p or not p) is a tautology. In other

words, a proposition, such as "document d belongs to

class A'', is certainly either true or false. In reality,

a document (or its reference) may have been marked in

such a way that 11 the document belongs to class A" is

known to te true, or it may have a mark which tells us

that it does not belong to class A, or we lliay be in

ignorance about its status as regards class A. ~hen

required tc retrieve documents in class A, a system can

find all known to belong to A and either include or

exclude those about which it is really ignorant. If it

includes them it is said (in Fairthorne's terminology)

to be working in the all-but-not-only mode, otherwise

it is in the only-but-not-all mode.

A system of logic, founded by Brouwer, has been

developed (Heyting,1956J which rejects the principle

of the excluded middle. Perhaps the most meaningful

name for the subject, from our point of view, is

"constructivism". Fairthorne's and Hillman's reason

lHillman,1968) for wishing to weaken the Jo~ical model

of retrieval in this way was that Boolean algebra

"serves to prescribe decision operations only for those

collections in which the complement of any set always

exists and is, furthermore, describable."(E.illrnan,1<;J68,

p221). The need for description, or the specification

of a construction, leads to problems when dealing with

infinite sets, unless the excluded middle is rejected.

We shall make limited use of these ideas; they just help

us to discuss the problem of reference retrieval. It is

difficult to view Brouwerian logic as a prescription for

a system.

A document collection is not an infinite set, but

the combination of documents and users as handled by an

effective retrieval system cannot realistically be

considered "closed". The ideal response to any partic­

ular query miGht be any of the subsets of the document

collection, and normally the collection will be growing

and the users changing. Figure 1 represents the

situation at any particular time with respect to a class

of docun.ents, named A. C stands for the collection,

and should not be thou~ht of as necessarily static.

The set K contains all documents which we know to belong

to A, and the set N contains all documents which we

know uo not belong to A. Our (or the retrieval system's)

knowledge is that which is derivable from the marks

assigned to documents, by classifiers or indexers for

exrunple. Let us use the symbol to denote the

•

•

·-

•

•

•

C:
N: ----/ ' / \

I

Q) A: I

I K:
\

' j /
' , ---

Figure 1 •

ordinary Boolean complement; in this case

- def
X = C - X .

X is not necessarily constructible.

Our ignorance of the collection with respect to

class A is (K UN). This set contains, for examples

items that have not been classified, or have been

classified wrongly, or have not been indexed

sufficiently exhaustively for a decision to be made

about their inclusion in A, the class required by the

searcher. K and N are the only sets in the picture

which are well defined, but they are artificial: what

we wish to identify and retrieve is A. The problem of

a retrieval system is to make either K or N, or both,

converge to A •

To go into the problem further, we need to know

something about the nature of the searche:;.~' s certainty

that K s A or that N n A is erupty. First of all

we should dismiss the type of search (mor~ likely to

be done by a librarian than a library customer) which

defines A to be that set of documents bearing some

particular mark, say 611 ·34. The searcher describes K

in the same way, and quite obviously A and K are co­

extensive; there is no problem. It is quite another

matter if the searcher defines A to be the set of

documents dealing with what he understands by the word

"intestines", say. If he accepts that the classifier

or indexer attaches to the word 11 intestines 11 a meaning

which is at least subsumed by his own understanding,

then he can define K as the set of documents which have

been assigned the index term INTESTINES, or the Dewey

class mark 611·34, knowing that Kc A (having

forfeited his right to deny it). He does not know

whether K = A. If he accepts that all the Dewey

numbers beginning with 611•34 are also used to classify

documents dealing with the subject as he understands it,

he can lay down a rule for constructing a larger K c A.

Now, although there must be some overlap in two

individuals' understanding of words, for verbal commun­

ication between them to be possible, the assumptions we

have made above are too strong to be plausible. ·As a

result, we have only accounted for ignorance of the

menbership of some documents in the sought-after class,

A. Factors such as lack of exhaustivity in indexing

may cause some documents to be undetectable in a search

for class A. If we make a weaker assumption about the

•

•

·-

•

•

••

relationship between the ffieanings attached to a word

by two individuals (the searcher, and the classifier

interpreting the classification syste1n), we can no

longer assume that the searcher knows that his fo~~~l-

ation produces a K that is entirely contained in A.

We then have uncertainty tl1at members of K are also in

A; and, similarly, that members of N are not in A. The

picture now looks like figure 2. K and N are still the

C:

---/

/
I

A: I

I
\

' ' ,

Figure 2.

well defined sets and are therefore still disjoint.

However, if we retrieve K we no longer get ''only but not

all'', and if we retrieve N we no longer get "all but not

only''· Fundamentally, however, the problem is still the

same: atte1upt to bring eit~er K or N into coincidence

with A.

We have been very vague about the class A. It has

been defined as the set of documents being sought by a

~articular user, and it has been noted that it might be

any member of the power set of C, the document collect­

ion. The concept of relevance is clearly involved here,

and the debate in the literature on that topic is by no

means concluded (for recent contributions, see Kemp

1~74, Wilson 1973, Weiler 1973, D.J.Foskett 1~72). So,

for the time being, we must remain vague about A: that

is why Erouwerian logic was introduced into the present

discussion. But we can say a little more about it.

The class A is a maximal set of documents, all of which

the searcher will cohsider pertinent. It is n~t

necessarily unique - the composition of the set may

depend upon the order in which the searcher is present­

ed with the references. It is maximal in that an enqu-

irer will stop searching when his need for information

is satisfied. Both of these aspects are related to the

knowledge of the searcher at the beginning of the

retrieval process, and the changes it undergoes during

the search. Attempts to formalize the relationship

between information and knowledge are being made by,

for instance, Brookes(1974) and Belkin(1974).

2. Towards solutions

~e have expressed the problem in terms of the

necessity of specifying either a set K of documents

"known" to be contained in A, the set which the searcher

is after, or a set N "known" to contain A. To introduce

the confusion that exists in real reference retrieval

systems, we have pointed out that there is some degree

of uncertainty in our knowledge that K ~A or A~ N.

•

•

In practice, if we insist on a high degree of certainty, ~-

•

•

then K is usually very small and N is very large.

The two most widely used measures of retrieval

perform&nce are precision, the proportion of r~trieved

references that are relevant, and recall, the

proportion of relevant references in the collection

that are retrieved. If the searcher uses a fairly

certain definition for K, he may miss alot (low

recall), but he will find little that is not relevant,

i.e. he should get high precision. If, on the other

hand, he is prepared to use a K which is less certain,

he may be able to reduce his "ignorance" and thus

obtain higher recall, but the uncertainty tends to

reduce precision. Thus, there is a tendency for recall

and precision to be inversely related, though this

statement should be treated with caution (Cleverdon,

1972). We have discussed the isolated search. A

system's performance is peculiar to the search and

depends upon the way the system's features relate to the

particular A sought.

The important features of a reference retrieval

SJstem, in the context of the present discussion are

(i) the indexing language, which places ultimate limits

on the definitions that can be given far the set,

K, and

(ii) the searching facilities, which determine how

much of the potential power of the indexing

language is usable.

2 .1 Indexing

A detailed discussion of indexing is not within the

scope of this thesis. The topic is given extensive

coverage in A.C.Foskett(1971), L3ncaster(1972) and

Vickery(1973). L:::lncc.ster(1968) describee "subject

indexing as a two-step operation:

1. Deciding what a document is about (i.e. its
subject matter);

2. Translating this conceptual analysis into index
terms which act as shorthand symbols, or labels,
Tor the subject matter of the document." - p3.

He points out that the interests of the intended users

should influence the indexing. The symbols are taken,

traditionally, from the vocabulary of an indexing

language, which often also makes explicit a set of

relationships between the symbols. Most British

academic libraries use a "decimal classification" (e.g.

UDC - British Standards Institution,1963), in which the

vocabulary is strictly controlled and the relationships

are implicit in the numerical symbols used. Further

digits are added to a symbol for lower levels in the

hierarchy. Other indexing schemes use words and

phrases which occur in the nc.tural discourse concer,ing

the subjects represented in the collection. The vocab-

ulary may be controll~d by the use of a thesaurus,

which will c.lso give relationships between entries,

such as "broader term", "narrower term" and cross-

-references. Some vocabularies are virtually uncontrol-

led: ter~s are taken from the titles, abstracts and even

texts of documents in the collection. It is not easy

to set up relationships between terms in such systems.

K.P.Jones(1971) gives an interesting discussion of

relationships in thesauri.

Another dichotomy in indexing techniques is the one

•

•

••

•

•

••

between the "pre-coordinate" and "post-coordinate 11

types - the dividing line is not very clear. In a

system employing pre-coordination, each doc~ment is

indexed by few terms, standing for complex concepts.'

To retrieve a document, a search formulation must specify

the terms for component concepts in recognizably the same

combination as was used to index it. In a post­

-coordinate system, more terms for si1npler concepts are

posted to each document and various combinations of

them are coordinated at retrieval time, thus civing the

searcher more versatility at the cost of greater scope

for ambiguity ("false coordination" in the jargon of

indexing). We have skated over the very involved

topic of classification and indexing, giving brief,

uncritical attention in very general terms to some of

the major themes. A substantial experiment to evaluate

the various com~only used methods relative to each other

was done by Cleverdon et al(1966), and another, more

recently, by Keen(1973).

Using the picture of the retrieval problem given

in figure 2, we can now point out what various possible

attributes of an indexing method can do to performance,

i.e. to increase either the recall or the precision

ratio.

Firstly, recall devices. These reduce the level

of ignorance in the system. For any particular search,

they allow us to specify a larger set, K, of documents

which we can expect to lie within the required class,

A, with some degree of certainty •

(i) Exhaustive indexing (discussed recently from the

statistical point of view by Gparck Joncs,1973b).

Terms for all topics covered in the docn,uent

should be included in its dcrcription: the indexer

does not know for certain wLat ;~,spect of a

document the searcher will find iwportant.

(ii) Richly connected thesaurus. If, in determining

K, we are to be able to infer from a search

prescription, that a document which is not indexed

with terms appearing in the prescription is, never-

theless, in A, then we shall need connections

between terms in a thesaurus.

(iii) Specific indexing. Indexers are usually instructed

to use the most specific term available to describe

a topic (e.g. MEDLARS, see Lancaster,1~69). This

allows inferences based on class inclusion to be

made.

•

Now we move on to .Precision devices. Uncertainty •

in the definition of K should be reduced by these.

(i) Choice of symbols. Vocabulary should be well

accepted by practitioners in the subject field

(Lancaster,1972, pp27-37).

(ii) Qualification of various uses of a word, so that

meanings are not confounded.

(iii) Specific indexing (see iii, above). Needed because

specific terms cannot be deduced from broader ones.

liv) Term weighting (hlaron & Kuhns 1960, Sparck Jones

1973, Salton & Yang 1973, Robertson 1974J.

lfumerical weights associated with the terms

assigned to a document can tell us which are the

important topics covered or which terms are more ~·

•

•

••

discriminating in the collection as a WJ10Je.

(The zoologist who is interested in rats per se

will not wish to encounter every ey~;crirr;ent tJElt

has used rats. A system which enabled him to

attach hic,h weighting to the term HAT would give

him better precision).

(v) Pre-coordination. This involves the indExer in

specifying the rela.tionsltips between concepts as

expressed in the document. False coordination

during search is reduced. Flexibility at the

search stage is the main problem. Some sort of

formal syntax must be used (e.g. Farradane et al --
1973, Austin 19'74, Coates 1:173).

In comparison with the above, it is interesting to

review Lancaster's list of "principle causes of sec;rch

failure in information retrieval systems'' (Lancaster &

Fayan,1973, p141). His categorization is based on

detailed analysis of failures during the MEDLARS eval­

uation (lancaster,1'::!69). Slight changes in terminology

have been made for convenience.

Recall failures Precision failures

Index language Lack of specific ~ack of specific

terms terms

Inadequate thes- Defects in hierarchy

aurus structure False coordinations

Pre-coordination Incorrect pre-

causing »over- -coordination

preciseness"

Indexing Lack of Exhaustive indexing,

specificity causing retrieval

Searcbing

User/System

interface

Lack of

exhaustivity

Omission of

important

concepts

Use of inappropr­

iate terms

Failure to cover

all reasonable

approaches to

retrieval

Strategy too

exhaustive

Strategy too

specific

Request more

specific than

actual inform­

ation need

on periplleral

topics

Use of inappropr­

iate terws

Strategy not

sufficiently

exhausti ';e

Strategy not

sufficiently

specific

Use of inappropr­

iate terms

Defects in

search logic

Request more

general than

actu2l inform­

ation need

The failures listed beside "se<: .. rching" and ''user/system

interface" describe the ways in wnich a user can go

wrong in defining K (or N, if he is searching by

rejection).

2.2 Searching

Indexing or classification - the process of

characterizinG documents for reference retrieval - is

the crucial operation in a bibliographic information

•

•

•••

•

•

-·

system. The preceding account cives sowe of the

general notions and, because search techniques <Jre so

dependent on indexing, this section will quite frequent­

ly digress into the topic of indexing. A search

strategy takes advantage of the available docuu1ent

descriptions with the object of satisfying the need that

prompted the user to search the literature. The

strategy used will depend on the type of need and the

amount of effort available for the search as well as the

theoretical possibilities afforded by the indexing.

When all searching was done manually, it was

generally considered that users of libraries would be

served best by a hierarchically classified collection.

By choosing, at each level of the hierarchy, the class

that best matches the field of interest, the searcher

can home in-on a small set of potentially useful

documents without even considering most topics covered

by the collection. However, no hierarchical classific­

ation can suit all searches, and there will be occasions

when it is necessary to extend the search across many

branches of the tree. An interesting discussion on

the nature of classification for retrieval is given by

Sparck Jones(1970).

Post-coordinate indexing is an attempt at document

description without an~ giori hierarchy of classes.

In its si~plest form, each document is assigned a set

of keyvwrds, and a search formulation must specify

which combinations of keywords an acceptable document

should have. The so called "Boolean search" formulation

is, perhaps, the most frequently used. Terms are

comtined by logical connectives; for example

HIB.LIOiiLSTRICS or (STJ\TISTI CS and DOCUI!::8lf.i.'ATION)

would be used to select references which had been

indexed either with the term BIBLIOl,~ET'RICS or with toth

.STA'riS'.L'ICS and DOCUl/J£1JTATIOH. Another commonly used

type of strategy is known as the "quorum search".

The searcher specifies a list of terms and says how

many of them must be present in the description of a

document for it to be retrieved. One might, for example,

require any two (or more) of the following four terms:

RELEVAHCE, PERTINBlWE, SUBJECTIVE, SIGlHl:'ICl-~NCE.

This is a special case of the technique of linear

associative retrieval, in which a measure of similarity

between possibly weighted query terms and document

descriptions is used to rank documents by "closeness"

to the query. Performing these types of coordination

by hand is laborious and such methods did not become

widespread until the advent of machinery to aid the

task. Among the earliest mechanical systems were

optical coincidence cards (Batten,1947), and edge­

-notched cards (Mooers,1951). The former is an

inverted file - a card for each subject term - and many

computer-based systems employ the same principle in

their file organization (Lefkovitz,1969). '" ' lHOOers

system is a mechanical version of content-addressable

memory. Linguistic problems are more serious in post-

-coordinate indexing: an example, false coordination,

has already been mentioned.

Pre-coordinate systems are linguistically more

•

•

satisfactory for the human searcher, because the syntax ~-

•

•

••

in the description makes the relationships betw~en the

component concepts clear. The line;uistic subtleties

make automatic searching difficult, however •

2.2.1 ~utomation of delegated searching

Now, having given the general picture, we shall

concentrate on aspects of the automation of reference

retrieval. Very nearly every text on information

retrieval begins by pointing to the "information

explosion" as an urgent reason to enlist the aid of

fast machinery. They are probably right. Both the

literature and the user population are growing, so the

total volume of indexing increases, and so should its

complexity. Searches also become ever more arduous as

more discrimination is needed. If we are to delegate

a substantial portion of the work to a machine, we must

either give the machine linguistic skills (particularly

in the area of sen1antics), or we must find efficient

ways of dividing the tasks between man and macl1ine

(Doyle,1965). The questions to be answered are: how

should the user express his need? having answered that,

how should the collection be described? then, what

search strategies and matching algorith~s should be

applied?

The answer most frequently given to the first

question is "in whatever way seems natural to him".

~oyne(1969) gives reasons for using a natural language

to express queries. Apart from ease of use by casual

users, he points out that "natural languages are highly

economical and efficient systems" for com~unication of

complex messages. There is nothing new here: special­

ized information services have received queries in

natural prose for a long time. An information worker

constructs a formal query, using all his }.nowledge of

the document collection and its descriptive adjuncts -

this is called ''delegated searching". In fact, he will

analyse the query in much the same way that the

documents have been analysed on entry to the system.

Automatic systems exist which emulate this type of

service. Abstracts or full text of documents arc

prepared for machine reading, and analysed for content

indicators; requests are treated in the same way, and

the resulting representation compared against the

document descriptions. The most exhaustively documented

system of this type is a versatile collection of experi­

mental modules called the SMART system (Salton,1971).

Numerous comparisons have been made between system

performances observed with various linguistic algorithms,

ranging from simple word stem extraction, through the

use of thesauri to normalize vocabulary, to the const­

ruction of parse trees for phrases. Retrieval is

usually performed in SL.ART by ranking the Vihole collect­

ion l100 - 1000 documents) according to their similarity

to the request; documents within a certain distance of

the top of the list are considered retrieved. The more

complex syntactic representations which were prominent

i1: earlier papers (Sal ton 1962, Sal ton & Sussent;-uth 1964,

Salton 1966) have produced disappointing results: "when

the phrase generation procedures using simplified

syntax are compared with other, simpler, content analysis

•

•

•

•

••

methods which include no structural or semantic

components, the surprising conclusion is that on the

average better results are obtainable without the

SyntactiC COH1p0:1entS than With theJn. II u~al ton, 1973,

pp259-60). Ronteomery(1972) is highly critical of the

syntax analysis procedures used in Slf..ART, however, so

Salton's conclusion may not be so surprising. As for

the more straightforward processes, which reduce

documents and query to weighted term vectors, Salton

(1972) shows that they eive results comparable to those

obtained by conventional human indexing and Boolean

searching (with a collection of 450 documents).

Another system which handles natural language

(documents and queries) is BRO'.'ISER (Williams, 1969).

Significant terms are extracted from the text using a

dictionary of ''root words". Dictionary entries have

"information values" attached to them which vary

inversely as the total number of occurrences of the

root word in the document corpus - they are indicative

of the usefulness of the term in searching. Sparck

Jones(1972b) defines 11 term specificity" in a very

similar way (i.e. as a statistic associated with a

term's usage in a set of document descriptions).

A rather more complex linguistic analysis is

performed by the LEADERiVI.ART system (Hillman, 1973 and

1968). Sentences are decomposed into logical relations

between noun phrases. The noun phrases, it is presumed,

are what the sentence (and its containing document or

query) is about, and the relations involved determine a

weighting for the noun phrases, as well as providing

inforwation for partitioning the collection (i.e.

classifying it).

The descriptions, above, of the three systems -

SJ,:ART, BRO,'iSER and Ll~ADERi.!ART - are, of co u.rse, incornp­

lete; we have concentrated on what they do to their

natural language input. Their common feature is that

they process requests in the same way as the document

texts in their files, which is the answer to our second

question - how should the collection be described? - if

we assume that the user should indeed express his need

(to an automatic system) in his natural language. So

the indexer has disappeared from the scene, and the

author is communicating directly with the potential

reader. Now that each is using his own language (with

no interposed, controlled indexing language), ~he third

question - what search strategies and matching algor­

ithms should be applied? - has no simple answer. We

need to know precisely what are the connections between

the words (symbols) we use and the concepts we are

trying to coMnunicate, and that is the province of

se~nantics.

2.2.2 Semantics

The discussion, here, of semantics will be very

brief: there are many review articles which cover the

subject (Kuno 1966, Bobrow et al 1967a, l\:ontgomery 1969,

Kay & Sparck Jones 1971, Pacak & Pratt 1971, Montgomery

1972). All of these reviewers are interested in making

linguistics work in the development of man-machine

•

•

corumunica tion, and all lament the lack of guidance from .:

•

•

-·

theoretical studies, particularly studies of semantics.

Among theoretical lincuists, semantics has received

comparatively little attention, and every ~rominent

semanticist has his own theory. One significant

common thread that runs through all the work in this

field is that an important aspect of the meaning of

words is the relationships they contract with each

other. Whether the relationships determine the

meanings {Lyons,1968), or vice versa (Katz & Fodor,1963)

is a matter for debate, as is the question of the nature

of the relationships; whether they can be cl~ssified

into types - e.g. synonymy, antonymy, inclusion -

(Sparck Jones,1965).

On the practical plane, it has been shown that a

certain amount of "understandingu can be displayed by

programs which manipulate networks of w~rds (Quillian

1968, Simoons et al 1968, Simmons & Slocum 1972).

However, although it is clear that the environment of a

word in a simple (thouch large) network can be highly

suggestive of its rueaning to a human observer (Doyle

1961, and see figure 3 for an illustration), much more

is needed to tell him (or a machine) how to use the

word. The success of ~inograd's program SHRDLU

(Winograd,1972), supports the intuitively obvious

hypothesis thc.t the understandir..g of natural languages

(i.e. that which brings forth an appropriate response

to a message conveyed in a natural language) demands

knowledge of the area of discourse, wuich includes the

discourse itself, and the ability to solve problems in

that area. The meanings of words are embodied in

Figure 3.

,.lr.nlrlcunro

irl't'l'lnt.Jnn

The verbal environment of "relevance".
All the associations drawn in this picture
were taken from Roget's Thesaurus (Penguin
edition). The reader may judge how much of
the meaning of the words is evident from the
figure. The present author is reminded, by
it, of much of the substance of recent
published discussions on relevance in the
information retrieval context.

36

•

•

-·

procedures, wr1ich may invoke rr.anipula tion of the

pro~ram's model of the world. If it is true that

proper use of natural lancuages cannot be divorced from

other mental activity, and knowledee, then we umst make

do with much less in our mechanical intermediaries

between author and reader. The amount of knowledge

handled by a useful information service is vast.

So, although relatively simple syntactic analysis

of document texts rnay produce acceptable symholic

characterizations (by conventional standards), one

should not yet expect enormous benefits from using

natural language as a medium for expressing a search

request. Successful operational systems which use this

mode of communication (BRONSER and LEADErt.;,;_fi.RT, for

instance) probably depend for success more on inter­

action with the user, on-line, than on their ability to

make something of his English. We shall come back to

the question of interaction in a later section, but

first we consider some of the uses to which relation­

ships between words have been put, in attempts to

enhance reference retrieval performance.

2.3 Associations and clusters

A great deal of work has been done on the

discovery and use of associations between words, and

other entities involved in reference retrieval. The

background to this activity, linguistic, psychological

and philosophical, has been discussed by P.E.Jones(1965),

and Tague(1970) has written a useful review.

Associations occur in various ways:

(i) "Semantic" relations between words. Hierarchies

and cross-references in subject catalogues and

thesauri for information retrieval (K.P.Jonec

1971, Sparck Jones 1972a). These are the

plausible relations: we tend to think of them as

inevitable, derivable from the nature of the

world. This is probably largely illusory, as

indicated by the fact that classifications

become out of date and vary from one library to

another.

(ii) Statistical relations between words. This is an

association with a measure instead of a type.

Words are meaningfully associated if they tend to

co-occur (Doyle 1961, Liaron & Kuhns 1960 are prime

examples among many who assert this). If the

tendency is strong enough, the words can be

regarded as synonyms for retrieval purposes

because, used as index terms, they are nearly

interchangeable - this is the justification for

the keyword classification procedures used by

·sparck Jones(1971). Suppose, now, that we find

the words-which tend to co-occur with the statist­

ical associates of a particular word. These are

what Stiles(1961) called "second generation terms",

and are the words which tend to occur in the same

context as the original word. Some of them will

be synonyms of that word, in the linguist's sense

(Sparck Jones,1965). The ideas of semantic and

statistical second generation links were brought

•

•

••

•

•

toeether by Gotlieb & Kumar(1968) when they

analysed the statistical association of pairs of

terms in the Library of Congress subject headings,

using the existing hierarchy and cross-references

without distin~uishing between the types of relat-

ionships. A large scale statistical term associ-

ation experiment was done by Jacquesson & Schieber

(1973) using a file of 40,000 references, indexed

by 1400 terms. They found that even in their

strictly controlled indexing vocabulary (i.e.

where there should have been no synonyms), there

was, in fact, an appreciable amount of overlap in
!

the use of words.

(iii) Similarity relations between documents. The

"distance" between documents can be worked out by

considering the extent to which they are similarly

indexed (Jardine & van Rijsbergen 1971, Rettemeyer

1972, van Rijsbergen & Sparck Jones 1973).

(iv) Bibliographic couplinG. Assuming that authors

tend to cite papers which have some bearing on

their subject matter, another meaningful distance

measure between documents is obtainable from their

tibliographies (Weinberg 1974, Zunde 1971, for

exaillple). Gray & Harley(1971) bring together these

two concepts of document similarity (iii and iv).

They use bibliographic coupling to suggest terms

to the indexer.

(v) Arbitrary user-specified association. By this,

we mean links between records created by a user,

as envisaged by Bush(1945). He laid down design

principles for a personal filing wecr1aniom in

wLich any docUJuent, note, correspondence u..nd so

on would be stored and linked to exinting records

in whatever way its user vvished. Searching would •

be done by following trails of associations.

Several systems have been constructed along these

lines {Glantz 1970, Treu 1970, Robinson & Yates

1973, Ene;elbart et al 1973). The facility for

adding arbitrary links to a communal information

structure, preferably under some sort of control,

might be a useful addition to a document retrieval

system, but we shall not discuss it further here.

Reference retrieval is concerned with bringing

to the notice of the user previously unknown

documents; not with organizing the information

for him after he has become aware of it.

Ne now turn to uses to which associations have been

put in reference retrieval. Two objectives have been

sought; they use similar techniques and are inter­

dependent, but should be distinguished. Co-occurrence

fibures have been used to generate classes both of

documents and of index terms. The main motivation for

the former is to achieve efficiency of file searching

by cutting down the amount of the document file which

must be exalliined (this is very important in systems such

as s=.~RT which retrieve by measuring the association

between documents and query, and ranking the documents).

The motivation for grouping index terms is to enable the

system to expand a query (mainly) to achieve higher

recall. As Stiles(1961) put it:

•

.l

•

•

"Literally hundreds of terms way have 1)(~er: used
to index documents on the various e~,r~ects of a
particular subject and yet we must grope for
just the right set of ter;ns." - p271.

The main stream of automatic classification (or cluster-

ing) methods (whether of documents or index terit~S) can

* be suntrnarized as follows:

The documents in the collection are assumed to be

described by lists of weighted index terms. In other

words, each document is represented by a vector whose

dimension is equal to the number, t, of terms in the

vocabulary and which consists of the weights of ~11 the

terms, as applied to the document. If a term is not

applied (posted) to a document, its weight is zero in

that document's vector. Frequently, in practice, the

only weights used are 0 and 1. The whole collection

of d documents is then represented by the d X t matrix,

M, having as its rows the d document vectors. Now, a

matrix product operator, ® , is defined and applied to

M and its transpose, MT, to form a similari~y matrix:

either sd = t• ~--T 1 r.. , for document clusterir:g,

or st = r·T~l' ~. 'h' for index terTii clustering.

The result is a square, symmetric Datrix giving a

measure of the similarity between every pair of

documents (Sd) or terms (St). The operator 69 is

usually defined for matrix operands A (p X q) and B

(qXr), to give a pXr matrix product 0 = A~B,

* For document clustering, see Jardine & van Rijsbergen
(1971, good review included), van Rijsbergen(1974),
Salton(1971) Part IV Cluster generation and search,
Retterneyer(1972) and Crouch(1973). For index term, or
keyword, classification, see Sparck Jones(1971),
Heedham(1965), Augustson & hanker(1970), f/lin.l<:er et al
(1973), Gotlieb & Kumar(1968), Barko & Bernick(19b3--,
"f'II'A\ C'+~l,....c:-(1Q?::1)_

where c .. = lJ

~

L A.kB,.
1<k< l KJ " ._q

N ..
lJ

, 1{i{p, 1{jsr.

H .. is a normalizing factor, a function of the vectors •
lJ

For exa1nple,

Having obtained the similarity matrix (Sd or St), the

associations can be found by deciding upon a threshold,

e, and replacing each elewent of the Jr.atrix by 1 if it

is not less than e, or 0 otherwise. The result is the

adjacency matrix representation of an association graph.

A simple example should clarify these beneralities.

Suppose we have 5 documents indexed by 6 different

terms, t
1

- t
6

, without weights, as follows:

d1 = {t3,t5,t6}, d2 = {t1,t3}'

d3 = {t1,t2,t3}' d4 = {t2,t4,t51'

d5 = {t4,t5,t6}·

0 0 1 0 1 1

1 0 1 0 0

Then M = 1 1 1 0 0

0 1 0 1 1

0 0 0 1 1 1

Using the particular definition of ~ given above, the

document similarity lliatrix is

••

•

•

•

-·

1/2 1/5 1/6 1/6 1/3

1/2 2/5 0 0

c· .. ® .T 1/2 1/6 0 o.)d = j',. ill =
1/2 1/3

symJnetrical
1/2

Now we choose a threshold, 9 =!, say. Then the

adjacency matrix is

1 0 0 0 1

1 1 0 0

Ad = 1 0 0

symmetrical
1

1 J

which corresponds to the document association craph:

(we qmit loops). We shall discuss similarity between

documents ag&in in Ch2pter 3.

Having established an association graph, between

ter~s or between documents, there are various ways of

for~ing classes, or clusters. Examples are maximal

complete subgraphs (cliques, within which each node is

connected to every other node), maximal connected

subgraphs (every node in the subgraph is reachable

from every other node), stars (one node is adjacent to

every other node). Augustson & hlinker(1970) and Sparck

Jones(1971) discuss the possibilities. Not all

techniques produce disjoint classes and the threshold

(9), which obviously affects the association graph,

also affects the clusters obtained. The Ei:ed to select

a somewhat arbitrary threshold led Needharu(1965) to define

a "clump", using the similarity (rather than the adjacency)

matrix. An object is a member of a clump if the sum of

its similarities with all the other members of the clump

is greater than the sum of its similarities with all

non-members. In contrast, Jardine & van Rij soe 1·1_;en (1971)

produce a hierarchy of document clusters by systematically

varying the threshold.

The detailed results of applying these techniques

are given in the literature already cited. Those who are

investigating document clustering must show that improved

efficiency is not accompanied by serious loss in retrieval

performance. The most thorough evaluation of the many

possibilities for query expansion by term classification

is contained in Sparck Jones(1971). The conclusion

seems to be that the best combination of clustering

techniques tried performs significantly, but not

substantially, better than simple term searching. There

is some later work (Sparck Jones 1973a, van Rijsbergen

& Sparck Jones 1973) which explains the performance of

keyword classification in terms of characteristics of

the document collection (derivable from a similarity

ffiatrix), with respect to the set of test queries.

2.4 Interaction

Throughout this chapter, so·far, we have had a

•

••

•

•

-·

particular type of search in mind. The enquirer has a

need for information which is well formed in his mind,

and he is able to express it quite precisely as a query •

We have discussed the problems that arise en we

assume that, in order to satisfy the searcher, the

system must match, in some precise sense, the query with

references in its store. Lancaster(1969) estimated

(with qualifications) that the i~EDLARS demand search

service achieved, on average 58% recall and 50% precision.

The construction of the formal search profile v;;-1~· deleg­

ated to trained search editors. Relevance was assessed

by the end-users, and relatively low degrees of relevance

were accepted for computing the above figures (i.e.

11 minor value" articles are considered relevant). If we

accept that results obtained in sffiall scale experiments

(particularly the SI~RT document and query analysis

trials, and the automatic classification tests of Sparck

Jones) are valid for large collections, then the average

recall and precision figures could increase by about 10%,

i.e. to around 64~· and 555:, respectively. The studies

which have been reviewed are atterilpts to find out how

far we can go in creating machinery to 1v'1ich a man can

delegate his search, and they are h1portant as such.

However, now that facilities are widely available

for the interactive use of computers, solutions to the

difficult linguistic problems are not required so

urgently. ~e have far more scope now for interleaving

mechanical and intellectual work. In 1965, Doyle wrote

that there were two alternative attitudes to the solution

of linguistic problems:

''(1) We can seek to make our procedures appr ach in
complexity those used by the human intellect, and
this appears to be the route preferred by ~ost of
the research people; or (2) we can try to take
advantage of the fact that humans are experts in
handling language, and have them wort in senior
partnership with computers." (Doyle,~J65, p238).

Combine this with the fact that even among those with

apparently well defined needs "a characteristic feature

of this [information gathering] process is that the

scientist's original inquiry or interest is invariably

modified and restructured on the basis of the inform-

ation presented to him." (Hillman,1968). The obvious

result is that we should design the means whereby a

searcher may explore the collection, gradually refining

his request. When we reconsider the traditional

distinction between browsing and searching, in this

light, we find it so hazy that we are forced to abandon

it (Herner,1970). This is not to say that all searches

•

are alike: on one occasion, a scientist may want to look •

for a small amount of material to stimulate him, at

another time he may wish to do a thorough literature

search on some topic, and there are other possibilities.

Lancaster & Fayen(1973) have recently published a

comprehensive state-of-the-art account of on-line inform-

ation retrieval systems, in which they give brief

desciptions of about 30 major operational systems, mostly

of North American origin. That is clearly a small

proportion of the systems now in existence. Most of the

work currently being done is concerned with man-machine

interface engineering (Walker 1971, Martinet al 1973)

and this is outside the scope of this thesis. We are

concerned with the information structures and processes ·-

which can assist a user in his search. We shall not

undertake an extensive survey of systems here: iuany

differ from each other only in superficial detail

(retrettably, some systems are incredibly verbose).

At the very least, an interactive retrieval system

must help the user to find the appropriate words, and

must provide facilities for developing his query, having

shown him something from its files in response to his

previous messages. Williams(1971) has given a much

more detailed list of capabilities that he considers

important for a browsing system.

One of the major variations between systems is in

the indexing vocabulary used. Some systems (e.g. RECON

- Wente 1971; BOLD - Burnaugh 1967; the h:edusa system -

Barber et al 1973) use a controlled indexing vocabulary,

and incorporate appropriate devices for exploring it:

on-line thesauri, with procedures for following the links

between terms. By having related terms displayed the

user is able to find words which he may not otherwise

have thought of. The user may build up, in stages,

Boolean or quorum search strategies. Another important

component of these systems ~-s a large "entry vocabulary",

that is a set of words and phrases which are not in the

restricted vocabulary of the indexers, but are commonly

used by searchers. They are linked to the preferred

terms. Higgins & Smith(1969) have suggested a way in

which the entry vocabulary could be extended by the users.

Other systeills search the free text of titles,

abstracts or wl1ole documents, having created an index to

all occurrences of every significant word or stem.

Sicnificance is usually det~rmined by the word's

absence from a "stop list'' of common syntactic function

words (articles,prepositions, etc.). Examples of this

type of system c.re the Epilepsy Abstracts ~.etrieval

System (Porter et al,1970) and the STATUS procrams

(Price et al,1974), which are used to search legal texts.

One can often form Boolean queries in these systems,

specifying that the combination should occur within a

single sentence or larger unit of text. Another type of

search is for a pair of words occurring within a certain

distance of each other. Where there is no controlled

indexing vocabulary, no thesaurus is likely to exist.

It may be possible to display the neighbours of a word

in an alphabetical list, but on the whole free text

systems rely on further words being suegested to the

user when he is shown relatively large pieces of text.

•

To illustrate the concepts involved in interactive •

retrieval, we give a brief desciption of, and a sample

conversation with a particular operational reference

retrieval pro~ram. The ~edusa system, developed at the

University of Newcastle upon Tyne is suitable for this

purpose for three principle reasons: .E'irs t1y, it

operates on a well-known data base - Iv1EDLARS - with its

controlled vocabulary of ~edical Subject Headings

(,. s~·) i1~ e .l.i • Secondly, it has features which clearly show

off the benefits of interactive search. Finally, the

dcita and test queries used in the new work described in

this thesis were obtained from Medusa files, as explained

in Chapter 7, section 2. ·-

•

•

•

2.4.1 An example: M~dusa

The descriptive material and sample run in this

section are adapted from the User hlanual for Lledusa,

prepared by J.A.Hunter (University of Newc~~tle upon

Tyne,1974). Medusa is an on-line reference retrieval

system which runs on the IBM 360/67 computer at the

University of Newcastle upon Tyne, using r.mDLA.RS

(~edical Literature Analysis and Retrieval System) data

from the U~S. National Library of Medicine. ~edusa is

designed for direct use by medical research workers

(Barber et al,1973).

Two means of accessing the system are provided;
Current Awareness and Retrospective ~edusa. Both systems
allow the user to formulate an identical search, but
differ in the manner of searching the data available.

CURRENT AV/ARENE3S MEDUSA is intended for those users
who want to keep up to date with the current literature;
they will expect to return to the system each month, or
at least every three months, and search the data acquired
since they last used the system. The database kept for
the Current Awareness system is the latest three months
of the file. This is updated as new information arrives,
the oldest month being dropped and the new months citations
added. There are about 45,000 citations indexed from
2,200 journals for papers written in English, French and
German. Users running current awareness searches may
retain up to four different profiles from session to
session as. it is anticipated that they will wish to modify
their search criteria as their work progresses.

RETROSPECTIVE MEDUSA is inte-nded for users requiring
a simple search on a particular topic from as large a
database as possible. Some 110,000 citations are avail­
able for searching taken from 1,150 journals over the
past year. The citations are restricted to those written
in English. A Retrospective session is self-contained;
that is, any search formulation is lost when the session
ends. A special S~~LE command, q.v., is supplied to
permit checking of a search against the latest block of
citations before it is used to access the whole database.

Medusa citations are indexed with terms selected
from a thesaurus of 10,000 medical subject headings(MeSH).
The user has to formulate his search using terms from
this thesaurus. The main object of the Medusa system is
to enable the user to find the correct terms for his
subject. The task of finding all relevant terms is made

easier by their orcanization into categories - e.g.
neoplasms, musculoskeletal system, vertebr~tes, surgery.
The general term is at the "top" and the more qKcific
terms appear below, down to four levels - e.g. vertebrates
- mammals - rodents - mice. The terms above and below a
particnlar term can be displayed easily or~ ·he ter::iinal. •
Going "up", "do·.:.;n" awl "across" the category structure is
the way in which a user finds available terms. Papers
are indexed under an average of ten main headings. An
important point about the selection of terms is the use,
by the indexers, of the most specific term for a subject.
In addition to the 10,000 keSH terms, there are 7,000
entry terms which, in most cases lead to synonymous ~eSH
terms. Some entry terms call up compound search
expressions instead of single terms.

There is a repertoire of commands for expJoring the
thesaurus, constructing search prescriptions, .:.:1
retrieving references. The user may introduce T.("::'1 ~-~ at
any time; the system will assign to them short codes for
easy reference later. ~e start with thesaurus exploration
commands:

followed by a term code, will reveal the more
specific terms, if any. If successful, this
command will also generate the category term,
identified by the C prefix. This refers to all
of the terms in the relevant category below the
original term.

UP will reveal the broader term.

ACROSS will reveal related terms at the same level.

XREF will reveal any cross references to different
categories. These are indicated by an Z printed
in the display of a term.

Qualifiers are sub-headings which may be linked to
main hea~ings and categories to restrict the ~ontext in
whic~ they ret~ieve references.

QUAL followed by a code w5ll print a li3t 0f ~hose
qualifiers which may be legally li~ked to a term
when forming a search statement.

followed by a character string of three or more
letters will cause the system to print out
dictionary entry names which start with those
letters.

There are also commands to remind the searcher of details
of previously used terms. This is particularly useful in
Current Awareness ~edusa where he may come back to a
search profile after some time. (We omit their definitions
here).

Now we co~e to the commands· for formulating searches
and performing them:

•

••

•

•

-·

COJ,:.SIJ.H-; followed by a term code, or by a C'''iP o ,. codes
separated by one of the operators AND, i~. !D lWT,
OR, J_.JJ.[K (for attaching qualifiers to tcrn:s),
will form a search statement. The ::;yster:1 will
print out an R code number and t;ivr :1 lOU£)1

estimate of the number of citatio~~ ~iable ~a be
retrieved by it:.:; use. The R code nuur;er can be
used in subse(_fuent CO:.~BIHE cowr:1ands and thus a
co;nplex profile can be built up, wi tliout the
need to construct it in one error-prone step.

SEARCH followed by an R term causes the system to search
for citations satisfying the criteria of the term.
Citations found are printed out on the terminal
in sufficient detail to enable a user to locate
them, and with their associated index terms and
sub-headings. An asterisk acainst 2?! i1dcx term
means that it is a "print" term, and a1:_:;., · r·:::
against the reference to the citation in le
indexing journal Index ~edicus. If index terms
are not desired, as with a profile of established
reliability, they can be suppressed to give faster
printing.

SAMPLE is available only in Retrospective Uedusa. It is
similar to SEARCH in use but only searches the
most recent month of citations.

In the run of Retrospective ~edusa which follows,

all comments, i.e. lines not printed at the terminal,

appear in lower case. Lines typed by the user are

underlined.

;.IBDUSA IKFORI·,lATION RETRI~Vt~L S:t~ii.VIc·.s

Pl,:SASE INDICATE WHETHER YOU :.ri:3H ~·o r.:s r<:; r~Fl~T1 1:::r;r;-• A.'ii..R:t::<;ESS
OR RETROSPECTIVE lllEDUSA BY TY.PL--iG "C" O.S. 1 ?,''.

?R

RE'l'ROSPECTIVE iYiEDUSA

THE RETROSPECTIVE SERVICE IS AVAILABLE FRO~ 12.00 - 14.00
A~;D FR.Ql,: 16.00 - 19.00 EACH JEEKDAY. SHOULD YOU SIG1~ ON
DURihG THESE PERIODS AHD FIND 1'HE SYSTEM NOT AVAILABLE,
PEASE .::U~;G J;1.SDUSA STAFF OH 0632-28511 EXT. 2761.
SYSTE~.: l:OL.JS CI'rATIO~JS FO:ti. APRIL AHD ii;1~Y 197 4, OCTOBER
1973 TO hlARCH 1974, APRIL TO SEPTEkBSR 1973

* SIGl~ L~DICAT.&3 THAT SYSTEhl IS READY FOR A REPLY

SZAHCH NUulBER 1 : USERCODE, 1U~.: E, 'l' l ~- LE "
*01 09, J .A. HUl"J~f.lER, DE1110.!.JSTRAT IQ1~ ~-.;Etd·lCrt
~1~1·~1\ 1'.8tU.J::l. SJ.'A.I:\T bY 'l'LPING lH A :. "·.C:UlCAI, TERM Fi.EIJATED
TO AN ASPECT OF YOUR SBARCH

*STUDEN1'S
X l••1=STUD~HTS

DH 6
EDUCh.TIOl~,)

T285
A EDUCATION

19' •)
(ANTH.ROPOLO·J.Y, •

DN 0
EDUCATION,)

B EDUCA'riON, NONPROFBSSIOH(AlHl:UWPOLOGY,

DN 1.5 C NAlY.ED GROUPS (NON f•iESH)

FACTORS
DN 0 D OCCUPATIONS
(POPULATION CHARACTERISTI))

(SOCIOECO~WJ·:,r C

The term "students" has been assigned the code 1.... T285
gives the number of citations indexed under this heading,
and 1962 gives the date of introduction of the term. X
indicates the presence of one or more cross references.
This term is in four categories A, B, C and D. In the C
category, the code DN 1.5 means that there is one term in
the next lower level of the category, and five in the level
below that. In the A category, "education" is the broader
term, and the information which follows it gives the
category structure above it.

*DONN M1A
C1=S'l'0DBNTS
K2=STUDENTS, DENTAL
Li3=STUDENTS, HEALTH OCCUPAT
M4=STUDENTS, hlEDICAL
~5=STUDENTS, NURSING
J.16=STUD~HTS, PHARI.JACY
l.l?=STUDEHTS, PREI'•lEDICAL

TT858
T93
T21
T267
T174
T9
T9

1962
NEW rrERiil

1962
1962

HEW T ERil
1962

A,B,C
A,B,C
A,B,C
A,B,C
A, B, C
A,B,C

Here "down" has generated for the A catec;ory the category
term C1 , which encompasses all terms below and including
"students" in that category. TT858 gives the total tally
- the number of times the terms in the group have been
used in indexing references.

*FULL lfJ4
Ti:4=S'i'UUENTS, I.1EDICAL T267

DN 0 A STUDEHTS
1962

(EDUCATIOl'i
(ANTHROPOLOGY, EDUCATIOl~,))

DN 0 B STUDENTS, HEALTH OCCUPAT(STUD&JTS
(HAI.,ED GROUPS (NOH I1lESH)))

DN 0 C STU:UEHTS, HEALTH OCCUPAT (HZALTH f.r:AN-
PO'NER(FACILITIES r.~NPOWER SERV))

*XRSF 11;1
~8=STUDEJT DROPOUTS

*STUDENT HEALTH SERVICES
T48 1962 X A,B,C

•

•

•

••

r.:9=STUDEHT HEALTH SERVICES T114
DN 0 A HEALTH SERVICES

1962
(FACILITIES

L\lJPONER SBRV)

*COLLEGES
M10=UNIVERSITIES T435

DN 0 A SCHOOLS
1962

(EDUCA'J:ION
(AHTliROPOLOGY, EDUCATIO~,))

Note the action here in the case of a synonym being
entered. "colleges" is held in the dictionary as a
pointer to "universities'', for which it generates a code.

*COMBINE M1 OR M8 OR M9 OR M10

R1= M1 OR hl8 OR M9 OR M10
EXPECTED RETURN: LARGE

Here large means 25 or more citations would be re~rieved.

*SAI'iiPLE R1

FIRST CITATION FOUND IN 21 SECS

CIT :iJUl~ 00290919
HO'NELL R CRON 1~ S HO'NELL RW
PERSONALITY AHD PSYCHCSOCIAL IHTERACTIONS IN AN UliDER..-
GRADUATE SAli!PLE.
BR J PSYCHIATRY VOL123 699-701 DEC 73
*PERSOJALITY ASSESSMENT *STUD.SHTS

ADOLESCENCE ADULT
AFFECTIVE DISTURBANCES FACULTY

(DIAGNOSIS)
FEI.:ALE
JUVENILE DELINQUENCY
PSYCHOI.iETRICS
SEX FACTORS

HUII'iAN
1~ALE
SCHOOLS
SOCIAL CLASS

In this print out of a reference, the terms marked with
an asterisk are "print" terms which would appear in
Index hledicus. Terms in brackets are qualifiers, e.g.

- (diagnosis).

CIT NTJM 00290921
DUDDLE M
AN IHCREASE OF ANOREXIA NERVOSA IN A U;iiVERSITY
POPULATION.
BR J PSYCHIATRY VOL123 711-2
*AlWRZXIA NERVOSA(OCCURRENCE)

ADOLESCEHCE
EDUCATIONAL STATUS
FEkALE
IlfFAHT NUTRITIOH
OBESITY

DEC 73
*STUDENTS

ADULT
ENGLAHD
HUMAN
II~ ALE
UlHVERSITIES

CIT HUM 00291303
CA;,!PHELL LP
l.10DII<'YING ATTITUDES
S;!JOKING.

OF UPPER ELEL8l~TARY STUDE.t·;r:cs TOWARD

97-8 FEB 74 J SCH HEALTH VOL44
*HEALTH EDUCNI'ION

ADOLESCEHCE
*SJ.lOKI:W(J'" ;v COH1'1UJ)

ATTITUDE TO !!

ATTENTION INTERRUPT
lMLE STUDENTS

Here the interrupt key has been used to stop a search.
Note that printing of the current citation is completed
before control is returned to the user.

*DRUG ADDICTION
M11=DRUG ADDICTION T816 1962 X

DN 3 A DRUG ABUSE
)

(l'E::YCHIATRY

DlJ 0 B SOCIOPATHIC PERSO:'l"ALITY (PBRSO~·TALITY
DISORD~RS (PSYCHIATRY))

NEW T ERl•i A , B , C
*ACROSS J.'111 A
~12=GLUE SrliFFING
lli11=DRUG ADDICTION

*UP I.111A

T18
T816 1962 X A,B

hl13=DRUG ABUSE
*CO~BINE R1 AND M13

R2= R1 A1'fD 1'.113
E:t\PECTb1) RETURl~: SJ.'lALL

T708

Here small means 10 or less retrievals.

*SAi.iPLE R2

FIRST CITATION FOUND IN 18 SECS

CIT NUM 00304555
BI~~If2R lC
(DIFFBRE.i;T PROBLEI.lS OF DRUGS III TRAD~
SCHOOL STUDEHTS (AUTHOR'S TRAHSL))
PRP~IS VOL62 1612-5 26 L~C 73

1962 X A,B,C

SCFCOL AiW lUGH

*DRUG ABUSE(OCCURRENCE) *STUDEWJ.'S
ADOLESCENCE AGE FACTORS
CA~LUi.BIS COCAIUE
COl..PAiffiTIVE STUDY ECOlWI,1ICS
EXPLORATORY EEHA VIOR FEJ·,:ALE
HVll'iAH
KALE
SOCIOECOHOl,:IC FACTORS
S .iiT:6ERLAND

*QUAL I.i.13
Q1=:C:UOO.U
Q2=CEREBR.FLUID
Q3=CHEI.I. Il~DUCE.D
Q4=CLA3SI?ICAT.
Q5=COEPLICATIONS
Q6=DIAGNOSIS

LYSERGIC ACID
EESCALIHE
STATISTICS

•

•
I

. l

•
Q7=DRUG THERAPY
'.~8=EDUCA'l1 ION
Q9=EN6Yi .. OLOGY
Q10=1ETIOLOGY
Q11 =l<,At.:IL&G ElmT.
Q12=HIS'l'ORY
Q13=Il.,i .. UHOJ.JOGY
L.114=IlJSTI\Ui.;};HTAT ION
Q15=L'i.iH)OH£R
Q1 6=dETAJ.cOJJISi•;
Q17=i.tORTALITY
Q18=1JUh.SING
W19=0CCUHREHCE
Q20=PAThOLO~Y
Q21 =l)EYSIOPNI'H.
Q22=PR~V COHTRL
Q23=RADIOGRAPHY
Q24=RADIOTHH.PY
Q25=f\EHA13ILITAT.
Q26=STANDARDS
Q27=SURGERY
Q28=THERAPY
Q29=URINE

The following three combine commands show how to build up
a search statement which will find references if they are
indexed under "drug abuse" linked to either of two
qualifiers. Note that a match will not occur unless one
of these qualifiers is actually specified for the main
heading "drug abuse", and that terns may appear several
times in one citation linked to different qualifiers.

• *COf~_BIHE 1.'113 LINK Q19

R3= M13 LINK Q19
EXPECTED RETURU: Sl.1ALL

•

*CO~BINE K13 LINK Q22

R4= M13 LINK Q22
EXPECTED RETURN: SMALL

*COJ.,:OINE R3 OR R4

R5= R3 OR R4
EXPECTED RETURN: Sf1lALL

*SEARCH R5

APRIL AND hl.AY 1974 CITATIONS

FIRST CITATION FOUND IN 14 SECS

CIT liUM 00297727
LOWINGER P
HON THE PEOPLE'S REPUBLIC OF CHINA SOLVED THE DRUG ABUSE
PROBLEM •
AM J CHIN l.IED VOL1 275-82 JUL 73
*DRUG ADDICTION(PREV CONTRL) ATTITUDE TO HEALTH

CHINA DRUG ABUSE(PREV CONTRL)

:DltUG ADJ.JICTIOH (DHUG :r::IERAPY)
DEUG AND NARCO'TIC COATRO
illS TORY OF r.:1:~DI CilJE, 19T
HI.STOHY Ol I>J!WICIHE, l.~ED
EUJLAN
OPIU1.~ (HISTORY)

CIT IJUI.l 00305850
£RIGGS AH
CAN \'IE PR~VBHT DRUG ABU.SE Il~
Cl'li:X J,iED VOL70 49-54 JAN 74
*DIWG ADDICTIOl~(PR£V CONTRL)

D1WG ABUSE(PREV COHTRL)
HUMAN

CIT NUM 00287976
EirJSTEIN S

DHUG ADDICTIO;.-(TmH.ABJI,ITl,.T)
HISTORICAL ARTICLE
HISTORY OF I.:EDIGI:NE, 20T
HOi~G KONG
i.IORALS

INDUSTH.Y?

*INDUSTRIAL I.iEDICIUE
HEALTH EDUCATION
UiHTED STN.J:ES

DRUG AbUSE TRAIHING AND EDUCATION: THE co:. ~~UhiTY ROLE.
AI~ J PUBLIC HEALTH VOL64 99-1 06 FEB 7 4
*~RUG ABUSE *HEALTH EDUCATION

ATTITUDE OF HEALTH PERSO CRIME
CURRICULUM DECISION LiAKIHG
DRUG AEUSE(PREV COUTRL) DRUGS
HU!'i:AU JURISPRUDENCE
METHODS RELIGION
SCIENCE .SOCIAL VALUES
UNITED STATES

CIT UUI.: 00234363
DISTASIO C NAJROT M
L!ETHAQUALONE.
Al\, J NUH.S VOL73 1922-5 HOV 73 •
*DitUG A.BUSE(PREV COHTRL) *ktETHAQUALONE

ADULT DRUG AlJD NARCOTIC CO:aRO
DHUG I'JITHDRA,VAL SYMPTOMS HUl'i~AN

(DRUG THE)
JAPAN PENTOBARBITAL(Tl1ERAP USE)
UHITED STATES

OCTOBER 1973 TO MARCH 1974 CPJ:'ATIONS

CIT NUM 00244640
GR!::E1YE kH DUPOHT RL RUBENS·I'EIN Ri·.l
AkPHETAli1INES IN THE DISTRICT OF COLUMBIA. II. PATTEfG~S
OF ABUSE IN AX ARRESTEE POPULATION.
ARCH GEN PSYCHIATRY VOL29 773-6 ~EC 73
*-·~, ':Pl-D~TA!,UNE *CRIJ.'!INAL PSYCHOLOGY
*:Di-i:UG ABUSE(OCCURRENCE) *SOCIAL CONTROL, FO?,I\'IAL

ADULT DISTRICT OF COLUf.-iBIA
DRUG ABUSE(PR2V COHTRL) DRUG ADDICTIOH(OCCU?JlEHCE)
FEl.JALE HEROIN ADDICTION

CIT NUL1 00260832
RL.DFIEL_0 JT

IviALE
VIOLENCZ

(OCCURRENCE)

DRUGS IN THE '.':ORKPh<\CE--SUBSTIT\]TING SENSE FOR SENSATION­
ALI;:if.l.
AM J PUBLIC HEALTH VOL63 1064-70 DEC 73

·-

•

•

••

*DRUG ABUSE
ADOI,JESCEHCE

ATTENTION INTERRUPT
CAlHIABIS
DRUG ABUSE(OCCURRENCE)
DRUG ABUSB(URINE)
PJ\.LLUCIHOG.SHS
lillh1AN
LYSERGIC ACID DIETHYLAMI
OPIUM
S~r;OKING (OCCURRENCE)

*SIGlWFF

E1fD SEARCH NUMBER 1

*INDUSTRIAL ;;;_E~HCINE
ADUL·T ! !

DRUG ABUSE(DIAGNOSIS)
DRUG AJ3USE(PH.EV CO?JTRL)
DHUG AJX l:TION
HEALTH EDUCATION
HYPNOTICS AND SEDATIVES
OCCUPATIOHAL HEALTH SERV
OREGON
STUDENTS

ELAPSED TIME WAS 38 J,;Ilm 23 SECS

2.5 Feedback

The type of interaction supported by almost all

operational information retrieval systems can be

surrunarized in this way. When commanded to do so, the

system will display references, sometimes with details

such'as index terms or abstract. Having seen this type

of information, the user decides whether the computer's

response is relevant, and whether a change in the search

statement is necessary. He may construct a new request,

perhaps a modification of a previous attempt, and command

the machine to search again. It is the user's responsib-

ility to arrive at a satisfactory profile. The system

may help him to find suitable words and it may do useful

clerical tasks for him (we have seen that Medusa, for

instance, keeps a record of terms and intermediate

search statements with short codes for easy reference).

However, there is no way in which users can inform these

systems of their success in disp~aying relevant references,

and the systems have no way of making use of such inform-

ation (except, perhaps, to monitor it for the uenefit of

system designers and evaluators). Whatever the difficulties

of formulating a theory of relevance for information

retrieval miGht be, there is an obvious f'l.'bjective

definition for it. A reference is relevant if, on the

basis of available evidence, the searcher recognizes it

as the sort of reference he was looking for. If we could

use his relevance judgements to influence the search, we

would depend even less upon his ability to express his

interest.

There are, in fact, at least two large, computer

aided services which have experimented with relevance

feedback, neither of which provides the end-user with

on-line access to the files. A study was conducted by

UKCIS - the United Kingdom Chemical Information Service -

(Barker et al,1972). In analyzing search failures result­

ing from profiles constructed by users, they found that a

disturbing number (34% of precision failures and 46% of

recall failures) were attributable to faulty original

statements o£ interest. An iterative process ~nvolv~ng

a fixed file was used to develop a profile. The first

search was done with a profile devised with the aid of

UKCIS staff. Abstracts of documents retrieved were

assessed by the user and terms oucurring in them given

weights accordingly. Terms with weights above a certain

threshold were then used to retrieve more references which

were sent to the user for assessment. The process

continued until no new relevant documents were found,

then the resulting list of terms with high weighting were

considered by the user, who coul~ make changes to his

58

·-

•

·-

•

•

•

l.J''Gfilr:: Jccor:lingly. The new profile would thc:n serve

Li:::; rccular curreut :1v.'<Jrene3s needs. The difference in

per[or:~.ance 1.f:twe:(,n orit,inal and new profiles was

cstir.~·ltc,d: l>l'eci:::,ion rc·mained a"L·out the '"'·c' ·1e, but rc•c;.t11

increa3e~ ty up to 30~.

The otl1er large scale use of relevance feedback is

reported by Vernimb & Steven(1973). ElJDS (European

Nuclear Documentation Service) maintains a very large data

base; 15% of the references (i.e. 200,000) are available

on-line to :SHD3 staff. A query is formula ted .i . tcTacti vel~-',

using Boolean strategies, and a small sample of the

documents retrieved are checked for relevance. All the

terms assigned to the documents in the sample are given

weights (which may be negative) reflecting their postings

to relevant and non-relevant references. In the batch

processed search of the whole file, document weights are

calculated using the term weights so obtained and those

witt wei~hts a~ove a threshold value are retrieved and

ranked.

The major experimental work on relevance feedback

has been done on the S~ART system; the techniques are

descr~bed by Ide & Salton(1971), and evaluations and

fur· .. her details can be found in several chapters of

Sal~oa(1971). SL~RT is a system in which a number of

p~o~ ssing options can be specified independently of

each other; the number of combinations that can be tried

1s e~s~~ous. Generally speaking, documents entering the

system are characterized by lists of weighted terms

derived from the text. Queries are processed in a

sin.ilar way and a correlation function is specified

which measures the "distance" between a query and a

document, two documents, or two queries. Retrieval

consists of rankine the collection of documnnts according

to their correlation with the query, choosing some cutoff

point, and selecting the documents above it.

If the characteristics of the relevant documents

retrieved are denoted by the vectors r.
-l

the non-relevant documents retrieved are

and those of

s. ,
-l

a query

denoted by the vector ~ is updated by the equation:

r.
-l

s.
-l

where nr and ns are respectively the numbers of relevant

and non-relevant documents retrieved in response to query

~' and~ and~ are experimental parameters. In words,

the terms occurring in relevant documents have their

weights increased by ex. times the sum of their weights in

those documents (new terms may be introduced). Terms

occurring in non-relevant documents have their weights

decreased similarly, but using pas the constant multiplier

(terms whose weights become non-positive are deleted).

The retrieval process is repeated with £ 1 , and relevance

decisions can, of course, be fed back as many times as the

experimenter wishes. The constants~ and p determine the

extents of "positive" and "negative" feedback, respectively.

It has been found that negative feedback is necessary for

best performance, The majority of the improvement in

performance comes with the first and second iteration, and

can be substantial. A striking example of the effect of

•

·-

•

•

•

•

feedback is given in Salton's second comparison of SLART

and i.:EDLARS (Salton,1972).

A problem arises with the technique as a consequence

of the method of retrieval (which is called ''linear

associative"). Whereas, with Boolean searching it is

possible to construct a query that will retrieve any

subset of a collection, so long as every item is indexed

uniquely, it is not always possible to find a query that

will bring any given subset to the head of the list with

linear associative retrieval. We can illustrate this

with a collection of four documents, labelled A, B, C, and

D, and indexed by a vocabulary of 2 terms (weiehted).

The collection can be represented by a set of two­

-dimensional vectors:

A

c

If we define the distance function to be the aneular

separation of a pair of vectors, then no query can be

found to retrieve just A and C, for instance, no matter

how many iterations of query modification are executed.

Any query that retrieves A and C must also retrieve B.

The SL~RT system can, in principle, cope with this

situation by clustering the document representatives and

applying the query, and subsequent iterations, independ­

ently, to each cluster to which it is "close". The effect

of relevance feedback on the query will differ from one

cluster to another, so that several different queries

may be generated. To reach all the irr.portant documents,

it may be necessary to consider many clusters.

3. Summary

We have covered a considerable amount of ground in

this chapter, rather briefly of necessity. We started by

trying to state the problem of reference/retrieval,

because the work reported in later chapters was motivated

by the need to find practical solutions. If Kunz & Rittel

(1972) are right when they say of this type of problem

that "problem formulation is identical to problem solving",

our attempt at stating the problem is bound to have failed.

However, one needs a point of view from which one can

define goals and refine them as sets of subgoals, and the

nature of one's approach determines how far this refine­

ment can be taken. The decomposition of a goal into

subgoals can be regarded as an interpretation of the

meaning of the goal. A goal has no practical meaning if

it cannot be decomposed into achievable subgoals. If

one can find no way of doing this, then one must eithsr

change one's point of view so as to avoid the problem, or

accept some modification of the goal which ~ be achieved.

If we do the latter, we are really changing the problem

and must make sure that the new problem is a useful one

to solve in the context of the old one.

We are continually coming up against such intractable

goals: matching concepts, defining relevance, understand­

ing natural language. Even the major goal - to build a

•

•

•

•

reference retrieval system - is ill-defined. The

evaluation techniques used to assess the success of

systems are indications of the goals that the desieners

are trying to achieve. The traditional measures of

performance are recall, precision and fallout (the

proportion of non-relevant material retrieved). They are

calculated from the result of dividing a collection in

two different ways, according to: (i) whether retrieved

or not, (ii) whether "relevant" to the query, or not.

The corresponding goal is to divide the collection, using

the system, along the same line that human "relevance"

judges would split it. That is, of course, a corruption

of the goal which we tried to express in the first

paragraph of this chapter. The objection to the modified

goal is that there is no unique relevant subset of the

collection. This is true even if the relevance judge is

the man who needed the information. We have already

remarked that the order in which he sees the references

will affect the composition of the relevant subset. (In

this connexion, there are some interesting discussions

on evaluation in Cooper 1973, Vickery 1973, and Cleverdon

1974). The requirement to set up the very difficult

goals is modified- substantially in our favour when we can

use a computer interactively. Decisions demanding

intelligence are now achievable - the man makes them.

As for the machine, we must find out how it can best

select and present information, concerning which the man

shall make decisions.

Chapter 3

INFOP~ATION HEURISTICS

There is, at present, no prospect of creating an

automatic system capable of making an accurate record or

representation of a researcher's information requirement,

and delivering to him literature, of which it can be said,

with confidence, that it will satisfy the need. We have

seen that the fine discriminating powers of the searcher

himself might be efficiently integrated with the crude

powers of a machine in a well designed interactive system.

When considering computer-aided literature searching, it

is as well to keep in mind the fact that the final result

of a search, from the user's point of view, is a set of

documents judged by him to be relevant. Whatever device

is used to inform him of references, and however much of

the total search process is delegated (to machine or

librarian), the end-user makes the final choice, rejecting

the irrelevant. To return to figure 1 in Chapter 2

(repeated here as figure 4, for convenience), the set of

C:
N:

~~-~
~

/ \
I

~) A:
K:

\

"
/

~ _;

•

•

•

•

-·

references retrieved is a set K U N; the user will

decide which belong to K (known to be relevant) and

which toN (known to be not relevant). The success of

the search depends upon the extent to which K meets the

searcher's expectations (A). It is important to notice

that as soon as the man has made a decision, the

"uncertainty" that we introduced to discuss the problem

of totally delegated searching disappears (i.e. K c A

and N n A = ¢).

Our aim, now, is to produce a mechanical aid to

decision making, or problem solving, for the particular

task of bibliographic searching. The decisions that the

searcher wishes to make concern documents. The program

developed here shows him references to documents, one

at a time, and invites him to assess their relevance: in

other words the sets K and N are specified by enumeration.

The search should be efficient, in that the user should

not have to consign many references to the set N; and at

the s~ne time it should promote awareness of what exists

by permitting browsing among document surrogates (or

ideally the documents themselves).

1. Dialogues for reference retrieval

Few scientists rely on a single source to provide

all the information they need in their work. Among the

most efficient and most frequently used sources is

consultation with colleagues or subject specialists. In

the course of such a conversation, some information will

be exchanged - facts, opinions, and so on - and very often

a few references to literature on the topic. Menzel has

written quite extensively on the role of personal

communication in science (e.g. Menzel,1967). Regarded

as a reference retrieval device, a subject expert is

usually very precise. The process of ret_ieval by an •

expert has been studied by Olney(1962), who divides it

into three steps:

II 1) interpreting the request as a statement of some
kind of problem;
thinking up possible solutions to that problem;
selecting certain documents as relevant
according to the contribution which information
contained therein is likely to make to the more
promising of these solutions." - p10.

Olney very optimistically thought that a large biblio­

graphic retrieval system could be built on this basis.

No mechanical subject expert has emerged so far. However,

Olney's paper draws attention to an important aspect of

dialogue which is generally missing from "man-machine

dialogues", on the machine's side, at any rate. Each

participant in a conversation tries to construct a model

of the other's interest, in terms of his own view of the

world. This is the basis of the first step, above, and

it is the conceptual basis of the program, Thomas,

described in this and the next chapter. Our machine's

world-model is very simple, and ~annot be used, by the

machine, for problem solving~ It is a set of document

references embedded in a verbal context; the details

will follow a little later.

The objectives of the program are to build a model,

which must be defined in terms of its "knowledge", to

show the man parts of it, and to use his reactions to

bring the model into closer resemblance with the man's

current interest. A set of functions with some suitable,

•

•

•

•

corresponding commands is the traditional approach to

designing interactive computer software, but for this

program it seems inappropriate. Firstly, although the

knowledge structure that we have given our program is

straightforward in principle, it is potentially very

large. If its full richness is to be used effectively,

we cannot put its manipulation under the direct control

of the man; that would require huge feats of memory on

his part. Secondly, we wish to build a program which is

of use to the searcher who cannot specify what, precisely,

he wants and would, thus find it difficult to issue

commands. Actually, we have stated the view that, in

general, it is not possible for a user to specify exactly,

in advance, the attributes of relevant documents. For this

reason, the user of program Thomas does not formulate a

query •

The searcher starts by mentioning one or more points

of interest - a subject, a document title, or an author.

The program locates corresponding points in its

"knowledge" of the literature and forms the initial model

of the user's interest. The contents and various prop-

~rties of the model are·then used to determine a response

to the user: the program usually tries to show him a

reference together with some words and phrases descriptive

of the document's subject matter. In his reaction, the

searcher may assess the relevance of the document,

indicate aspects of the description in which he is

particularly interested, or ~interested, and introduce

new words. Thomas uses his assessment and any other .

inputs to update its model, and the cycle is repeated.

We shall go into the goals which the proeram tries to

achieve, and its methods in a later section of this

chapter.

From the user's viewpoint, a dialogue with Thomas •

is a browse through a collection of document surrogates,

in which he may take whatever, and as much, initiative as

he wishes. The subjects covered by the collection are

seen by the searcher through their use in describing

individual documents.

2. Modelling the user's interest

Our program creates and continuously adjusts a model

of the area of interest of the enquirer. The model is

constructed out of parts of the program's stored data

about the literature. We do not consider in this thesis

techniqu~s for incorporating new information into the

data base as a by-product of dialogues: this is not a

learning program, though that might be a fruitful next

step. A detailed description of the program is contained

in Chapters 4 and 5. In this chapter, we shall try to

give a view of the program from a higher level, so that

reasons for the various design decisions can be seen.

Let us start with the "data base", which is the program's

knowledge of the literature.

2.1 The knowledge base

We are not attempting, here, to make any contribution

to the art of indexing, or document description, so we

•

adopt the familiar pattern of associating index terms and •

author's names with document references, and index terms

•

•

-·

with each other. If we think of documents, subject

descriptors and authors as being points in space, the

association between two entities is a line joining the

corresponding points, to signify that they are, in some

sense, close. In principle, we need not restrict our­

selves to associating document and author, document and

subject, and subject and subject. We know from experience

in conventional manual literature searching that

document-document, author-author and author-subject

associations are all useful, and would be valuable assets

in the machine's data base. Neither should we necessarily

restrict our consideration to documents, subjects and

authors: corporate bodies and projects have their place

in our knowledge of the literature of a field.

Associations between entities or ideas are themselves

classifiable into various types, as are the associations

between words or other symbols. Semanticists, philosophers,

psychologists, computational linguists and librarians have

all discussed the nature of the associations, but we shall

side-step the issue, and say that two symbols are associat~d

without trying to define the type of relationship that

exists between them. This is acceptable in our retrieval

methods, just as it was in L.B.Doyle's proposal, because

"instead of depending on his [the user's] imagination to

think up a search request, he is depending on his

recognition of semantic relationships." (Doyle,1961,p577).

Whitehall(1974) has described a successful manually

maintained, growing thesaurus for an industrial research

library. Associations between terms are plentiful, but

it is left to the user to decide on the nature of the

relationships.

The program's "knowledge" is in the form of a network

with labels on its nodes. Those that are associated are

joined by lines. The important labels a::ct~ references to ..

documents, e.g.

"Medullary carcinoma of the thyroid gland. A
clinicopathologic study of 40 cases." Gordon et al,
Cancer,}1,pp915-24,Apr.73.

Other labels are names of authors, e.g.

P.R.Gordon

and subject terms, e.g.

thyroid neoplasms

We treat names just like subjects in manipulations of the

network. The relationship of a name to a document may be

that of "authorship" or "editorship", for example, and we

may think of a subject being related to a document by

"aboutness"; however, the program knows nothing of the

types of these relationships.

In the discussions and desciptions which follow, it

would be useful to have a small example network for

illustrative purposes. Unfortunately,even for very small

collections of references (20-30), the network is extremely

difficult to draw: firstly, because if it is to be at all

useful, it should be well connected, and one is then

confronted with a figure resernbling a seriously malformed

spider's web; secondly, the labels on the nodes are long,

and must be listed separately from the nodes themselves,

thus making the associations difficult to appreciate at a

glance. Nevertheless, we shall describe a small collection

in sufficient detail for manipulation later.

•

·-

(i) Example collection: "IR collection"

15 references from volume 16, 1973, of the

Communications of the ACM. Indexing derived from

• that published with the papers.

•

•

Ref.1 "On Harrison's substring testing technique"
A.Bookstein.
string, substring, hashing, information storage
and retrieval

Ref.2 "Some approaches to best-match file searching"
W.A.Burkhard, R.~.Keller.
matching, file organization, file searching,
heuristics, best match

Ref.3 "On the problem of communicating complez
information" D.Pager.
complex information, information, communication,
mathematics, proof, language

Ref.4 11 Hierarchical storage in information retrievaln
J.Salasin.
information storage and retrieval, hierarchical
storage

Ref.5 "Optimum data base reorganization points"
B.Shneiderman.
data base, reorganization, files, information
storage and retrieval

Ref.6 "A note on information organization and storage"
J.C.Euang.
data base, data base management, information
storage and retrieval, information structure, file
organization, storage allocation, tree, graph

Ref.? "A generalization of AVL trees" C.C.Foster.
AVL trees, balanced trees, information storage and
retrieval

Ref.S "Evaluation and selection of file organization - a
model and system11 A.F.Cardenas.
file organization performance, file organization
model, secondary index organization, simulation,
data base, access time, storage requirement, data
base analysis, data management

Ref.9 "Design of tree structures for efficient querying"
R.G.Casey.
tree, information storage and retrieval, clustering,
searching, data structure, data management, query
answering

Ref.10 "General performance analysis of key-to-address
transforma~ion methods using an abstract file
concept" V.Y.Lum.

hashing, key-to-address transformation, random
acce[;s, scatter storac;e, information storage and
retrieval, hashing analysis

Ref.11 "Comment on Brent's scatter storae;e algorithm"
J.A.Feldman, J.R.Low.
hashing, information storage and reo :,rieval' scatter
storae;e, searching, symbol table

Ref.12 "A data definition and mappinc; language" E.H.Sibley~
R.W.Taylor.
data definition language, data structure, data base
management, file translation

Ref.13 "The reallocation of hash-coded tables" C.Bays.
reallocation, dynamic storage, hashinc, scatter
storage

Ref .14 "A note on when to chain overflow i te.:ls with a
direct-access table" C.Bays.
hashing, open hashing, chaining, information
storage and retrieval, collision

Ref.15 ''Reducing the retrieval time of scatter storage
techniques" R.P.Brent.
address calculation, content addressing, file
searching, hashing, linear probing, linear quotient
method, scatter storage, searching, symbol table

(ii) Index term list, with associations

There follows an alphabetical list of the terms used

to index the IR collection. Most are linked to one

or more of the above references, and to other index

terms. The latter associations were ~ade arbitrar-

ily (but, it is hoped, sensibly) by the present

author.

Tern; no. Term .L.ssoc. refs 1-\ssoc. terms --
1 access time 8 21 '29
2 address calculation 15 9,34
3 AVL trees 7 55
4 balanced trees 7 55
5 best match 2 38
6 chaining 14 8,17
7 clustering 9 22,25
8 collision 14 6,26,36
9 content addressing 1 5 2

10 communication 3 33,35
1 1 complex information 3 30
12 data base 5,6,8 13,14,24
13 data base analysis 8 12 '51
14 data base

management 6,12 12,15

•

•

•

•

•

••

Term no. Term

15

16
17
18
19

20

21

22
23
24
25
26

27
28
29

30
31

32

33
34

35
36
37

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

data definition
language

data wanat;ement
data structure
dynar:lic s torac,e
file organization

file organization
model

file organization
perforraance

file searching
file translation
files
graph
hashing

hashing analysis
heuristics
hierarchical

storage
information
information

storage and
retrieval

information
structure

information system
key-to-address

transformation
language
linear probing
linear quotient

method
matching
mathematics
open hashing
proof
query answering
random access
reallocation
reorganization
scatter storage
searching
secondary index

organization
simulation
storage allocation
storage requirement
string
substring
symbol table
tree

lcssoc.refs

12
8,9
9,12
1 3
2,6

8

8
2 '15
12
5
6
1,10,11,13,
14' 1 5

10
2

4
3

1 ,4,5,6,7,9,
10,11,14

6

10
3
15

15
2
3
14
3
9
10
13
5
10,11,13,15
9,11,15

8
8
6
8
1
1
11 '1 5
6,9

Issoc.terms

14' 23
45-
6,19,32,52,55
44,50
17,20,21 ,24,29,

43

19,39,49

1,19,51
7,34,47
1 5
12,19,54
7,55
8,27,34,40

26
47

1 '55
11 '3 3

33,42

17
10,30,31

2,22,26,46
10
8,38,40

46
5,36,47,52
20,41
26,36
39
31
19,46
18,50
1 6
34,37,43
22,28,38

20
18,44,51
13,21,50
17,38,53
52
24
3,4,17,25,29

It can be seen that there are many different types of

association between terms, and no attempt has been made to

distinguish them.

(iii) "IR collection": reference table

For convenience we list the doc1ments with their

descriptions, referring to the table of index terms,

by number (the symbols appearing in this table are

used in the later diagrammatic representations of

graphs):

Doc.no. Author(s) Term nos

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bookstein
Burkhard, Keller
Pager
Salas in
Shneiderman
Huang
Foster
Cardenas
Casey
Lum
Feldman, Low
Sibley, Taylor
Bays
Bays
Brent

26,31,52,53
5,19,22,28,38
10,11 ,30,35,39,41
29' 31
12,24,31,45
12,14,19,25,31,32,50,55
3,4,31
1 ,12,13,16,20,21 ,48,49,51
7,16,17,31,42,47,55
26,27,31 ,34,43,46
26,31 ,46,47,54
14,15,17,23
18,26,44,46
6,8,26,31 ,40
2,9,22,26,36,37,46,47,54

(iv) A collection-induced clustering of "IR collection"

We use the method given by Jardine & van Rijsbergen(1971)

to generate a hierarchy of clusters of documents. The

authors are regarded as index terms for this purpose.

The principles of the method are explained in Chapter 2,

section 2.3.

"IR collection":

3

•

•

•

•

•

••

Similarity between documents is strongest inside the

inner-most ring, i.e. documents 11 and 15 are the

"closest", and becomes weaker as we move outwards. The

advantage of this type of clustering is that it forms the

basis for an arrangement, in storage, of document references

which can be used efficiently if one is content to limit

the search to one, or a very small nu::1ber (van Rij sbergen,

1974) of clusters. Van Rijsbergen claims that this is

reasonable for collections in which the "Cluster Hypothesis"

holds. Simply stated, this hypothesis is that documents

which are relevant to the same query tend to have similar

descriptions. This is a statistical phenomenon, which is

more pronounced in some collections than in others

(van Rijsbergen & Sparck Jones,1973). The design of the

program Thomas makes use of such general properties; but

it also takes account of the inevitable deviations, and

we consider that this is an important feature of it. We

shall discuss this last point again in the next section,

and the example near the end of the chapter (section 4)

illustrates it.

(v) "IR collection": part of the association graph

Figure 5 is part of the network in the neighbourhood of

the seven documents, numbered 1,2,10,11,13,14 and 15.

Documents 1,10,11,13,14 and 15 have been chosen because

they are close to one another in the clustering given

above; it can be seen from figure 5 that each of them is

within a path length of 2 lines from all the others.

Document number 2, on the other hand, is separated from

the others in the hierarchical clustering. It's minimum

"distances 11 from the other document nodes in the

Low

5

Burkhard

Figure 5.

18

Feldman

Keller
52

In this representation of part of the
network, the dark squares stand for
document nodes.

•

•

••

•

•

••

(sub)network shown are

2' 1) 3 lines,
2 '1 0 ~ 3 lines,
2 , 1 1 3 lines,
2, 1 3) 4 lines,
2, 14 ~ 4 lines, and
2' 1 5 2 lines.

Document 2 is related to the others in a way that is not

apparent in the description-induced clustering, but which

can be found by a suitable search in the network. This

is a very simple example of the sort of situation which

Thomas can handle.

2.2 Retrieval by association

Retrieval by program Thomas is associative. The user

indicates which labels interest him, and further labels

(particularly references) are selected for his inspection

from among those reachable by paths of association from

the interesting ones. There are distinctions to be drawn

between methods of the type proposed here, and the uses of

association reviewed in Chapter 2, section 2.3. On the

one hand, it has been suggested (Bush,1945) that

associative links between items should be recorded in a

machine to form "trails". As noted in Chapter 2, several

computer-based systems have been inspired by the

hypothetical 11 memex", as Bush called it. Treu(1970)

describes such a system in detail: trails are given names

for easy recall, and a recorded item may be placed in

several trails. Retrieval is guided by the user, who tells

the machine where to start and which trail to follow. He

is shown item after item, can backtrack, and may select

alternative trails. Similar facilities have been incorp-

editors En elbart et al 1973,

van Dam & Rice 1970), so that the "on-line writer" may

hop about his text, not constrained to think of it as

sequential. The search is directed entirely by the user,

and that is probably quite reasonable because, in these 4lt
systems, he, or a close colleague, was the one to set up

the trails. In a bibliographic network, the choice of

trails available to him would be bewildering. What our

program does is roughly equivalent to following many

short trails in parallel, and, basing its decision on

whatever hints the user has supplied, picking one of them

to show him. The program has ways of blocking trails

which the user does not like, and can retrieve material

on many different trails.

Other uses of association in retrieval are based on

statistical properties of the assignment of index terms

to documents (Stevens et al,1965). A brief account of

this area has been given in Chapter 2. Associations

between items are calculated, using a statistic which

measures their tendency to co-occur. Retrieval strategies

which use links formed in this way generally use only

st.rong associations: although the occasional weak link

leads to important references, more often a great deal of

irrelevant material would be retrieved. In the inter­

active search, the situation is different. A user can

increase the importance of a tenuous association if he

wishes. Statistically derivable associations of the types

used by Jardine & van Rijsbergen(1971) to cluster documents,

or by Sparck Jones(1971) to produce classes of keywords are

4lt

obtainable from the network structure used by Thomas. We

do not, however, work them out and record them explicitly
41t•

•

•

-·

in the network: it is more useful to insert what we

referred to as "semantic" links in section 2.3 of Chapter

2. The network used for trials of Thomas was obtained

from a file of bibliographic records, which supplied

document, author and subject nodes, and subject-document

and author-document links. Subject-subject links were

derived from a conventional thesaurus (ignoring the

hierarchical direction of the links). Details can be

found in section 2 of Chapter 7.

2.3 Model of context

The principle component of the program's model of

the user's interest is called the "context graph". A

simplified description of it would be that it contains

nodes from the complete network (correspondine to items of

various types - documents, authors, subjects) known to be

of interest to the searcher, and a selection of nodes

associated with those. ~here two nodes in the context

graph are joined by a line in the network, that line is

inherited by the context graph. Nodes known not to be of
~

interest are excluded. The second essential part of the

model is thus a list of all the nodes which are known not

to be of interest.

The goal of the program is to make the 11 context

graph 11 a fruitful representation of the context of the

user's enquiry. In other words, it should include the

references which will satisfy him, and should have a

structure which facilitates the selection of those

references. The two components of the model that we have

context ~ra h and the set of

unwanted nodes - can be regarded, at any staee in the

dialocue, as the current interpretation of the user's

area of interest. hlany of the program's h~uristics

require information about the history of the dialosue, •

and various sets of nodes and numerical values are

considered to be parts of the model and maintained for

this purpose. We shall introduce them as we need them

in this chapter. Chapter 4, section 2 contains a more

formal description of the model.

3. Creation and maintenance of the model

It would be as well to explain our use of the word

"heuristic", in view of its common association with

artificial intelligence studies and problem solving

programs. We do not claim that Thomas solves problems or

is in any way intelligent: it is the human user who must

exercise his intelligence. Workers in machine intelligence

describe a wide variety of programs as heuristic. Precise

definitions of the term are hard to come by. Broadly

speaking, it is applied to procedures which are based on

the programmer's knowledge and com;non sense, but which are

not guaranteed to complete, successfully, their assigned

tasks (see, for example, Simon 1965, Minsky 1968, Science

Research Council 1973). Often a program will contain more

than one heuristic procedure for the same task - if the

first fails, the next is tried, and so on. There are two

main reasons for using heuristics: firstly, it may be that

no deterministic algorithm is known for the required task;

secondly, all known, complete solutions may be far too

expensive.

•

•• I

•

•

-·

The one solution to the reference retrieval problem

which is sure to work is to present the whole collection

to every enquirer, regardless of the query, and let him

select the relevant docuffients. This is quite clearly a

ridiculous approach, but we should remember that any

more practical system, i.e. one which performs a prelim­

inary selection or sorting, must employ heuristic proc­

edures, because we do not know how a man makes relevance

judgements. A feature of heuristic solutions is that it

is usually not possible to characterize them as ripht or

wrong; we can only make comparisons and state that one

method performs better than another in certain respects.

Some of the heuristics used by Thomas, to influence the

state of its model and to respond to the searcher, have

undergone several modifications and could, no doubt, be

further improved. ~e beleive, however, that they perform

sufficiently well to illustrate a viable approach to

handling bibliographic data for information retrieval.

3.1 Using the model

Assuming that the program has formed a context

graph like the one shown in figure 6, how should a

reference be selected from it for consideration by the

user? Document nodes (from "IR collection'') are repres­

ented by black squares. The document nodes vary in

their involvement in the context graph. Some, such as

6, 9, 14, are on the periphery: most of their neighbours

in the complete network are not in the context graph. It

seems sensible to use a measure of the involvement in

choosing a reference. The other factor which we should

6

5

•
Keller

Figure 6. A context graph

consider is the degree of correspondence between the model

and the user's interest. To gauge this, the program must •

observe the reactions of the user to what has already been

* shown to him. If the recent performance of the program

has been poor, according to the user, some special correct-

ive action should be taken; but first we deal with the

case where the program is performing reasonably well.

When we are prepared to accept that the context graph

is a good representation of the field of enquiry, the

program usually chooses the reference with the highest

involvement in the model. Involvement of a node is

measured by counting the number of nodes adjacent to it in

the context graph, and dividing by the number of such

nodes in the full network. Here are the values for each -----------·­* see Chapter 4, section 3.2.1

•

•

•

document node in the graph of figure 6:

Reference
number

2
1

1 1
13
14
10

9
6

Invol vern.en0
measure .L-!

1 • 0
·4
·286
• 2
·167
·14 3
·125
• 111

The user would be shown reference 2 - "Some a.f-'PY'ODC:hes to

best-match file searchinc" by :Durkhard & Keller - m1less

he had already seen it earlier in the dialogue. To be

precise, one should say that the program picks the most

hit;hly involved node which has not already been displayed,

if such a node exists. This choice is intended to achieve

the short-term goal of giving the searcher a relevant

reference. If the reference selected proves to be of no

interest, there are, at least, good prospects of being

able to reduce the size of the context graph, because

several nodes on display are in the context graph and ~a~

be eliminated as a result of the user's negative response.

A searcher who is collecting references du~ing a

dialogue with a computer is unlikely to want a large

m.1.1~<ber of them. This provides us with a motivation for

trying to keep the context graph small. We take what

opportunity we can to delete nodes, and place limitations

on the incorporation of new nodes. At various times, the

context graph is inadequate as a source of relevant

references, and more nodes must be added if the dialogue

is to continue. The user may take the initiative by

spontaneously supplyine a new subject term or author's

na:ae, for instance, but v1e should not rely on his ability

to do that. The program will encouraee growth of the

context eraph in the vicinity of nodes which are known •

to be of interest. References are not usually displayed

more than once in a dialogue; but if the proeram's

performance is unsatisfactory, or if the context graph

contains no further document nodes, a reference in which

the user has previously shown interest will be chosen and

displayed again. In this case, the user is remi~ded that

he has already seen the reference and is asked to

reconsider it. We know that a searcher's criteria for

judging the relevance of documents and the usefulness of

subject terms are affected by the co~rse of a search, so

his response to the second occurrence of the reference

may bring about a significant change in the context &raph.

If no reference is available for review, he w.i 11 be shown •

a subject or name which he has entered or previously

selected, together with all associated subjects or names.

These actions on the part of the prot':ram seew to be the

n~tural way to promote "course correction", and their

effectiveness will now depend upon the use nade of the

man's responses to the displays. We discuss this in

sections 3.2 and 3.3.

Returning to fieure 6 for an example, let us suppose

that the searcher has, at an earlier stage, approved

reference 2, but that the d:.alogue is not proceeding so

well now. The program displays reference 2 again.

•

•

•

Please reconsider this document:

Some approaches to best-match file searching.;
Burkhard et al, CACJ,I 16, 1973.
1. W.A.Burkhard, 2. R.hl.Keller, 3. best :::qtch, 4. file
orcanization, 5. file searching, 6. heu:~stics,
7. matching

~hereas up to this point, the search may have been

concentrated on the aspects represented by "best match",

"heuristics" and "matching" (term nos 5, 28 and 38 in

figure 6), the user may now consider it lliore profitable

to look into "file organization" (term number 19). The

effect of indicating this to the program is that several

new subject nodes (such as "data structure", "file organ-

ization model", "files", "random access") and associated

document nodes will be brought into the context graph,

which will become much denser in the region of subject

node 19 •

We have ment~oned two kinds of inadequacy in the

model of the user's interest:

(i) The context graph contains no docunent nodes that

the user has not seen,

(ii) There is an ill-defined lack of correspondence

between the model and the query, as revealed by

poor performance in the dialogue. The context

graph contains too many nodes which are not of

interest.

There is a third state of the model which we regard as

unsatisfactory:

(iii) The context graph is not connected; that is, it

-~ contains pairs of points which are not reachable

85

from each other by any path within the context

graph.

It is assumed that the user is not attempting to conduct

two or 1nore totally unconnected searches at the same time. •

'.'Jhat is usually referred to as a "rnul ti-aspect search"

arises when the enquirer wishes to establish, or find, a

link between ideas, or when he cannot express the concept

that he has in mind in a single phrase, recognizable by

the retrieval system. If our program can find a set of

nodes in the network which form a bridge between otherwise

unconnected parts of the context graph, these could lead

to the retrieval of important references. We shall come

back to this topic in section 3.3, and in Chapter 4,

section 3.2.5, where a method for attempting to establish

bridges is discussed. Here, we consider t~e selection of

a docwnent node for display, in the situation where the

context graph is not connected. •

A document node with a high involvement in the model

would be "central" to just one of the connected component:

of the context graph, and we would expect it to be relev;-•

to one aspect of the query, thoush not necessarily to be

very useful in solving the searcher's underlying problem.

At the other extreme, a document node ha··.,ring very low

involvement is likely to be non-relevant. In 'I'homas, v.'e

opt, rather arbitrarily perhaps, for the reference with

involvement closest to the average for all the unseen

references in the context graph. The user may recognize

a term which reduces, or even closes the gap between

components.

As an example, consider again figure 6, and suppose

•

•

•

that subject node 52 ("string") and document node !1 have

been rejected. The new context graph is shown in figure 7.

In addition, we assume that references 1 and 2 have been

displayed already. The two aspects of the .;;:_:,del might be

represented by the title of document 2 and index term 26;

5

Burkh;::;rd
-----~0

1

47 Keller

26

9

10

component a component b

Figure 7.

namely, "Some approaches to best-match file searching" and

"hashing 11 • The references which are candidates for the

next display, with their involvement measures, are:

Reference Invol vementl
number measure

13 ·2
14 ·167
10 •143

9 •125
6 • 111

average ·149

The reference with involvement closest to the av2rage is

number 10, in component a. Two of its associated subject

nodes (34 and 43) are also adjacent to subject nodes in

component b. Term 34 ("key-to-address transformation") is

linked to term 22 t"file searching"), and term 43 t"random

access") is linked to term 19 \"file organization"). If

neither of the terms 34 or 43 were acceptable to the user,

these routes between the components would be blocked and

attempts would be made to find another.

3.1. 1 Document similarity

When a user judges a reference to be relevant, there

are two obvious, sensible approaches to selecting the next

reference. Firstly, we might say that the model is a

good representation of the area of interest, and make

another selection based on involvement, as de~cribed

•

above. Secondly, we might assume that van Rijstergen' s •

Cluster Hypothesis holds, and find the document most

similar, in terms of associated subject nodes, to the one

just displayed, regardless of the context graph. The

second method may select a reference which is not in the

model. The program Thomas is capable of either procedure~

or a mixture of the two.

The similarity measure finally used for the second

method is the latest of a sequence of trial functions.

It takes account of the searcher 1 s expressed interests

and, in a crude way, the usefulness (specificity) of

index terms. The measure is given formally in Chapter 4,

section 3.3.2. It is based on the extent to which

documents share associated subject terms. Greater weight

RR

•

•

•

••

is given to subjects which have been 2ntered by the user,

or selected by him from displays. Ter:ns which he has

rejected, but are nevertheless associated V'; th the

relevant document, are disregarded. Initially, no account

was taken of the frequency of use of the terms in describ­

in~ the collection (the term postings). A small number

of very highly posted terms n1ade nonsense of the similarity

measure, however, and they are ignored by the final version

of the similarity function unless explicitly mentioned by

the user. The test collection for this project 1: :::;o_s derived

from Medlars data, originally prepared at the USA National

Library of ~edicine. The indexers for that system consider

a small number of common medical words, called ~heck tac~~

for application to every document. A complete list of the

check tags occurring in the test collection is given in

Chapter 7, section 2. It includes, among othe:cs, HUI<!AN,

iliAl.E, J!':Sh'iALE, CHILD and ANI!iiAL EXPERIL:ENTS.

Should we, then, use the normal procedure for pickinr

a document node from the context graph, when the user has

approved the last reference displayed; or should we use

the similarity function? The main disadvantage of a

similarity function of this type, for our :purposes, is th:i~

it takes no account of the associations between terms.

Infor~ation about the nature of associations is not

recorded in the data base, but in the context of a partic­

ular search, a user may treat two terms as exact equival­

ents. The similarity measure ignores this possibility.

On the other hand, similarity between documents will often

be registered on the basis of terms to which the user is

indifferent. If these terms are the only contributors to

the measure, we should not expect the tl si:;dlar" 6oc"llmcn·:;

to be relevant, unless the value were particult::r1y hic;h.

This suggests that we should only choose the document

most similar to the one last displayed if the similarity •

measure exceeds a certain threshold. Otherwise, we pick

a document node from the context graph. The formal

definition of the procedure is given in section 3.3.2 of

Chapter 4.

If the similarity threshold is zero, the similarity

function will always be used after a judgement c

"relevant" by the user; if it is (effectively) infinite,

the similarity function will never be used. Experiments,

like those described in Chapter 7, sections 4 and 5, in

which the threshold was varied from one extreme to the

other, indicate that the overall performance of the

system varies only slightly with threshold value; neither

extreme gave the best performance obtained. (The differ- •

ences in performance are not statistically significant).

To first try the similarity function, find that no

document is similar enough to the one previously display0

and then use the node involvement measure to choose a

document, is rather an expensive procedure. We could

remove the application of a similarity measure altogether

without significantly degrading the retrieval effective-

ness of the program.

3.2 Displays and messages

We have aimed for a very simple form of dialogue.

The user's statements to the program are of one basic

form, which is designed to be the vehicle for his response ·-

•

•

•

to a displayed reference. In other circumstances, when no

reference has been shown to him, a degenerate form of the

statement is appropriate. The syntax of tte user 1 S

statement has received little attention, and is very

simple.

A message from the user is analyzed into three types

of information, any or all of which may be absent. If he

has been shown a reference, he may wish to say whether he

is interested in it. He rnay also wish to single out

certain aspects of the document description as tcing of

particular interest, or definitely not of interest.

Finally, he may have thought of a new ter1o, author or title

which may lead to further useful references. The display

format of selected references is geared to these require-

ments. The label on the document node comes first, consist-

ing of its title and information needed by th6 user to find

the full document. This is followed by the labels of all

the personal name and subject nodes associated with the

Jocument. They are numbered in the display so that the

user may easily refer to them. Let us illustrate this

with an example from "IR collection". Reference 1 would

be displayed like this:

----,

On Harrison's substring testing technique.;
CACL: 16, 1973.

!
:Eookstei_n, i

I 1. A.Bookstein, 2. hashing, 3. information
retrieval, 4. string, 5. substring

st:Jrat;e and 1

J
Some responses that the user may make to this are as

follows:

Coiilments

(i) Yes He is interested; we sha1 J. as;.slU:lc"':

that all the num1JE:):·ed i teou:.:: are

(ii) Yes, 2 is interested in the reference~ • of interest.

and particularly in "hashing". We

make no assumptions about the

other numbered items.

(iii) Yes, Harrison Ee is interested in the document,

and presumably all the : :F::hered

items; and a new name is intro-

duced, suggested to him by the

title.

(iv) No The reference is not relevant;

none of the numbered iteffis are of

interest.

(v) l~o, 4 He is not interested in the rsfer- • ence, but "string11 looks promisitl.C ~

the other items are assumed to ts

of no interest.

(vi) Yes, 1, not 2 The reference is relevant; part-

icularly interested in author

Dookstein; "hashin; 11 is of no

interest.

lvii) 11,5 He is making no comment about the

reference, but is interested in

"string" and "substring".

(viii) 'string matching', He makes no comment about the

'patterns' reference or the numbered

i terns, but i_ntroduces two new ·-

92

•

•

•

(ix) [null message]

terms.

The ue>er makes no comment; he is

indecisive and presumably wishes

to see what will cooe up next.

The program's interpretation of the user's message is

given precisely in Chapter 4, section 3.1. It should be

pointed out here that assumptions in the "comments"

column concerning numbered items which the user does not

~ention are simplifications, and are in fact modified by

information which he has given earlier in the di2lo~ue.

If, instead of displaying a reference, the program

displays a group of subject terms, the responses ''yes"

and "no" are inappropriate, but otherwise the same

statement form can be used. There are occasions when

nothing has been displayed: (i) at the begi~ning of the

dialogue, (ii) when all heuristics for selecting nodes

for display have failed, and the program is forced to ask

the user to take the initiative. The user must then

supply one or more new names or terms; relevance judge­

ments have no meaning.

A point to notice about the displays is that nodes

which have previously been rejected by the user arc not

baiTed from appearing among the numbered items. The

reason for this is our uncertainty of the status of these

nodes. A user may say that the term "hashing" represents

an aspect of a document which does not interest him.

~evertheless, there may be, in the collection, a useful

document which touches upon the topic of hashing,

incidentally so far as this user is concerned. Just as we

cannot be certain that if a document is indexed by a

particular term then it is relevant, so, ccually~ we

cannot be certain that the presence of any partic~lar

term implies that a document is not relevant. In fact,

is not at all unusual for a searcher to discover that a

term, hitherto dismissed, is a useful hook for fishing

out relevant references.

3.3 ~edifying the model

Throughout this discussion, it should be remembered

that the "deductions" that we can make from the 'Jser' s

messages are never very strong. We must be prepared for

the user to change his mind. If growth of the context

it

graph is inhibited in some region, it should not be too

difficult to break through if the user appears to contra-

diet his earlier statements. The assumptions made about

the user's interests, as given above, are use~ to compile

•

three sets of nodes (in the main network). Firstly, there •

may be explicit, textual requests in his statement, and

the nodes with corresponding labels are found (cetails

of this process are given in Chapter 5, sections 1.1 and

1.2). The second set contains all the nodes, represented

in the last display, in which he is assumed to be in~ersst-

ed, and the third set all those nodes in which, it is

presumed, he is not interested. Not every item in the

previous display is necessarily contained in one of these

sets: there may be some, concerning which no assumption

should be cade. 1'he sainple responses listed in the section

above illustrate cases of this type. ~e shall refer to the

sets as "requested", 11 Selected" and "rejected" nodes resp-

ectively. •

•

•

•

The rejected nodes are used to deteridne w1v:re the

context e;raph shall be "pruned", and where future growth

shall be inhibited. Even nodes previously requested or

selected may be removed from the context 0 J_,,ph: the user

nmst state, explicitly, that he is no longer interested

in them. The removal of a node from the context graph

brings about the removal of all lines incident with it.

Thus, the context graph '3iay become unconnected. l'.'igure

8 is a particular context graph derived from the "IR

collection". The document node most "involved" is

number 10, so it is displayed with all its neighbours

in the complete network:

General performance analysis of key-to-adoress
transformation methods using an abstract file
concept.; Lum, CACM, 16, 1973.
1. V.Y.Lum, 2. hcshing, 3. hashing analysis,
4. information storage and retrieval, 5. key-to-address
transformation, 6. random access, 7. scatter storage

40

27

43

Figure 8.

There follows a table of correspondences between display

identification nunbers and subject node numbers:

display no.

2
3
4
5
6
7

subject node no.

26
27
31
34
43
46

It can be seen that some of the items in the display

(1, 4 and 7) are not in the context graph. Let us suppose

that, in response to the display, the user ty_f".JE:~':

not 2,4

It is assumed that he is not interested in subject nodes

26 and 31; no assumption can be made about the document

node (10) or any other associated node. Subject node 26

is removed from the context graph, which becomes

unconnected (figure 9). The other rejected subject node

(31) is not in the context graph, but the program will

remember that it has been rejected and will not allow it

to join the context graph at any later stage, unless the

user subsequently requests or selects it, i.e. changes

his mind.

27

43

Figure 9.

96

•

•

•

•

•

•

Nodes selected from the display by the us2r will be

added to the context graph, if they are not already

contained in it. If their use had previously been inhibited,

it would no longer be so. As with nodef 'Orresponding to

the user's textual requests, selected nodes are given

special status for use in future manipulations of the

context graph, choices of nodes for display, and interpret­

ations of the user's responses. In addition to the actual

nodes selected, which are subject and author nodes, the

program incorporates in the context graph any :ocument node

which is associated with a selected node and which is not

already in the model. Now, this rule needs qualification.

It was found that the "check tags'' (see section 3.1.1)

once more caused trouble. If a check tag is selected, and

all its associated document nodes brought into the context

graph, the model becomes very large and much of its bulk

is irrelevant. JJany documents are linked to several check

tags, and could have a high involvement measure within the

context graph purely on the basis of the check tags. The

program, therefore, only incorporates in the context er~

document nodes associated with selected nodes which are

not check tags. We should make it clear that check tag

nodes naay occur in the context graph and be taken into

consideration when calculating the involvement of document

nodes. They are not, however, used to bring new documents

into the model.

The action taken with requested nodes is similar.

The nodes themselves are included in the context graph,

and so are all non-inhibited nodes, whatever their type,

which are associated with those among them that are not

97

check tags. If, for example, the request is for

"searching", the nodes incorporated in the context graph

(from "IR collection") \vould. be document r; .des 9, 11 ;,:;_nd.

15, and subject nodes "file searching"(22), "heuristics" •

(28), "matching"(38) and "searching"(47). A result of

the method of handling requested check tags is that • .C'
l.i.

the user's initial request is for one of these very highly

posted terms, then the program responds in very much the

same way as a man would - it will not attempt th refer to

the literature until a more specific request has been

made. Suppose, for instance, that "information storage

and retrieval" is a check tag: it is the most highly

posted term in "IR collection". If the user types just

that term, the context graph created is simply the single

node:

31
0

Since there are no document nodes to choose from, Thomas

will try to stimulate the user to give more topics of

interest, with the display:

Consider these subjects: l
I

1. information storage and retrieval, 2.
system, 3. query answering

informationj

When the searcher's statement has been interpreted

and used to influence the model, the context graph is

checked for connectedness. ·,·re have already argued the

•

•

•

•

••

ca::>e for tryinc to waint2.in a connected context c,r~ph

(section 3.1). Eefore selecting a reference for display,

the program atterupts to join up the connected components

of the con text graph, if there are wore tL,;l one cf thell1,

by incorporating new nodes from the network data base.

The method used by Thomas is descrited in section 3.2.5

of Chapter 4. Before any attempt is made to find paths

between components (an expensive process), the context

graph is examined with the object of discarding very

small components of no particular interest. ~n~cie are

defined to be components of less than three nodes, none

of which have been requested or selected by the user.

Such components are usually separated from the main body

of the context graph when rejected nodes are deleted. In

figure 9, two small components have been formed in just

this way. If subject 44 l"reallocation") has been request­

ed or selected by the user, but 40 ("open hashing") has

not, the context graph would be reduced to that shown in

figure 10. Reference nurnber 10 has been displayed, and

subject nodes 26 and 31 are inhibited from joining the

context graph.

44

'2.7 0 15
10

2

43

Figure 10.

99

The next step is to find a short path between the two

components. The path length is restricted to two lines in

our program; firstly to limit the amount of computa.tion

needed, and secondly to ensure a hit:;h li1c -,.hood of creat-

ing a useful bridge. The procedure employed starts by •

finding, for each component, the set of nodes adjacent to

the non-check tags in the component, excluding inhibited

nodes, and nodes already in the component. For the two

components in figure 10, the sets are:

{Bays, 18, 46, 50}

and {Lum, Brent, 9, 19, 22, 31, 36, 37, 46, 47, 54} •

The numbers are all subject node numbers. J:'hese sets are

intersected, and an elenent chosen from the meet, giving

preference to document nodes. This element forms the

bridge between the two components: it is associated with

at least one node in each. Note that when th•c:re are more

than two components to join together, it is not necessary

to find a bridge between each pair. In our example the

bridge must be subject node 46. This is added to the

context graph in the .same way as selected nodes are, i.e

accompanied by associated ciocument nodes:

11 ::';

44~

43

27

Figure 11.

100

•

I

•

•

••

The document node HJOSt involved in the context r:::r::lph in

fiGure 11 (after 10, which has already been displayed) is

no. 13, so the next display will be:

·----------------------- ···-------·-·---··-

The reallocation of hash-coded tables.; Bays, CACU, 16
1

1973.
1. C.Bays, 2. dynamic storage, 3. hashing, 4. realloc- ·
ation, 5. scatter storage I

1-----------------------·-·---·--------·--------------····-J

4. A search (example)

We conclude this account with an example, using "IH

collection". Any search in such a small collection is

bound to appear artificial, or contrived. On the other

hand, one can follow the processes easily. We add a little

more information to the specification of the data base:

the two most frequently posted terms ~"hashing" and

"information storage and retrieval") are designated check

tags.

The search is for documents which may have a bearing

on techniques for inexact watching of d&ta. Let us say

that the user will judge documents 1 and 2 to be relevant.

A glance at the collection-induced clustering given in

section 2.1 will show that these two documents are quite

widely separated, and that a retrieval technique based o:.

that clu:tering would not be satisfactory for this search.

In fact, the two document descriptions have no subject

terms or authors in com~on. The search which follows lacks

realism largely because so many terms are associated with

only one document •

User: 'inexact string matching'

l Thomas =I'-_n_o_y_o_u_m_ean ._s_t_r_J._· n_g_? ______ _
-.- .. c·---·--------·-----~

The program has not been able to find a better

phrase, and the user accepts •string' as an

aspect of his enquiry.

User: Yes

Thomas: Initial context graph is the star surrounding

subject node 52 ('string'). Note that the

aspects "inexact" and "matching" are not yet

known by the program as being of interest.

38 17

The rnost highly "involved." document node is

chosen for display. (It is luck that in this

case it is a relevant one).

On Harrison's substring testing technique.;
Bookstein, CACM, 16, 1973.
1. A.Bookstein, 2. hashing, 3. information
storage and retrieval, 4. string, 5. substring

User: Yes

Thomas: All numbered items·in the display are added to

the context graph. No new document nodes are

added, because subjects 26 and 31 (2 and 3 in the

•

•

display) are check tags, and the other items are •.

only linked to document 1.

•

•

•

User:

38

3ookstein

52~

~17

The program looks for a document (in the whole

collection) similar to no.1 - and fails.

There is no other document in the context graph,

so the program suggests subjects adjacent to 52

('string'):

Consider these subjects:

1. string, 2. data structure, 3. matching,
4. substring

2,3,4 He is interested in all

of them.

Thomas: Subject nodes 17, 38 and 53 (2, 3, 4 in the diE '.v)

are added to the context graph with their assoc~a~ ~

-

document nodes:

Bookstein

)8
2 [J----0

12 -·

User:

Involvement measures of unclisplayed docwnent

nodes are:

doc.9
doc.12
doc.2

·25
·167
·143

Docwnent 9 represents the data structure aspect

of the topic.

..

I
Design of tree structures for efficient querying.; I
Casey, CAC!,;;, 16, 1973.

1

1

1. R.G.Casey, 2. clustering, 3. data management,
4. data structure, 5. information stor?ge and I
retrieval, 6. query answering, 7. searching,
B. tree

__ j

7,8 He is non-committal about

the reference; 'searching'

and •tree' could lead to

references.

Thomas: Subject nodes 47 and 55 (7 and 8 in ~he display)

are added to the context graph with associated

docwnent nodes:

6

•

•

••

•

-·

•

User:

Involveoent measures of undisplay~d docu~ent

nodes are:

doc.11 •429
doc.6 ·222
doc.15 . 2
doc.12 ·1 67
doc.2 ·14 3

Now we follow up the hashing aspect of document

no. 1, with document no. 11:

Comment on Brent's scatter storage algorithm.;
Feldman, et al, CACM, 16, 1973.
1. J.A.Feldman, 2. J.R.Low, 3. hashing,
4. information storage and retrieval, 5. scatter
storage, 6. searching, 7. symbol table

(Note that, although 'hashing' and 'information

storage and retrieval' have contributed to the

selection of this reference, as check tags they

played no part in bringing it into the model)

No

·:rhomas: Document node 11 and subject nodes 215 and 31 are

removed from the context graph. Use of the

following nodes will be inhibited: doc.11, names

Feldffian and ~ow, subjects 26,31 ,46,54.

Eookstein

53·(")-----;

2

5~6

User:

Involvement measures:

doc.12
doc.2
doc.6
doc.15

Note how the hashing aspect has cubsided.

return to data structuring with document no. 12:

A data definition and mapping languaGe.; Sibley,-l
et al, C.A.Cl.l, 16, 1973.
1. E.H.Sibley, 2. R.i'i.~aylor, 3. data base J
management, 4. data definition language, 5. data ..
structure, 6. file translation

No ~he only topic of

interest is 'data

structure', and he has

already indicated that.

Thomas: Document node 12 is re1noved from the context

2

graph. Use of the following nodes will be

inhibited: doc.12, names Sibley and Taylor,

subjects 14,15,23.

Bookstein

Involvement measures:

doc.2
doc.6
doc.15

·143
• 111
• 1

•

•

•

•

•

-·

User:

·------···----------~

~or:1e approaches to best-match file searchinc.; !I

Burkhard, et al, Cil.Cfi,, 1 6, 1973.
1. ·N.A • .Burkhard, 2. R.ti • .r~eller, 3. beet ::"J3tch, ,
4. file org::'.nization, 5. file sea·~ ·.]•ing,
6. heuristics, 7. matching

----·-----------·---·-----·------

Yes, not 4 This is the second

relevant document.

Thomas: All of the items in the display, except that

numbered 4 (subject node 19), are added to the

context graph, with associated document no1es.

Subject node 19 is inhibited from further use.

53

5

6
.Burkhard

Keller o

We shall leave the dialogue at this point, and give a

summary of the state of the model by listing the subjects

in the context graph:

53 substring
52 string
17 data structure
55 tree

5 best r:1atch
38 matching
47 sec.:rching
28 heuristics
22 file searching

and the subjects whose use is inhibited:

14
15
19

data base management
data definition language
file organization

23 file translation
26 hashing
31 information stora~e and retrieval
46 scatter storage
54 symbol table

5. Surr:mary

'S e have given, in this chapter, a description of a

program, called Thomas, with which a man can conduct a

dialogue, serving to assemble a set of references relevant

to his problem in hand. The philosophy behind the design

of the program has been discussed: the concepts of (i) a

dynamic model of the user's interest, (ii) browsing among

document surrogates rather than through an indexing

language thesaurus, and (iii) thereby doing away with

coherent query formulation. The program represents

another approach to the integration of man and ~achine in

one system.

In the next chapter, the rather informal description

given above is complemented by a more precise definition

of the important functions of the program.

•

•

••

•

•

•

Chapter 4

FUNCTirnlAL D~SCRIPTION OF THOUAS

In this chapter, we ~ive a detailed description of

the reference retrieval program, without giving much

attention to techniques or considerations of implement­

ation. The program has undergone one major upheaval and

several minor ones to reach its present state, but very

little will be said about its history. Similarly there are

many ways in which one could tinker with the program, none

of which will be discussed here.

Broadly speaking, there are three components to the

system: (i) the "data base'', or bibliographic file, which

is its stored knowledge of the literature, and is, for the

present experiment, static; (ii) the model of the searcher's

interest, which exists only for the duration of a search

and develops as the dialogue progresses; (iii) the program,

which uses the data base and the searcher's input to create

and maintain the model, and uses that to select helpful

references.

1. The "data base 11

The bibliographic data which the program handles should.

be regarded as being attached to the nodes of an undirected

graph. Let us call this the supergraph, because we shall

frequently want to talk about parts of it (subgraphs and

subsets of its nodes); it is a labelled graph.

Formally, the supergraph, S, is a triple (N,L,A), in

which:

N = { n
1

,n
2

, • • • np}, a set of p points,

L =

A =

{11,12, . . . lp}, a set of p labels, one for

each point in N (i.e. there is a function, f,

mapping N onto L· f:N .-.L),
'

{{ n,rn} : n,m ~ N and {n,m} is pre~:ccibed anc n:fm },

\.r-~ .. ;\ !'.r~\.. tlt. IJJlC)J'tJt;I~f_:d l:J<_.tLJ.·;J (.>L tiLuL.iJlL"L .l'''ir1f!1

in N (not necessarily 9-ll such pairs) - the

lines of the graph.

We shall be particularly interested in the sets, S. l

(1~i,p), of points adjacent to each point,

1.1 Labels

n.' l
in N:

The labels, 1
1

, 1
2

, etc., are bibliographic. Some

stand for documents, and contain the type of information

which usually occurs in a citation, some consist of the

names of authors, and others stand for subjects or topics.

In the data base under consideration all labels are deri veci

from the biblioGraphic description of a collection of

documents in the field of medicine and the indexing VOC[.~-

ulary associated with that li .. edical Subject Headings fro:n

LEDLARS and synonyms from the Medusa system).

A label is structured data, or, in traditional term-
'

inology, a record. There are three types of label,

distinguished by a type indication; they are as follows:

Type 1 (author label): contains a name (usually a

surname) and initials.

Type 2 (document label): contains the title (a

phrase), a reference to the document's

location in, e.g., a journal (a character

•

·-

•

•

•

strinc;), and the "citation number" of the

record in the J.'~DLARS file from which the label

was derived (an integer) •

Type 3 (subject label): contains a teru or phrase.

With the exception of the citation number, all the compon0nts

of the various labels are character strings of arbitrary

length.

As bibliographic records go, our "labels'' are exceed­

ingly simple. Library cataloguing methods typically

distinguish 50 "fields'', from which an individual record

may have a selection of some 20. The supreme exarilple of

complexity in record design in this area is surely the

i.iARC (Eachine ~eadable Catalosuing) record developed by the

Library of Congress and the British National Bibliography

(Gorman & Linford,1971) • .E.ut that record structure was

intended for an indefir.itely large number of applications,

and the label we are discussing is not. There are no more

types of label nor subdivisions of data within labels than

are required by the program.

Some examples of labels:

(i) author labels:

(name:" Hewetson", initials: "Jl"n),

(name: 11 S chul te-Ho 1 thaus en 11 , initials: 11 H").

(ii) document labels:

(title:"Distinct projections to the red nucleus from

the dentate and interposed nuclei in the monkey",

reference:''Flur:Jerfelt et al,Brain Res,50,408-14,

28 Feb 73 11
,

citation number:144189),

l

(title:"<Systernic venous insufiiciency • .A D8W and

rare syn1rome) 11
,

reference:"Groen et al,Phlebologie,25,399-406,

Oct-Dec 72",

citation nu;nber: 14 3603).

The angle-brackets in the second example indicate

that the title is a trar1slation from a language other

than English.

(iii) subject labels:

"hemagglutination inhibition tests",

"rabbits",

"brain injuries, acute".

The way in which the collection of labels present in the

•

experimental supergraph were chosen and obtained is described

in section 2 of Chapter 7.

The mapping f;1i_..L mentioned above can be regarded

as the "accessing function". The points n. are "addre2seF"
l

which the function fuses to access the labels 1 .• l

1 .2 Lines in the supergraph

As the definition of A, above, implies, any distinct

pair of points ~ay be associated. There is no refe~ence to

the label set, L, and it should be noted, in particular

that there is no restriction on the combinations of types

of points that are linked (the type of a point is the type

of the label attached to it). In the experiment, certain

combinations happen to be absent, e.g. author-subject,

but this should be regarded as a quirk in the data

•

conveniently available for constructing the supergraph. •

•

•

••

Unlike a point, a line has no label attached to it.

r"'ie;ure 12 is a pictorial irru.1:_:e of ~ of ·the neic;hbourhooG.

of a document node in the supercraph used for the

experiments. Points and lines have their vious

representations. It should be remarked that a relatively

sparse part of the supergraph was chosen for this figure,

and even then ruthless pruning was necessary to produce a

readily assimilable figure. 72 distinct points adjacent to

those in the figure have been omitted (includine; all with

author labels).

2. The model

The supergraph described above is the program's entire

"knowledge" of the literature which a user may peruse. L

model of an enquirer's interest develored by the program

m-ust be in terms of that "knowledge": somethint; which is

derivable from it, and which can be used to determine what,

in the data base, should be shown to the user. In addition,

it must be such as can be modified to reflect information

gained from the user's responses. Ve shall now list thr

co.:1ponents of the model; further details on hov: they ar·,

n;c.,intained will be given later when t!1e progra·:J's operation

iS descri -bt::d • r_rhe definitions which follow 2.re in terms Cll

ths supergraph S = (N,L,A) -see section 1, above.

(i) context graph. This is an unlabelled subgraph of s.

It is the maximal subgraph induced by a subset of

the points inS. Formally, the context graph is a

pair of sets Gc = (H 0 ,A0), \vhere l~c c l~ and

A
0

= {{n,m}: {n,m} EA and. n,m ENc}· In other words,

D1

0-------------o---------~

S7 S8 D4

Key (i) document labels (~itle p&rts only):

DO: "<Design of an evaluation questionno.:i.re for ped­
iatric nursing students)"

D1: "Towa.rd defining the end product of wedical
education"

D2: "H.eliabili ty and validity of su"bjecti ve evaluatl (,.-
of baccalaureate program nursinc; stuO.ents"

D3: "Introduction of concepts of measurement and
statistics to sophomore m:rsinG students"

D4: "Quality-of-care assess~Ent: chorsing a method fo~
peer review"

•

•

D5: 11 Evaluation of the American board of pediatrics
oral examination by candidates after completing itll

(ii) subject labels:

S 1 : 11 Education r;:,easureE1en t"
S2: "J!"e.cul ty, nursing"
S3:"Students, nursing 11

S4: 11 Curriculum"
S5:"Evaluation studies"

S6: "Achieve:llent"

S7:"Psychology"
S8:"Judgement"
S9:"Problem solving"
S10:"Education, medical"
S11: 11 Education, nursing,

baccalaureate"
S12:"Education, medical,

undergraduate"

Figure 12. The neighbourhood of'a document node (DO) in
the supergraph. (See text).

·-

•

•

-·

the context r,rz1ph contalns so:ne sutz~E::t. of the points

in the Sclp c~rcrc:.ph, to r_;e ther with ~ill the Jines

~hich coDncct those points in the supergraph. A

change to the context graph can be ~~~cified ~imply

by giving the set of points to be sdded to, or

rernoved from it; the lines to be addt.:d or removed

can be deduced.

(ii) unity. A truth value indicating whether the context

graph is connected, or not.

(iii) exulicit requests. This is a set -,f points

either matching the user's expression of his interest

(see section 3.2.4) or selected by him from displays.

(iv) inhibit ~· A set N1 c H of points explicitly or

implicitly (by heuristics given below) rejected by

the user. "."hen points are being :~ddecl to the conte:·:t

graph, those belonging to N1 are inhiti~ed •

(v) last selected. A set of points l{Lc:N selected by

the user (sometimes implicitly) from the last

display.

(vi) good documents. This is a set of points with

document labels, DG c: H, which have been displayc:l

to the user and elicited explicit ~pproval from him.

(vii) accepte~ documents. A set of document points,
'

DA c N, which have been displayed, and about which

the user has been non-committal.

(viii) reviewed nodes. There are occasions when the program

chooses to display a node for the second time for

the user's reconsideration. The set, NR' of

re-displayed nodes is maintained by the program.

(ix) uerformance. A number reflecting the history of the

user's reactions to the procram's choices ·f ~~at

to show him.

At the beginning of a search, all the sets in the mo~el

are made eropty. The following relationshi:p::.; bet..\·ecn the •

sets are then maintained:

NC n HI = ¢

NEcNC

D (\ F
A I "'I

= ¢

= ¢

- 0

= ¢

(and hence = (/1)

In other words, non<~ of the points in the inhibit list z:t:t·e

also in the context graph, all explicit requests are in the

context graph, and the inhibit list, last selected, good

documents and accepted documents are mutually disjoint sets

of points.

3. Profram function

The reader is reminded that this chapter is not

concerned with implementation details, but rather to gi' ·

a reasonably cornprehensi ve uncL:rstandinc: of the; prograrr.' s

design. Decisions made during the design were made on ~he

basis of such factors as the results and experience of

others as reported in the literature, feasibility of

effective il::.pl cwenta tion, and comnon sense (which still

sser:s to have a sit:,;nificant role to play in this subject).

So~e of the features which govern the effectiveness of the

•

system have been parameterized for convenient adjustment

in experiments. The program was. designed from the top, •.

downwards, i.e. by procressive refinement, and this

•

•

•

description will follow the procram structure tLr.:ough ths

top f e ·u 1 eve 1 s •

There is very little to say about the top-Gost level

of the progru:n; .it opc:ns the disk files e;oH <.aining the data

base and calls upon the topic search procedure as many

times as the user requires. We move straieht on to the

topic search procedure (an Algol-like notation is used for

the description of algorithms):

procedure TOPIC_SEARCH;

begin SET_UP_i.10DEL;

repeat lJ.:::PnOVE_LCDBL

until USER SATI3FIED

end.

At the beginning of each search, all the sets in the model

are n;ade empty by SET_UP_LODEL. The program is saying, in

effect, "I know nothing about this user's interest". The

structure of, and terminology used in the above procedure

indicate the nature of the goals which the program tries

to achieve - to improve its model, and tbus, eventuallyt to
-

c;et the user to express satj_sfaction. One I~;ig:r~t ~2? th::-.t

it is incidental to the oain goal of Il•1PROVE_L:ODEIJ that it

shows the user references to the literature. The user's

reactions ~o those references are instrumental in improving

the model. 11 L.Y::lCVi::_LODEL" is not always a very truthful

latel for the process it stands for, for a variety of

reasons. If, for example, a user has seen all that the

data base has on his interest, then either the model cannct

be improved or, if it can, there is no purpose in doing so.

The sooner the user realises this and expresses

"satisfaction", the better. In this case, alot depends on

the user's confidence in the system, but there is a feature

which prompts him (without compulsion) tc :::.top the Gcc.rch. •

Here, then, is the high-level definition of

urocedure h1PROVE_MODEL;

begin message m;

end.

m:=GET USER_J.iESSAGE;

INFLUEl~CE_STATE_OF_MODEL(m);

RBSPOND_TO_USER(m)

We describe the three processes invoked bv IMPROVE MODEL in
v -

the next three sections (3.1, 3.2 and 3.3).

3.1 The user 1 s statement: GET USER MESSAGE

The function-procedure GET_USER_fl,ESSAGE is of type

message. Chapter 6 lsections 2.1, 2.2) explains the use

such type na:nes for data structures in tbe de\'elopioel1.t ci'

the program. The value returned by the proce~u=s is a

representation of the user•s statement, interpreted as a

response to what the program last displayed. (The proc-·

e~ure is responsible for reading the statement). We must

anticipate the section on RESPOND_TO_USER, and say what

the co~ponents of a display are. Normally the program will

display a refe~ence using the label of a document node,

followed by a numbered list of all the nodes adjacent to

it. For example:

•

•

•

•

••

r:isleadin;; tests for glycosuria.; l<'eld;,:an et al,
L~J. n c e t , 1 , 1 2 4 6 , 2 .Tun 7 3 -·-
1. J .i.: .. Feldii;an, 2. F.L.Lebovi tz, 3. false nec;ative
reactions, 4. glycosuria, 5. human, 6. methods

Sometimes the reference part of the display is absent; the

display may be a collection of related subjects. Occasion­

ally, there is neither reference nor numbered list (e.g. at

the start of a dialogue).

The user's statement may be an instruction to stop

the search, or it may give any of the following information:

(i) A relevance judgement on the reference si·:._,,·,n (YES or

NO),

(ii) An indication of what aspects he likes (or dislikes),

using the nu~bers in the display,

{iii) One or more phrases or names related to his interest&

All parts if the statement are optional; in fact the user

may make a null statement •

A message structure, m, produced by GET USER r.~ESSAGE

has four parts:

(i) reaction(m). This takes one of four values, which

we shall denote STOP, YES, NO and NONE. If the

value is STOP, the other three parts of m do not

apply, otherwise it corresponds to the user's

relevance judgement (NONE means that he did not give

one).

(ii) select_list(m). A set of points which the user has

explicitly or implicitly (see below) selected from

the previous display.

(iii) reject_list(m). A set of points which the user has

explicitly or implicitly rejected, from the previous

displayo

(iv) request_list(m). A list of items derived from the

textual requests in the user's statement, structured

for searching and matching with node lBbels in the

super~raph. This is the only part of a messa~e

which has any meaning at the very beginning of a

topic search.

The values of select_list(m) and reject_list(m) are derived

from the last display, the user's statement and certain

aspects of the model. The model is also modified. The

actual algorithm is given below. We use the following

symbols:

Nd is the set of points whose labels occur in the

nuwbered list in the last display,

J = reaction(m),

is the set of points explicitly chosen by the

•

user,

is the set of points explicitly rejected by t:1e •

user,

N."' is the set of "explicit requests 11 in the model, ..c;

NL is the set "last selected" in the model.

¢, u and - denote the empty set, the set union

operator, and the asymmetric set differ2nc9

operator, respectively.

The alg;olli thm:

,------------
1 HE:= ;,;EUC;

i:f. C:::Gl §:!.!.£. R=¢ and J=YES then C:= Nd;

rc:,ject_list(m):= if R#¢ then R

else if J=NO then Nd - (NE u NL) else 0;

select_list(m) := if C#¢ then C UNL

else if J=YES then Nd - R else NL;

•

•

•

It can be seen that certain assumptions are made about the

user's intention. If he has given an unqualified YES (R

and C both empty), it is assumed that he likes all the

items displayed. It is assumed that he is still interested

in the items which he chose last time (note that NL is set

at the end, ready for the next application of the algorithm).

If his statement was an unqualified NO, the algorithm

assumes that he would reject all the items displayed except

those that he has chosen or explicitly requested earlier in

the dialogue.

Another task performed during the interpretation of

the user's statement is the categorization of the document

node displayed according to the reaction part of the

message. In the following algorithm,

J = reaction(m), having one of the values YES, NO or

NONE,

d is the point whose document label has been

displayed,

N0 is the set of points in the "context graph",

NT is the "inhibit list",
.J.

DG is the set of "good documents",

DA. is the set of "accepted documents":

__ " ____ ------------------"--------,

''

, Ease J of

begin

NO: .~in

end· __ ,

N1 := N1U {d};

N0 := N0- {d};

DG:= DG- {d};
DA:= DA- {d}

~WNE: if d ¢:_ DG then DA := DA U {d};

/cont.

YES: begin DG:= DGU{d};

DA:= DA- {d}
end· __ ,

end •
3.2 INFLUENCE STATE OF MODEL

The interpreted and structured statement is now used

to modify the model as follows:

[Boolean stop_requested;]

procedure IHFLUENCE_STATE_OF_l'~ODEL(m);

message m;

if reaction(m)=STOP then stop_requested:= true

else begin

enci.

COII:PUTE_SCORE(reaction(m));

PRUNE_CONTEXT(reject_list(m));

.ADD_TO_CONTEXT(select_list~m));

FIND_NODES(request_list(m));

UNIFY CONTEXT GRAPH

We describe each of the five procedures invoked in turn.

Moni taring performance: COI;lPUTE SCORE

COiflPUTE SCORE is responsible for updating the numerical

variable "performance" in the model to take account of the

user's reaction to the last display. The value of

•

performance is used by RESPOND_TO_USER, under certain ~
circumstances, to determine what should be displayed next,

•

•

•

which in turn influences the future states of the model.

Hence, the lliethod of calculating "perfor~ance'' influences

the program's effectiveness. We want a measure of the

program's success which "remembers" past performance, but

gives greater weight to the recent past. A simple formula

is used, which computes the (n+1)th performance, pn+1 '

from the nth value, p , and the success rating of the last
n

interaction with the user, XJ:

p 1 = Mp + XJ n+ n

M is a constant, the "memory factor'', and should have a

value in the range 0 ~ M ~ 1. The value of XJ depends upon

the reaction, J, passed to CO~PUTE SCORE. One set of

values which has been used is

M = ~, XNO = - 1 , XNONE = O, XYES = +1 , Po= 0 •

3.2.2 ~emoving points from the context grap0~

PRUNE CONTEXT

The procedure PRUNE CONTEXT deals with the points

which the user is assumed not to like in the last displayt

i.e. reject_list(m) in message m. As usual,

N c
N I

is the set of points in the "context graph'',

is the "inhibit list", and

is the set of "explicit requests".

procedure PRUNE_CONTEXT(rejects);

point set rejects;

begin He:= .Nc- rejects;

i:{ • -... I.- N1 U rejects;

NE:= NE- rejects

end.

Notes: (i) Removal of points from the context graph

implies removal of lines incident with them.

(ii) It is possible to remove points from "explicit

requests". Thus a user can change his mind

about what subjects he is interested in.

Adding points to the context graph:

ADD TO CONTEXT

The procedure given below adds points to the context

graph. It also brings into the context graph doc"!ument

points adjacent, in the supergraph, to the new points.

procedure ADD_TO_CONTEXT(chosen);

point set chosen;

begin N1 := NI- chosen;

N0 := Nc U chosen;

N
0

:= N
0

U LINKED_DOCUKr~NTS{chosen)

end. -

To define the set that LINKED_DOCUI'vi.ENTS produces, we fi:::~-;"t;

recall some notation from section 1 of this chapter. The

supergraph, S = (N,L,A), where N is a set of points, L the

set of their labels and A is a set of lines. The set of

points adjacent to a point n. EN
~

is

s.
~

= { m: { ni , m} E A} .

•

•

*
Let

,.., chosen - NCh' where NCh is the set of "check tags" •
v =

C is a subset of N, say { nk ,nk ' • • • nkq}·
The set

1 2

Check tags are subject points which are adjacent to
relatively many document points. They correspond to
terms with high postings in MeSH. See section 3.1.1,

and section 2, Chapter?.

·-

•

•

-·

returned by LINKED DOCU~ENTS consists of all the members

of the set

Usk. - l'li
1~ i{q l

whose labels are of type 11 document".

Incorporating textual requests: FIND NODES

The task of matching a word, phrase or name suggested

by the user with a node label in the supergraph is fairly

complicated in this program. It is more than simple string

matching. A description of the techniques used will be

found in Chapter 5. Here, we concentrate on the effect

upon the model of such initiative by the user. In the

expression of FIHD_NODES that follows, we use the usual

notation for components of the model, namely NE for the

"explicit requests" set, NI for the "inhibit list" and_NC

for the set of points in the "context graph". The process

denoted by .LOCATE_NODES produces the set of points matching

the requests. This set may be empty, or it may contain

more than one match for some of the requests. The function

STARS occurring in FIND_NODES, below, is very similar to

LINKED_DOCUbiEl~TS (see section 3.2.3), but there is no

restriction as to the type of points that are included in

the result.

procedure .r~nm _NODES (requests);

query list requests;

begin point set P;

P:= £0CATE_NODES(requests);

NE:= NE UP;

end.

Not only are the located points included in the context

graph, but also all the non-inhibited, non-"check tag 11

points adjacent to them in the supergraph.

3.2.5 Establishing coherence: UNIFY CONTEXT GRAPH

When the context graph has been modified, points

added and removed, UNIFY COHTEXT GRAPH is executed to find

out if the context graph is connected (i.e. in one piece),

and if not to attempt to join the separate components by

adding a few appropriate points from the supergraph. If,

when it is done, the context graph is connected, the

•

Boolean variable "uni ty 11 in the model will be true, other- •

wise it will be false. In the procedure, G0 is the context

graph and 1~1 denotes the number of elements in the set ~.

procedure UlHFY_CONTEXT_GRAPH;

begin graph set K;

end.

K:= CONNECTED_COMPONENTS(G0);

if 11{1~1 then unity: =true

else

begin DISCARD_USELESS_COMPONENTS(It);

unity:= if 1~1>1 then TRY_JOIN(ft) else ~

end

••

•

•

-·

The procedure CONNECTED_COI.:PONEHTS finds all the maximal

connected subgraphs of its argument, G
0

• It does this by

picking any point, p, in GC and locating all the points,

also in G0 , reachable from p. Those points together with

p form the first component. If there are any points in G0

which were not visited in the search, one of them is chosen

and the process is repeated to produce the next component;

and so on, until all the points in G0 have been used. The

result in general is a set of graphs with mutually disjoint

sets of points. If this set has more than one member, we

should like to find paths in the supergraph which join

them together. However, implementation must be considered

at this point. We could use a technique very like that

used to determine the connected components of the context

graph. Think of the points in a component as a wavefront.

Now advance the wavefront by moving along each line which

connects a known point to an unvisited one in the super­

graph. To find a path between two components, advance the

two "wavefronts" alternately until they meet at some poin~.

Backward links must be recorded everywhere througho·u t tt :.

process, so that the path can be determined from the

meeting point. (Quillian, 1968 implemented this method in

his semantic memory). The pro~ess is rather expensive 1

and there is a user waiting for a response. Unlike the

context graph, which is stored in fast storage (virtual

memory in our implementation), the supergraph sprawls

across magnetic disk, and logically adjacent nodes will

often be widely separated in storage.

The procedure given above first tries to reduce the

problem by invoking DISCARD USELESS COMPONENTS. Some

critical points tcutpoints) may have been removed from e

context graph, isolating small components. If a small

component has no points which are members of NE (explicit •

requests) or NL (last selected), it is deleted from the

context graph, and from the set R. We can adjust the

meaning of "small component": it might mean components with

less than 3 points, for example. These deletions may have

reduced the context graph to a single connected component,

but if that is not the case a quick attempt is made to join

them by TRY_JOIN. If it does not succeed, it rc·turns the

value false and "unity" (in the model) remains false,

therefore.

Going back to the wavefront analogy, each compo~ent/

wavefront is advanced one step (from all points in the

component except "check tagsn to non-inhibited points in

the supergraph). The new "wavefronts" are intersected in

pairs and single points are chosen from the non-empty

intersections, preference being given to document points.

These points are added to the context graph using

ADD_TO_CONTEXT (see section 3.2.3). TRY JOIN never

ad·yances the 11 wavefronts" more than one step, so the back-

ward chaining referred to above is not needed.

This completes the description of the process named

Ii~.FLUElWE STATE OF MODEL.

3.3 RESPO~D TO USER

Now that the user's statement has been used to modify

the model, a suitable response is determined by the program

from the model. The program aims to give the user

pertinent references. In order to do this it must collect

•

••

•

•

-·

suitable inf'ormation from the user. Sometimes it is better

to make a provocative response than to give the "best"

reference from a dubious model •

In this procedure, NC denotes the set of points in the

context graph:

[Boolean' stop_requested;]

procedure RESPOND_TO_USER(m);

message m;

begin point d;

end.

if not stop_requested then

begin if Nc=¢ then STIMULATE USER

else

end

if reaction(m)=YES then

begin if last display contained a reference, d

end

else

then DISPLAY_sn:ILAR(d)

else PICK A DOCUMENT

if performance is low then REVIEW COURSE

else PICK A DOCU!LENT

In sections 3.3.1 - 3.3.3 we discuss PICK_A_DOCillJENT,

DISPLAY SIMILAH. and REVIE'N COURSE. STII~lULNIE USER is a

simple procedure which tries to reintroduce references or

topics in which the user has previously shown interest.

Using the context: PICK A DOCUM.8N'.l2.

This procedure for determining what to show the user

is actually invoked more often than the definition of

RESPOND_TO_USER would suggest, because under certain

circumstances, DISPLAY_SIMILAR also calls upon it. It is

the procedure which assumes that the context graph is a

reasonable representation of the area of the user's interest,

and therefore tries to make a sensible choice from the

document nodes contained in it.

In the definition of the procedure, NC is the set of

points in the context graph GC, and unity is the truth

valued part of the model which indicates whether GC is

connected.

procedure PICK_A_DOCUJ.v~ENT;

begin uoint set D;

enCl.

D: = m;sEEN_DOC1Jrk8NTS (NC);

if D=¢ ~ SUGGEST_SUBJECTS

else DISPLAY_DOCUiflEJ.~T(if unity then I\10ST_INVOLVE:U(D)

else AVERAGE_IHVOLVED(D))

U1'1SE.BN_DOCUMElFrSlNc) produces those members of the set

.NC - (DG U DA) which have document type labels. (DG and DA

are the sets "good documents" and "accepted documents",

respectively. Documents which have been seen_and rejected

•

4lt

will be represented in the "inhibit list", N1 • We can

forget them because N
1

n NC = ¢). SUGGEST SUBJECTS

displays a collection of subjects related to one of the 41t·
user's explicit requests (see section 3.3.3 in this

•

•

••

chapter). The form of display produced by ..DISI'LAY_

DOCUMENT has already been described {section 3.1). We come

to the concept of involvement in the context graph, in

order to elaborate 1.WST INVOLVED and AV:J~RAd·E INVOLVED.

The connect coefficient of a point, p, in the context grapt,

GC' is defined to be:

degree of p in G0
•

degree of p in the supergraph

The degree of a point in a graph is the number of lines in

the graph which are incident with the point. The values

taken by connect coefficients range from zero, for an

isolated point, to 1 for a point all of whose immediate

neighbours in the supergraph are also in the context graph.

We use the connect coefficient to measure the involvement

of points in the model. MOST IliVOLV:2D finds the member of

its argument which has the highest connect coefficient.

AVBRAGE INVOLVED finds the point with connect coefficient

closest to the average of the coefficients of all the

members of its argument. It is used when the last atterrD+

to join up the co~ponents of the context graph failed,

can be regarded as the next heuristic in the effort to

form a connected context graph. By giving the user some-

thing near the periphery (but not so near that he rejectE

it out of hand), we hope for guidance on how to extend the

context graph: TRY JOIN might succeed next time.

DISPLAY SHHLAR

The user has approved of the last reference that was

displayed. Now the program will try to find a document

node "like" it, regardless of the context graph; i.e. it

will be prepared to look anywhere in the aupergraph.

Similarity measures between documents indexed by keywords

have received much attention in the liter?ture, and a

discussion of the topic in relation to our program will be

found in Ghapter 3, section 3.1.1. Similarity between

documents is usually taken to mean similarity between their

sets of index terms. Typically, if two documents have

keyword sets X and Y respectively, the extent of their

similarity to each other would be given by

jx n rl
-------------------·
Normalizing factor

The normalizing factor is a number which takes into account

the sizes of X andY, e.g. Jxl + lrl.
An equivalent measure in our system would be based on

the sets of points adjacent, in the supergraph, to the two

points whose similarity is to be measured. In fact, the

measure used also takes into account the user 1 s expressed

interest and, in a primitive way, the usefulness of the

subject terms as distinguishers between documents.

We now define the similarity measure betweeri two

points d 1 and d 2 in the supergraph S ~- (N,L,A).

~"'irstly, u1 E N and d
2

EN.

Now let I 1 be the set of points adjacent to d
1

, and I
2

te

the set adjacent to d 2 , i.e.

I 1 = {n: {n,d1} E A}

I 2 = { n: { n, d 2} E A}

Let E = I 1 n NE, where NE is the "explicit requests 11 set in

the model.

Let T = I 1 - (NI U NCh U E), where NI is the "inhibit list"

•

•

•

•

-·

in the model, and HCh is the set of "check tags" (which

are regarded as not very useful for this purpose).

The similarity function is

cx,IEnr 2 1 +~1Tnr 2 1

I I21

where~ and ~ are adjustable constants, which determine the

relative importance given to explicit requests. The

numerator is actually symmetrical with respect to d 1 and d 2 ;

it is just. expressed in a form that corresponds quite

closely to the way in which the program works it out. As a

whole, however, the function is not symmetrical because the

denominator (normalizing factor) is not.

To define the action of DISPLAY_SIMILAR, we shall use

the same notation as used above. The meaning of UNSEEN

DOCID~ENTS is as given in section 3.3.1 above. ~ is another

adjustable constant.

procedure DISPLAY_SU.~ILAR(d 1);

point d 1 ;

begin point d,di; point set D;

D:= UNSEEN_DOCUMENTS(I 1);

end.

if D;i¢ then DISPLAY_DOCUI£ENT (any dE D)

else

begin find di € UNSEEN_DOCUMENTS(N) for which sim(d 1 ,di)

is maximum;

if sim(d
1

,d.)~'t then DISPLAY DOCUM:ENT(d.)
l. - - l.

else PICK A DOCUMENT

end

The procedure first looks for documents directly related

to the parameter, d
1

• If it finds any it picks one for

display, otherwise it finds the document most similar to d~

and displays that, unless it is not similar enough, in

which case a document is chosen from the context graph.

~, the "similarity threshold", is used to determine whether

the most similar document is similar enough.

REVIEN COURSE

We shall now deal with the action taken by the program

when its performance falls too low. The overall strategy

is as follows:

(i) Look for a reference which the user has already seen

and not rejected, and display it again, asking him to

reconsider it.

(ii) If the search for a suitable document point fails,

show the user one of his explicit requests together

with its adjacent subject nodes.

(iii) If no such point can be found, ask the user to take

the initiative and think of a new term or

In the procedures that follow,
-

DG is the set of 11 good documents",

DA is the set of "accepted

NR is the set of "reviewed

NE is the set of "explicit

procedure REVIEW COURSE· - '

begin point set D;

ADI:fl.IT _FAILURE;

D:= DG - NR;

documents",

nodes", and

requests", all

name.

in the model.

•

•

·-

•

•

-·

end.

if D-#¢ then RE-DISPLAY (LEAST_INVOLVED(D))

else

begin D:= DA - NR;

end

if Df¢ then RE-DISPLAY (MOST_IHVOLVED(D))

else SUGGEST SUBJECTS

AD!.UT FAILURE confesses failure to the user; it will,

however, point out that he may have seen enough if he has

approved of a few of the references shown him. The set NR

is used to ensure that nothing is reviewed more than once.

RE-DISPLAY and DISPLAY_SUBJECTS (called by SUGGEST_SUI,JECTS,

below) each add their argument to NR. If there are "good

documents" to review, we assume that sometime during the

dialogue, the context graph has been allowed to "grow" in

the wrong direction. Therefore, we should give the user

maximum opportunity to indicate new directions: hence the

use of LEAST INVOLVE:O when DG - NR is not empty.

procedure SUGGEST_SUBJECTS;

begin point set E;

E:= NE - NR;

if E-#¢ then DISPLAY SUBJECTS (LEAST_INVOLVED(E))

else tell the user to give a new term or name

end.

DISPLAY_SUf.JECTS produces a numbered list of subjects for

the user to inspect. The points chosen for the display are

the argument of DISPLAY SUBJECTS (if it is a subject point)

and all the subject points adjacent to it. A sample

display (the argument of DISPLAY 0UBJECTS has the label

"antibodies"):

1. antibodies, 2.anti-antibodies, 3. autoantibodies,
4. binding sites, antibody, 5. immune serums,
6. insulin antibodies, 7. immunoglobulins,
8. isoantibodies, 9. plant agglutinins

The user can respond to this with the type of statement

outlined in section 3.1, which will be read and inter-

preted by GET USER MESSAGE. He may even give a general

judgement (YES or NO) which will be used by the program in

the usual way, except where the last reference displayed

would normally be processed.

3.4 Other features of the program

In a full-scale operational system the interface with

the user would have to be very much more sophisticated

•

than in our prototype. We have, however, made three cmall •

concessions to human engineering the "slate", provision

of help, and automatic printing of hard copy.

Conceptually, the slate is a separate display of

limited capacity, independent of the one used for the main

dialogue. For the present, rather than link two real

screens, the independence is simulated using one screen,

and the user can switch to the slate, manipulate it and

switch back to the first Hscreen", at any time. Items

(references, names, subjects) that crop up in the main

dialogue can be recorded on the slate purely for the user's

convenience, and no inferences are made by the program

about his area of interest.

Help can be obtained from t~e program by typing a

question mark (?). A display appropriate to the area of
•

•

•

••

dialogue that is being conducted will be shown. The user

presses a button when he is ready to go on.

At the end of each topic searcht the contents of the

slate, and the document labels of all the points in t•good

documents" and 11 accepted documents" are sent to the line

printer.

The above features are for the user's benefit. There

are two more capabilities which are present for experimental

purposes - conversation logging and a model-snapshot routine.

All dialogues with the program are copied to the printer

for later inspection. At any stage in a search a request

can be made to take a snapshot of the model. A numerical

representation of the current state of the model is quickly

copied to a file, and the dialogue can continue. There

will be an indication in the log at the point where a

snapshot has been taken •

4. Summary

We have given, in this chapter, an abstract and fairly

detailed description of the bibliographic retrieval syste~.

The important aspects of the program have been described,

but large and complex pieces of program have been glossed

over - particularly matters of file organization and

searching - because they are not central to the topic of

this thesis. Also, we have said very little about

implementation of the processes described - either about

algorithms or about programming methodology. There have

only been scant hints of justification for the way the

program is. All these matters are dealt with in other

chapters (3, 5 and 6). What we have given is a "reference

manual" from which some properties of the program can be

deduced. The set- and graph-theoretic notations and

terminologies are those of Halmos{1960) and H~rary(1969),

respectively. •

•

••

•

•

-·

Chapter 5

DATA RECOGNITION AUD FILE ORGANIZATION

In most information systems, the enquirer must take

the initiative at least once and indicate his area of

interest. In our system, he can do this as little or as

often as he wishes, and the effect that his actions have

is described in Chapter 4. We start now by concentrating

on the way in which textual information (titles, personal

names, subject terms or phrases) typed by the user are

transformed into sets of points in the "supergraph" fcir

use in maintaining the program's "model 11 (see Chapter 4,

section 3.2.4).

A statement made by the user at the terminal may

contain several separate pieces of text: they are dealt

with, one after the other, by the program, which constructs

the union of the sets of points whose "labels" (Chapter 4.

section 1.1) match them. We shall limit our consideration

here to the means of matching just one textual request.

Even so, the result may not be simply a single poJ.nt; the.:. c

may be several or, of course, none at all.

Two features are required of a text (or string)

matching mechanism in the circumstances of an on-line

search. Firstly, it should be helpful; that is it should

accommodate inaccuracies and variants to some extent, so

that it does not turn away a user who cannot supply, for

example, a complete name or a title in exactly the right

form. Secondly, it should work speedily, and this natura~ly

places limits on how helpful we can make the program in

this respect. There are two reasons, however, why we need

not use all the sophistication of the modern computational

linguist in this problem. 1'he first is the so called "law

of diminishing returns": we can get quite good algorithms

quite easily, but however large and complex programs become,

there is always yet another special case to deal with. The

second reason stems from the nature of the problems involved

in dealing with the more distant variants (synonyms, for

instance): we are not tackling problems in information

retrieval by vocabulary control or manipulation, but by a

new form of dialogue and representation of the searcher's

interest. However, the problem of inexact string matching

is an important aspect of systems design for non-delegated

searches, so we have given it more than passing attention.

The details of the techniques used are given in this

chapter. The file structure supporting these techniques

and the supergraph will also be discussed.

1. Matching user's requests in the data base

Text input from the user's terminal is considered by

the program to be a 11 stab in the dark", in the sense th< .. ~

thz enquirer is not expected to know the exact form of the

names and phrases stored in the system, or to use a

thesaurus. Common reasons for mismatch between what he

~ypes and what is stored are inaccurate spelling, partie-

ularly of names, defective memory of long titles, variant

word order or grarr~atical form in subject terms.

With the exception of a very few systems which

perform complex linguistic analysis of queries (e.g.

•

LEADERf,1.Ai\T - Hillman, 1973), on-line reference retrieval •

systems tend to use exact string matching. The help given

•

•

•

to a user who is not sure of the 11 Vocabulary" depends very

much on the file organization already chos2n to facilitate

some other aspect of system design. J:<'or example, the

Retrospec I system (see Goodliffe & Rayle~ , '-:J'/4), vthich uses

the "Computers and Control'' part of the INSPEC (lnforniation

Services in Physics, Electrotechnology, Computers and

Control) data base, accepts combinations of character

strings (written between quotes) such as

I STRl ;G I AND I j.,ATCHING I ,

and scans sections of the file (as requested by +he user)

for records which contain the specified combination in the

title or index term fields. The onus is entirely upon the

user to formulate a query which will not miss variants,

such as 'BEST-MATCH SUESTRING Sl<~ARCHilW' • Of course, more

complicated matching is possible (in fact, a simple term

weighting scheme is implemented in Retrospec I), but with

large files the sequential search method imposes its own

limitations in the on-line situation. /

A file organization which is particularly effective

for one type of access is often inhospitable to others.

is, for example, difficult to do inexact matching in a

large ordered index, or a list-based structure. Pre­

processing index entries (e.g. stripping word affixes) and

identically preprocessing queries can be effective.

Alternatively, predictable variant spellings, and even

synonyms, can be included in the vocabulary with references

to the "correct" terms (e.g. Medlars - Barraclough,1972;

and the European Nuclear Documentation Service vocabulary

is reported - Vernimb & Steven,1973 - to contain some

60,000 previously detected erroneous spellings). If the

entry vocabulary is contained. in an or~eTed irulc~ (desi[;£:ed ~

perhaps, for binary searching), it is not difficult to give

the user the ability to scan alphabetical neighbours.

the ~edusa system {see Chapter 2, section ?.4.1), for

example, the command

LIST DIAB.2T

In

will cause all terms beginning with the characters 'DIABET'

to be displayed:

DIABETES BRONZE
DIA.JETES FRAGILE

DIABETIC ACIDOSIS

DIABETIC RETINOPATHY

(It is a facility which is rarely used in practice).

Rickman & Walden(1973) have described an interesting (and

efficient) file structure for on-line thesaurus searching,

but even there no attempt is made to make inexact matches •

Variations on these themes are numerous and we shall

not cover them exhaustively here. The one further class

of techniques which we should mention is that of correcti~g

misspellings by measuring the similarity of an object wo:· ·

with each member of a vocabulary and picking the most

similar (Alberga 1967, Blair 1960, 0or~an 1970). The pr1me

motivation for this work has been to produce operating

systems and compilers which are reasonably insensitive to

spelling errors (Wagner,1974). These techniques are,

however, unsuitable for very large vocabularies, and

although Szanser(1973) has tackled the size problem, it is

doubtful that this approach would be very productive in

the bibliographic search environment in view of the nature

of the more troublesome inaccuracies.

142

•

•

•

•

•

-·

1.1 Partitioning the bibliopraphic labels

Now we come to the technique used for text matching in

the present system. As records ("labels'') are added to the

data base {"supere;raph 1
'), they are organize: into disjoint

partitions according to c0rtain lexical features. This

organization is overlayed upon the supergraph, but is

independent of it - two members of a partition may or may

not be neighbours in the supergraph. One way of visualizing

the whole structure is depicted in figure 13. The

partitions have names, or codes, denoted in the figure by

P 1 , P2 , ••• , which are derived from labels by the compress­

ion algorithms described in the next few pages. These

algorithms are designed to produce a single code for many

of the variants of a piece of text. The solid, square

nodes, in the figure, act as the "centres" of partitions.

Each circular (supergraph) node is attached, by a broken

line, to exactly one square node; the partition named P. is
1

the set of points adjacent to the point labelled Pi. When

a new point's label is compressed, the partition bearing

that name is sought. If it is found, the new point is

added to it (by drawing a new broken line, in the pictorial

analogy), otherwise a new partition is created (in the

picture, a new square joined to the new circle).

Incoming textual requests are processed by the same

algorithms as hanaled the labels before them, and a part­

ition is thus identified and searched for a best match.

There is a resemblance between this method and conventional

scatter storage of records in multiple entry buckets

(Buchholz,1963). However, whereas most "randomizing"

functions will place otherwise unrelated records in the

I

Key (i) author labels:

(ii) document labels:

(iii) subject labels:

(iv) partition names:

,./""

A· l

D.
l

s.
l

pi

-
/

t:.,(p
- -l>;d 5 - ' \

\

Notes (i) The partition named Pi is the set of points

adjacent to the point labelled P. (i.e.
l

joined to it by broken lines).

(ii) If the solid, square nodes and the broken

lines (incident with them, without exception)

are deleted the supergraph remains.

Figure 13. Partitions overlayed on the supergraph.

•

•

•

•

•

•

same bucket, we require one which collects together labels

which look similar. Another point of difference is that

our partitions are not fixed capacity "stores'', but

arbitrarily sized ssts of records. Once a point has been

located in response to a textual request, the partitions

can be forgotten - the square nodes and the broken lines

in figure 13 can be ignored - for they are not used in

subsequent supergraph manipulations.

In connection with on-line searching of a library

catalogue, Kilgour and his associates have experimented

with simple truncation of title words with a view to

partitioning the catalogue (Kilgour 1970, Long 1972).

Leading non-significant words are removed and subsequent

words truncated to lengths specified in a VBctor. For

example, a truncation function based on the vector

(3,1,1,1) creates keys (or partition names) comprising

three letters from thB first word and the first letter of

each of the next three words. The partitions are small

(size is roughly hyperbolically distributed; typically 99%

of partitions have less than 10 members in a collection o~

100:000 titles), and spelling mistakes have little effect

on searching. On the other hand, word order errors cause

havok, and in general there is not much orthographic

similarity within the partitions.

It was decided to treat proper names differently from

phrases (titles and subject terms) in the present program,

because the types of error people make are different in the

two classes of data. \'>hichever of the two algorithms is

used, the result is a four-character code, and this,

together with an indication of the type of the original

data (na~e or phrase), is the name of the partition to

which the label should belong, or which should be searched

for a good match in the case of a query.

1.1 .1 Proper name compression

The most famous name compression algorithm is SOUNDEX

(Wright,1960). Its aim is to compress names into short

codes so that those with similar sounds have identical

codes. More recently, an algorithm which outperforms it

was devised by Dolby(1970), and it is the one that we use

here, with minor modification. Nugent(1968) has produced

a review of several methods, but not all will generate

partitions useful for our purpose. Dolby applied his

method to the names in a telephone directory and then

compared the equivalence classes obtained with those given,

manually, by the compilers of the directory, in the form of
~

see also cross references. The method correctly provided

80% of the man-assigned classes and improperly split only

5·3%. The same experiment using SOUNDEX resulted in

corresponding proportions of 63 • 8% and 30~6. As Dol by po ~' r ::;

out, these figures are not a direct gauge of performance

Nith erroneous names, but he beleives that they provide a

good indication, and this is substantiated by the observ­

ations of Tagliacozzo et al(1970). Seventy-seven error~

collected during a survey were analyzed in some detail and

the letters involved in the errors listed. The full

context of the errors are not given in the paper, but one

can deduce that 52 (67.55~) of the errors would definitely

not have affected the code produced by Dolby's algorithm •

Of the remaining 25, some would very likely also have been

.,

•

•

•

•

•

inconsequential.

Forenames and initials are not used and the order of

execution of certain steps of the algorithm, which follows,

is important.

(i) .Leading i/,~, 11:c, J.:ac or Mag is replaced by I.:k.

(ii) The second letter in each occurrence of dt, ld, Ei,

nt, !.E.' rd, rt, ~' sk, st is removed. This is done

working from the ric;ht hand end of the narne,

recursively.

Note: the sound of the deleted letter is usually

indistinct in these contexts.

(iii) The following replacements are performed throughout

the name:

~by ks, =by se, ci by si, ~by sy, ch by sh

when preceded by a consonant, any other c by k,

~ by §._, '!!I.. by .E.' £.g by g, .9...£ by k' Sl by k' t by d'

.EE: by f.

(iv) If a consonant, excluding 1, g, r, occurs after thE:

first position in the name and immediately before :.~,

it is removed.

(v) One letter is removed from every doubled consonaJJt.

(vi) Ef at the end of the name is replaced by]2_;-

£!at the beginning is replaced by f.

(vii) ~ at the end of the name is replaced by f if

preceded by a vowel, or by g otherwise;

~h anywhere else is deleted.

(viii) The first two vowel strings are replaced by a vowel

string marker (a single character, represented by the

letter ~' which has become free by virtue of this

step); subsequent vowel strings are removed. For

this purpose, a vo·sel is one of the let te:1·s a, .::_, ... ,

o, ~, z and (in all but the first position) w and h.

(ix) The four-character code is obtained: j_f the name now

has less than 4 characters it is padded with 1)lank3

on the right; otherwise, the name is truncated to

6 characters and, as long as there are more than 4

characters, vowel string markers are removed, start-

ing with the right-most one. Finally, the name is

truncated to 4 characters if necessary.

The following letters cannot occur in the compressions

of names: x, £, ~' ~, t, ~' i, £, u, y. In addition, w and

h can only occur in the first character position, and the

blank may not occur there. So one can have at most

16 X 15 X 15 X 15 = 54,000 partitions of proper names, which

is adequate for collections of order 100,000 documents.

•

For larger collections the code might be increa.sed in length.

by simply modifying step (ix), above. Five characters could

generate 810,000 partitions, for instance. Table 1 shows

some examples of partitions and erroneous names which wou~~-::

identify them.

Table 1. Partitions of proper names.

l------------------,
partition matching

.
__ code .J names

Nilsson B.S. Nelson NLSN
Nilson K. Hillson

!lluller H Mahler I,'iALR h.:..

Muller w. Mueller
It.uller H. Mallory
Mol lard P.
I.Hller S.A.

Stieglitz P. Siegleitz SGLD
Sziegoleit w.

/cont. •

•

•

•

f------- ----------------+------
Kuhn R.A.
Kahn K.
Cohen J.G.
Cohen D •
Cohen G.

Table 1.

Cohn
Kant

(concluded)

1 • 1 • 2 Phrase compression

KA1Jw

i ________ _L _____ _,

Ayres et al(1968) found that, in the speci_al research

library envirorunent, titles are given remarkably accurately

in requests and that most errors either occur after the

first few words or consist of word inversion or the omission

of commonplace words such as 'report' or 'outline'. We

treat subject r8quests and titles identically and, where

appropriate, a partition may contain both document and

subject labels. This means that what was meant by the user

simply as a subject descriptor may best match the title of

a document; and that is beneficial to the operation of th:

system. Ayres' results do not necessarily apply to subjc0t

phrases, which tend to be invented rather than recalled ~J

searchers. However, techniques t'ased on his observation:.:

work reasonably well for subjects mainly because the pl•rases

are generally short. We can reduce the effect of erroTs

or variations in,phrases quite simply by removing non-

-significant words and suffixes, leaving a sequence of

pres~~ably meaningful stems. The reliability of the stems

decreases as we go along the sequence, so we only use the

first two. Word order variation is coped with by applying

a syr~etric function to the two stems (if there are as

many as two, of course). In describing the phrase

compression a~q~ori thm, we shall make use of t>JO ,o.~~a.;;plec:

from the medical test collection:

E1: Urbanization and mental health: a reformulation

E2: Apropos of the article: 11 Sys terrd venous

insufficiency. A new and rare syndrome"

The first step is to select two "sit;nificant" words

from the phrase, scanning from the left. A dic~ionary of

common words is used for this task. The stop list published

in the Science Citation Index was modified to suit the

subject matter of the collection. 657 words a. T;ear 1n the

dictionary and are of two types: words which are always

discarded from the phrase (145 of these), and words which

are only used if there are insufficient significant words

(i.e. words not in the dictionary). Table 2 shows some of

the dictionary. The words selected from ou~ examples are:

E1: Urbanization, mental

E2: Systemic, venous

Table 2. Sample from the dictionary of common words

These words Total i ··.

are always

about, against, and, best,
but, concerning, easy, few,
given, have, instead, look,
make, next, other, :sa;:;e,
several, that, the, when,
with

dictiorary I

! icnored

These words

are only used

wten

significant

words are

scarce

(also all one-character
words)

addendum, affect, apropos,
assumptions, body, cell,
characteristic, clinical,
conference, definition,
device, erratum, evaluation,
gram, implication,
important, introduction,
measure, medical, optimal,
organ, proceedings, quality,
standard, theoretical,
volume ·

words

Total in

dictionary

512

words

•

•

•

•

••

Each selected word is then stripiJed of its ...:.uffj_xe~'.

Resnikoff & Dolby(1965 & 1966) have produced two very useful

analyses of English affixes and their lists, slightly

rnodified to suit the [3Ubject matter, are used. The lists

for long and short words (measured in this program by

counting vowel strings) are not identical and are given in

Table 3. The largest suffix that can be identified is

removed, and the process is repeated on the remainder of

the word until it has no identifiable suffix. Let us apply

this to the examples:

Urbanization-- Urbaniz -Urban-+ Urb

mental-- ment

Systemic Sys tern

venous -- veno

E1:

E2:

Urb, ment

System, veno

The "stems" are then abbreviated to four characters,

in such a way as to preserve discrimination between

different word frag:Hents as much as possible. Bourne &

Ford(1961) give several techniques and one has been chr

\Vr,ich, in their experiment, retained discrimination for

98·2% of their vocabulary of 2082 words. Starting with ··o

second letter, every alternate letter is dropped until on:y

three letters remain. If there are still more than three

letters when the end of the word is reached, the process

is repeated. All the dropped letters are "added" together,

modulo 27, to produce the fourth character of the abbrev­

iation •

E1 :

E2:

Urb&...>, mnte

Ssed, vnoe

Short-word suffixes (to be renJoved from 2-vowel-string
words)

-a -ure -al -o -let
-ic -ite -el -ar -et
-ed -ue -ful -ier -ant
-land -ive -um -ler -;uent
-ward -e -man -er -ent
-ard -ling -an -or -ot
-ee -ing -en -is -ow
-age -ah -in -less -ey
-ie -ish -eon -ness -ly
-ile -lock -ion -us -y
-ine -ock -on -at -iz

Long-word suffixes (to be removed from words with more
than 2 vowel-strings)

-ia -i::1e -i -ation -at
-om a -ure -ical -ion -et
-a -ise -eal -on -it
-ic -ose --ial -o -ant
-ed -ate -al -ar -ient
-oid -ite -el -ular -ment
-ance -ette -ol -eer -ent
-ence -yte -ful -er -est
-ide -ue -ism -or -ist
-ee -ive -iu.'Tl -is -ly
-age -ize -urn -ess -ary
-ie -e -ian -eous -ery
-able -ing -an -ious -ry
-ible -og -gen -ous -y
-ile -ish -in -us -iz

fhe letter s is removed from any complete word from which
no suffix can be removed.

Table 3. Suffix lists for phrase compression.

Finally, regarding the letters in the codes as digits in

the base 27 number system, add the two codes, modulo 274

to obtain one four-character code. This is a symmetric

operation, as required.

E1: HEVE

E2: OFTI

•

•

·-

•

•

-·

The number of different phrase partitions which can

be named is 27 4 = 531,441. In conclusion, this method of

phrase-compression maintains discrimination between the

expected information-bearing parts, namely the stems of

significant words, and equates phrases which differ only

in the less memorable parts - non-significant words and

suffixes. Examples of partitions obtained are given in

Table 4.

Table 4. Partitions of phrases.

partition matching phrases code

Urbanization and mental Effect of urbanization HEVE
health: a reformulation on mental health
(document)

attitude of health attitudes to health IUYN
personnel personnel

attitude to health healthy attitudes

Does hemorrhagic shock hemorrhagic shock L..JWSL-J
damage the
(document)

lung?

shock, hemorrhagic.

alkaloids alkaline ALKw!
alkalinity
alkeran _____ I

1.2 The matching process

To summarize the contents of the preceding paragraphs,

the texts of the labels in the system are compressed to

form codes which generate a partitioning of the corresp-

ending points in the supergraph. The matching process

consists of similarly compressing user's text to identify

a partition, and then finding a satisfactory point within

it. The questions that arise are: which compression

procedure should be used? what should be done if the s~~rch

fails?

If a user has enclosed the string in quotation marks,

it is assumed to be a phrase, otherwise t~1e initial

assumption is that it is a name and the program isolates

the surname and forms a string of initials if suitable data

is present. The appropriate compression is performed and a

•
search made for a partition with the derived identification.

If there is no such partition, a sequence of automatic

re-tries are made:

(i) If the string was assumed to be a proper name, then

it is re-interpreted as a phrase; the user may have

forgotten the quotes.

(ii) If two words were used to form a phrase compression

code, they are tried singly, the first in the phrase,

and then the second if necessary.

(iii) Failing the automatic tries, the program invites

the user to replace that part of his statement. If

he wishes he can simply have that part ignored.

The main disadvantage of the method is that a one-; J-~

query cannot match a two-word label: for example, 'carotid'
-

will not retrieve the partition containing 'carotid

arteries'. In the reverse situation, this may happen:

'membrane antigens' retrieves no partitions, however

'membrane' does, and the search stops there. It might be

•

better to look for 'antigens' so that both aspects of the

topic are represented. As the program stands, the user

would be consulted about the acceptability of 'membrane',

and can explicitly introduce 'antigens' if he feels the

need. ·-

•

•

-·

When a partition is found, the labels are accessed

and ranked according to similarity with the request (the

measure of similarity is very simple and we shall not go

into it here). If there is one outstandin~ match, the

corresponding point is selected without troubling the user,

and the matching process is complete. If the choice is

not obvious, the user is asked to make the decision: he

can accept as many of the displayed labels as he likes,

including none at all. In the latter case the program

behaves just as though no partition had been found and

goes on to the next "automatic re-try''·

Examples:

(i) User's text: artificial respiration

System action: No quotes, so tries to find name

A.Respiration. No partition found,

so re-interprets text as a phrase and

finds a partition containing

respiration, artificial.

Match is good enough, so the corresp­

onding point is selected.

(ii) User's text: Millen

System action: Partition found containing the names

D.Moulin

J.hlilin

R.Milin.

No outstanding match, so user is

shown all three and asked to choose.

User: Not happy with any of them, rejects all.

System action: Tries 'millen' as phrase without

success and invites user to try a

substitute.

User's new text: Miller

System action: Partition found containing the names

r.;.Muller

W.Muller

H.Muller

P.rl.ollard

S.A.Miller

No match is good enough (system must be

careful with names), so the user is

shown the list, headed by the best

match, S.A.hliller.

User: Chooses S.A.Miller.

Note on response time: operating upon a disk file containing

some 2,500 labels, the program's responses in the above

exchanges are usually instantaneous (on a 360/67 time­

sharing a fairly heavy university workload).

Formally, the result of the matching processes described

is a set of points in the supergraph (see Chapter 4, sectio;~

1) • We must now describe the file structures which snppc ·

the mu.ch sin:pler function f:N__...L, i.e. n;apping points c:'~tc

labels; the lines, A, of the supergraph; and the searching

for partitions, given their codes.

2. File organization

It may seem inelegant to talk in terms of files when

we are considering the representation in storage of a

•

•

labelled graph. However, we shall continue to use this

terminology simply to serve as a reminder that whatever the ·­

design philosophy of a small-scale experimental system, the

•

•

••

designer is under some obligation to derr.onstrate the

feasibility of his methods in an operational env.i.ronment;

and in reference retrieval that involves large quantities

of data. We have, therefore, chosen to wr·' e a pro~ram

which processes a graph structure stored on magnetic disk

(i.e. in a file), rather than in main memory, even though

the test data occupies a mere 360,000 bytes. In fact, the

program runs under the supervision of the ~ichigan Terrlinal

System (MTS) and all file processing is achieved using the

standard data management services provided by ttat operating

system (kTS,1973).

Corresponding to each point in the supergraph there

is a node record on the disk. What we have, until now,

referred to as a point is the address of a node record in

the file. A set of points is an aggregate of addresses.

The arrangement of such aggregates in storage varies,

depending upon patterns of access to members; consecutive

storage, linked lists and hash tables are all used. To

return to the node record, it consists of two functional

components:

(i) the label -. see Chapter 4, section 1 .1 ,

(ii) the set of points adjacent to it in the supergraph.

The second component carries the information specifying

the set of lines in the supergraph. It is a redundant

representation because each line is represented twice:

once at each end. In the jargon of data structuring, the

nodes are doubly linked. However, as is remarked in

Chapter 6, sectio~ 2.1, the representation makes for

efficient processing in this program. The parts of a

node record are contiguous in storage, and there is a

large variation in the size of the records.

Access to the node records is, so far as the file

management software is concerned, "random". In the course

of the present experiment, the file has rE:'. ,.ined static

since the final stage in its creation. nevertheless, the

design pays attention to the need, in "real life'', for

frequent updating. V:e must allow for addition and deletion

of both points and lines, and also for ~mendment to labels

which 1nay bring about changes in the lengths of records.

For simplicity of programming, one would l.i.ke to

handle the supergraph in one level of randomly addressable

memory. This can be achieved by building a very large,

paged, virtual memory (one should think in terms of 100

million bytes for a useful field-oriented document collect­

ion). Virtual storage access methods exist for processing

files on direct access devices such as disks (e.g. Murphy

~

1972, Organick 1972). Unfortunately, one cannot afford to ~
forget that there is a paging mechanism, particularly when

the virtual memory is so large. Firstly, one should take

into account accessing patterns, and secondly~ if data

structures in the memory refer to each other, as ours do,

one should take care in the design of record updating

schemes which shift the position of the record in storage.

Bobrow & Murphy(1967b) discuss these problems in connection

with their implementation of BEN-LISP. In their case, it

was important to implement the CONS (list constructor)

function carefully. Since, in LISP, lists are nearly always

accessed linearly, CONS should extend existing lists within

the same page whenever possible. This policy influences

garbage collection (the periodic amalgamation of free space 41'·

•

•

needed in dynamic storage allocation programs). 1Jist cells

should not be moved from one page to another because that

would ruin the effect of all the careful co~;structine; •

After collection, then, free storage is still distributed

throughout the pages rather than being completely arr,alc;am­

ated. Many of the factors influencing the design of list

processing systems for virtual memory are relevant to our

file design, although it has been difficult during the

program's evolution to anticipate the access sequences in

graph processes, so that page swaps can be miniini z cd. ':ie

should certainly need to tidy up the storage quite frequent­

ly if the variable-length records were being modified, and

the reorganizations should preferably be truly local in

their influence.

Node records are variable-length regions within large

fixed-length blocks (4096 bytes). They have addresses

which are invariant under storage reorganization within

the block. The composition of a record address is as

follows:

(block number:integer 0 •• 216-1;

record number:integer 0 .• 255;

record type:integer 0 •• 255)

"Block number" identifies the block within the file (i.e.

the page) containing the record. "Record number" is a

number allocated serially when the record is added to the

block. "Record type" is the type of the label in the

addressed node record (see Chapter 4, section 1.1): there

are many occasions when it is sufficient to know a record's

type without needing its contents, and this small field

can save a disk access. A record address is packed into

a single computer word (32 bits). If a record's position

within the block is changed, its address remains the samE·

and it is therefore not necessary to access all the other

records with pointers to it.

Figure 14 shows the organization of a block and

illustrates the addressing mechanism. Access within the

block is through a two-level index, itself in the block.

record
address :

determines

block in

disk file:

block number record number record
~type

------~

i j
(4 bits) (4 bits)

fixed index (16 entries)

i

A 2nd-level index,
allocated only when
needed (16 entries)

record

Figure 14. The record addressing technique.

At retrieval time, the work required to go through the

index is insignificant in comparison to that involved in

•

•

finding the block. Blocks are initialized with a fixed ·-

index full of null pointers, and no 2nd-level indexes.

•

•

••

~hen the first recoru is stored, a 2nd-level index is

created whose first element points to the record. The

first entry in the fixed index is set to point to the

newly allocated index. As more records a;~ added ~o the

block, new entries are added to the 2nd-level index until

it is full; then another. 2nd-level index is created and a

corresponding entry made in the fixed index; and so on.

During execution of the program, the blocks of the file

are paged into a set of buffers in main memory using the

"least recently used'' algorithm for displacing pages.

The format of the addresses gives an upper limit on

the file capacity of 216 blocks, each with 256 records,

i.e. 16,777,216 records. For reasons given in section 2.2~

below, not all of these are node records, but at least

half can be, and that would be adequate for a large

bibliographic data base. Of course the present block size

imposes a limitation on the number of records per block,

namely 120 of the smallest possible records; however, the

block size could be increased.

It should be emphasized at this point that short c

have been taken in implementing the system, particularly

in the area of file handling, in order ~o speed the

programming task. It is beleived, however, that the

essential principles for a viable design for a very la~gc

file are present. One such short cut is that the record

length is arbitrarily limited by what will fit into a

block, since no provision has been made for overflow from

one block to another.

The almost exclusive reason for the existence of very

large records in this file organization is that a few

nodes will be the centres of large stars :i.n ch·::: ,_;cap.:::;.,

involving up to 105 nodes. They correspond to the heaviiy

posted terms in a co-ordinate indexing system (where they

also cause problems). At the file organization level, orre

answer is to fragment the record and chain the segllients

together (Carville et al,1971 consider this type of

technique). Increasing the block size mitigates the

problem. At the higher, application level, the solution

may be to prohibit such records, just as indexers might

begin to use a set of more specific terms if i v:,~re found

that one had become overused.

•

·;iith the exception of the organization of the parti·L:i,;:;_:e;

of labels, where access patterns were easily predictable,

little attention has been given to the problem of distril·-··

ution of node records among the blocks with a view to

minimizing the number of page faults (file acc:8sses) du:.d.:\::;.

a search. Techniques exist to form clusters of references

with the rr;ain aim of reducing the number of records wr .. ~. ci~

should be exa;nined in a search (Jardine & van H.ijsberge:c,

1971, Crouch 1973, Rettemeyer 1972). One might oraer

document node records in the file such that oembers of ~~c

same cluster occupied neighbouring pages, or Llcck-.; of t:.t'

file. To a large extent, it would be possible to put

subject and name node records in the same region of the

file, because the cluster definitions are all founded on

similarity of descriptor sets associated with the documents.

However, these clusters are collection-induced, and our

point of view is that user-induced clusters are not the

same, though they are clearly similar. The one access •.

pattern which has emerged is that of obtaining the records

•

•

-·

for points adjacent to one recently accessed. This sugccsts

trying to minimize the sum:

L IBn - Bm I
{n,m}EA

where, as in Chapter 4, section 1, nand mare points in

the supergraph and A is the set of all lines. Bx is the

block number in the node address corresponding to the point

x. A method for obtaining an arrangement of records which

approximates the optimum might follow the general pattern

suggested by Jardine & van Rijsbergen(1971) for clustering

large collections. One first minimizes the sum over a small,

carefully selected subset of the nodes, and then stores

successive node records in blocks whose position is

optimum so far as the new nodes are concerned. If one had

to add the record for a point adjacent to some set, S, of

points already filed, one might determine the block, B, in

which to store the new record by minimizing

Any algorithm based on this will, of course, be complicatei

by having to cater for the possibility that the ideal block,

B, is full.

It is usually assumed that when access to a file is

"random", a large block size is wasteful of buffer size and

quantity of data transferred. The speculations in the

ir.~ediately preceding paragraphs seem to indicate that, on

the contrary, for a system of this type, there is a great

deal to be said for large blocks •.

2.1 File processing within ~TS

MTS (the l'.iichigan Terminal System) is a tir:~e-sharing

operating system designed to run on IBM 360 and 370

computers (k'l1S,1973). It enables the co:nputer to be used

simultaneously by many people operating a variety of

keyboard terminals. Users may create files for their

personal use, and editing facilities are provided. l>iost

commonly, a user will have a few small files on public

disk volumes containing programs under development,

frequently used data, and so on. The disk units used on

the Hewcastle University machine are I.i3J'Ii 2314's (IBJ.l, form

A26-3599), which consist of a number of drives (up to 8)

upon which disk volumes can be mounted, interchangably.

A disk volume has a maximum capacity of about 29 million

4lt

bytes. The read/write mechanism is of the movable-head

variety. The tracks have a capacity of 7294 bytes, though 4lt
the full capacity is rarely used, because some space is

taken by inter-record gaps. There is a track overflow

mechanism, so that records (i.e. physical, as opposed to

logical records) need not be constrained to lie within 2

single track.

~TS supports two distinct file types line files and

seguential files (MTS,1973). A line file is an indexed

sequential file in which the keys must be numerical. The

lines, or records, can be of variable length, which may not

exceed 255 bytes. Access, both for reading and writing,

may be either sequential (i.e. in line number order) or

random, by specifying the line number. With the facilities

available for handling them in MTS, line files are

extremely versatile and very convenient to use on-line for

41t·

•

•

•

tasks such as program development. This organization is

not so suitable, however, for storing larGe blocks of data

and imple1nenting a paBing algorithm for them. The sequent-

ial file organization provides a better bc:.:.sis. Sequential

files stored on a direct access device, such as a disk,

processed using a set of pointers, which indicate the

position of the next record to be read, where the next

a ""'"' ... v

record should be written and where the end of the file is.

Hormally, one would go through the file consecutively and

the pointers would be updated automatically. 3u.t a very

limited form of direct access is possible: at any time,

the values of the pointers can be saved, and then used to

replace the current ones at a later stage. (One is warned

not to calculate the pointer values, so that proerams

remain valid when modifications are made to ~TS file

software) •

The test file is a standard MTS sequential file, on a

disk volume, whose records are all 4096 bytes long (that

is our block- or page-size). There are 80 blocks, numbcr2d

0 - 79, and the relationship between block numbers and f · . e

pointers is set up in a table at the beginning of each run,

by scanning the wh-ole file sequentially noting the read

pointer value before each read operation. This implement-

ation has been perfectly adequate for experimental purposes,

but in a full-scale system a specially designed (but

relatively simple) data management package would be

desirable.

2.2 Partition organization

It will be recalled that a partition is a set of points

whose composition is determined by the code obtained by

compressing their labels. The compression of incoming

labels induces a true partitioning of the points; in other

words, the partitions are mutually disjoint and cover the •

whole set of points.

The representation of a partition in storage is simply

an array of node record addresses contained in a partition

record (see figure 13 in section 1.1 again; there is a

correspondence between partition records and the square

nodes). Partition records are stored in the fiin that we

have just described, along with the node records; and are

addressed in exactly the same way. As far as possible, it

is arranged that a partition record and the node records to

which it points are all in the same block (here is a case

when we .have known the accessing pattern all along). It

now remains to describe the method of finding the partition

record address, given the partition's type (name or phrase)

and code.

A hash table is used and, since it is potentially very

large, it is held in a disk file and searched from there.

In fact, another MTS sequential file is used, also with

4096 byte records which are paged into main memory. There

is a large literature on hashing, otherwise ~nown as scatter

storage or key-to-address transformation (Knuth 1973,

pp506-549 and Morris 1968 are good accounts). The technique

has been used in file organization for some time (Buchholz

1963, Lum 1971), and in bibliographic work it is not

uncommon (~urray 1970, Higgins 1971, Bookstein 1972). We

ihall not include a general discussion of the topic here,

but merely describe the way in which hashing has been used

•

•

•

•

•

for seeking partitions.

The search key consists of a type indicator (there are

two possible types, which are represented by 0 and 1) and

four characters from the set { space and letters A - Z},

which are represented by the numbers 0 - 26. The key is

passed to the hashing function as a 21-bit binary number,

K: 1 bit for the type and four 5-bit numbers for the code.

The hashing function is as follows:

(i) The 21-bit key is squared to give S,

i.e. S+K2

(ii) bits 0- 19 are combined with bits 20 - 39 to give

a 20-bit virtual hash address, V,

i.e. 20 (mod 2)

(f denotes the exclusive or operation on the binary

representations of its two operands)

(iii) The least significant n bits of V form the real

hash address, R,

i.e. R+-V

R is used to address a table of 2n entries. The value o-

n can change during the life of a growing file.

A non-empty entry in the hash table contains a vir~ual

hash address and a partition record address, but not a copy

of the key. The table is searched for V, starting at entry

R and using a linear scan with increment 1 in cases of

collision of real hash addresses. The reason for using

this, the si~plest overflow technique, even with its

clustering problem, is to avoid as much as possible the

costly crossing of page boundaries in the table. Collisions

of virtual hash addresses are not detected, because the keys

are not recorded in the table (for reasons of 2t~race

economy). The result of the latter type of colJ.ision is

that partitions are merged. There is no real loss of

information here since the total contents cf a parti Uon •

are not indiscriminately selected by the pro~ram. i:orris

(1968) explains the concept of virtual hash coding: so

long as n is sienificantly less than 20, the table is

equivalent to a much larger, very lightly loaded table

referenced directly by V, in which collisionL should occur

relatively rarely. The reason for using the virtual hashing

idea was the ease with which a table can be doubled in size

without the need to re-hash the whole file or change the

hashing function (Eays,1973 goes into the problem of extend­

ing hash tables by re-hashing). When the real table is

loaded beyond acceptable levels (say, ruore than i full),

the file containing the table is doubled in size and n is

increased by one (thus absorbing a further bit from the

stored virtual hash address into the real address). The
•

existing entries are redistributed (keys are not needed f~r

this), and values of R for new entries are found. using -, , .. ,

new value of 2n.

The size chosen for the virtual hash table (2 20 =

1,048,576 entries) limits the size of the real hash table.

Ultimately, as the number of partitions grows, n will reach

20 and the virtual table will coincide with the real one.

In this case there will be no collisions in the real table;

partitions will simply be merged. The compression

algorithms described earlier in this chapter can produce

54,000 name codes and 531,441 phrase codes; so the key •

space has 585,441 elements. We can get an approximate idea

•

•

••

of the extent of partition merging by assu1ning that the

hashing function assiens the keys to table entries

according to a Poisson distribution, which is reasonable

if the function is a good "randomizer". :rhe probability

that any entry has been assigned k keys is

P(k;A) =
-).

e
~k . --,
k!

where ~ = Kp, the product of the total nuu11Jer of keys

assigned, K, and the (uniform) probability, p, that any

particular key will be assigned to any particular entry.

If the table size is N, then p = 1/N, so ~ = K/~. The

probability that a typical entry is empty (k=O) is

P(O;K/N). Now, since K is large (585,441) we can invoke

the I..aw of Large Humbers and say that the expected number

of unoccupied entries is

N X P(O;K/N) = Ne-K/N

and that the expected number of occupied entries is,

therefore,

When N = 1,048,576 and K = 585,441, this formula works

out to be close to 449,000. (This does not imply that the

final table size - 2 20 - is twice as large as it need be~

because the actual number of occupied entries might lie

between 524,288 (2 19) and 585,441). One can, thus, expect

' the partitioning scheme to work for files having order 10°

node records, and that represents a very large field-

oriented document collection •

We conclude with a few statistics concerning partitions

formed in the test file. Further details and an account of

the test file will be found in Chapter 7, section 2.

(i) Number of node records:

Document type

Name type

subject type

225

537

1905

2667 total

(ii) Humber of partitions:

*

containing 1 node 2373

containing 2 nodes 11 ::;.

containing 3 nodes 14

containing 4 nodes 4

containing 5 nodes 2
-
2506 total

Note 1 • Three partitions (all with two nodes) were

for;rned "erroneously" by the phrase compression

algorithm, in that dissimilar phrases cenerated the

* same code:

{
(Blood volume receptors and

pulmonary diffusing capacity

_ { mor~hine
nbrlhuana

{
chimpanzees

cephalosporinase

. . . >

Note 2. Four pairs of partitions (all with one node)

were merged as a result of collisions in the virtual

The same effect, of course, can cause occasional erron­
eous matching during a search. One medical user typed

•

1 D£FOR!'.~TION 1 during a trial run, and was asked by the
program if he meant 1 MEDIAN RHOkBOID GLOSSITIS' • •.
Before the present author could explain what had
happened, the user exclaimed that he could see why the
program had chosen that term: median rhomboid glossitis

•

•

••

hash table. One would expect 3•01 merBes among 2506

partitions.

(iii) Hash function performance:

Table size 4096

No. of entries 2506

Load factor, o<: ·612 (= 2506/4096)

No. of collisions

(in real table) 734

Distribution of search length, by linear probing,

over all partitions:

no. of of keys of j
----~

of keys/ no. no. no.
probes probes I

I
·-·-~

1 1772 12 8
2 350 1 3 2
3 168 14 1
4 82 1 5 1
5 42 1 6 2
6 27 1 7 1
7 15 18 1
8 10 19 0
9 13 20 0

10 7 21 1
1 1 3 over 21 0

--··---

All partitions can be located once in a total of

4210 probes; average 1·68 probes per search. In

2506 searches, page boundaries in the table were

crossed 8 times. Knuth(1973, p521) and ;;;orris(1968)

give equivalent formulae for the theoretical average

search length for successful searches, using linear

probe open hashing:

2(1 + 1),
2 1 -0(,

where oc is the load factor, ·612 in our case. The

value y~elded by the formula is 1•79.

I
I
I
I
I

3. Summary

We have described the file organization and access

methods which support the interactive reference retrieval

program. The object of impl ementine an ex [lerimen tal :sys tern tj
in this way has been to ensure that the type of retrieval

dialogue proposed will not break down for want of

techniques for handling involved structures in bulk storage,

which are viable in the on-line situation. No attempt has

been made to review file orgdnization techniques - a topic

which has received a great deal of attention in r0cent years.

Dodd(1969) has written one of the better tutorial reviews,

while Senko et al(1973) have recently contributed an out­

standing three-part article on the subject. Lefkovitz(1969)

has written a well known text which gives a broad view of

file design for interactive programs.

The two important features of the file organization are

these:

(i) It is possible to reach a pertinent point in the

structure without being able to reproduce, exactly 1

the vocabulary of the system. This is done by le; , , -:::1

partitioning. It is not claimed that the algorithms

are optimal; though they are based on the empirical

results of others. Further experimentation could well

lead to great improvements in performance, but one is

in danger of meeting some of the fundamental problems

of information retrieval, namely those involved in

obtaining matches between mental concepts through the

use of symbols (in our case index terms). We are

concerned at the moment, with only one part of the

system and tackling those problems here would

A,.,,..
•

•

•

•

constitute recursion in the system as a whole.

(ii) The data base is regarded as a paged memory in which

records (or data structures) within ~ages are the

addressable units, as opposed to the word, 1yte, or

any other rigid storage cell. In this way storage

management for dynamic data can be efficient.

An important problem that we have not been able to

tackle adequately is that of arranging records to suit the

access patterns. Some suggestions have been made on an

approach to a solution, and significant performance

improvements can probably be made, p~rticularly for present

day high capacity magnetic storage ruedia. Reference

retrieval systeills are built for communities of users, and

one should therefore design a data base which can be

accessed efficiently by several users simultaneously. The

construction of a paged, virtual memory as outlined in (ii)

above, but also capable of being shared, is a topic that

merits further study •

Chauter 6

1 • Programming languages • In this work, we have concentrated on an engineering

approach to reference retrieval, as opposed to a theoretical

one. Ideas for the design of an interactive, mechanical

aid to bibliographic searching have been incorporated in an

actual program. Even in its illustrative, prototype form,

the program is substantial. It has also undergone extensive

modification in its brief evolution. The previous system

designing experience of the present author, and of many

others, shows plainly that it is only too easy to under-

estimate the size of a system implementation task. Some

attention was therefore given, at the outset, to the

methodology of program design, and we shall discuss this

aspect of the problem in this chapter. •
It is traditional among documentation programmers to

bemoan the fact that there are no really suitable

progra1~ing languages, or that the machinery was not

designed with their purposes in mind.· Two discussior.s ~1

this topic are given by Saltonl1966) and Dolby(1971). If,

however, we regard programming not as the implementation

of existing solutions, but as one n1eans of discovering

solutions, it is not at all surprising that no satisfactory

special purpose language has emerged. We shall not dwell

long on this question here.

The well-known programming languages are frequently

classified according to the types of application for which •.

they were designed. Fortran, Al~ol 60 and the early

•

•

-·

autocodes were intended to be used to specify nu'nerical

algorithms: the emphasis was placed upon concise means of

writing arithmetic expressions and iterative processes •

For symbol manipulation, such as is needed in processing

text, COlGTt Yngve, 1963) and SNOBOL(Farber _et al, 1964)

facilitate character string (sequence) ·handling, and IPL

(Hewell, 1961) and LISP(I.:ccarthy et al, 1962) provide list

and tree-structure devices. COBOL is the most commonly

used of all languages and is designed for commercial and

administrative data processing, where the entities of

interest are records and files. These are merely a few of

the languages available; many others have been developed

for more specific application areas: lan€;,'Uages used for

writing problem solving programs have recently been

surveyed by Bobrow & Raphael(1974J, for instance.

For experimental information retrieval work, we can

benefit from facilities and means of expression present in

all three of the broad categories of language mentioned

above. IBM's PL/I sets out to combine them all, and it -L::

expensive to use. On the other hand, it is inadvisable "'·­

write various parts of a program in different languages

because (i) there are practical difficulties in combining

translated code and communicating data, and (ii) program

maintenance and documentation are much too complicated. A

third approach is to use a low-level language, which avoids

the problem by favouring no particular application; but

rather the machinery being used. Finally, new facilities

can be grafted onto existing, more general purpose

languages; for example, list processing onto Fortran -

SLIP (Weizenbaum,1963) - string processing onto Algol

(Johnson,1974), graph manipulation onto PL/I (Santos &

Furtado,1972). In view of the wide range of pro0ramming

language features which are potentially valuable in this

application area, the choice of one particular lanv1age, tlf
augmented or not, is felt to impose undesirable constraints

on the solution of problems.

More promising than any of these conventional

prograr~ing methods are those founded on the concept of

abstract data structures, as discussed by Hoare~1972) and

by Earley(1971). A program is written in terms of objects

which correspond to, i.e. are abstractions of, entities in

the problem. Implementation of such a programmed solution

is achieved by finding another concrete form for the data

structures, this time oriented towards the machine, instead

of the problem. Broadly speaking, this is the technique

used in the present project. Languages which embody this •

philosophy include Algol 68 lWoodward & Bond,1974) with its

mode and operator declarations, and Simula 67 (Dahl & Hoare,

1972) which permits a very flexible procedural definition

of new objects using the "class 11 construction. These

languages possess a more powerful generality than PL/I, in

that the programmer regards a data structure as an abstract-

ion of some aspect of his problem which has its own

appropriate operators, rather than as a record or aggregate

of fields, which is an implementation-bound way of thinking.

The implementation language chosen for the program

described in this thesis is a low-level language for the

IBM System/360 computers, which has an Algol-like structure:

it is called PL360 (Wirth,1968; University of Newcastle ~·

upon Tyne,1972). The major benefit obtained from being

•

•

-·

able to write statements corresponding to machine

instructions is that the range of desien concepts which one

can contemplate is very broad. In addition, PL360 is a

convenient language to use interactively on a heavily loaded

university machine because it has a fast one-pass compiler~

The disadvantages of low-level programming which are frequ­

ently cited - obscurity in the program, and inefficient use

of programmer time - are largely overcome by the methods

which we describe in the next few paragraphs. McCracken &

Garbassi(1970) write:

"'N i th COBOL, or any similar high-level language, •••
changes are relatively simple to make ••• With
machine-language programs there are actual examples
of cases in which adding one more digit to a
deduction has required weeks of reprogramming."- p81.

This comment is either a gross exaggeration or an unwitting

observation of bad programming practice. (It is ironic

that this claim should occur in an introductory text on

COBOL, a language which certainly does not encourage good

programming habits, even if it does have useful facilities

for commercial data processing).

2. The structure of the program

The explicit aim of the method of programming given

here is to make the bridge between problem and machine as

clear as possible. The method also makes that bridge

shorter. We benefit in three main ways:

(i) Program development is fast, at both the writing

and the testing stages, because the risk of errors

is low (by normal programming standards). It is

important to have a low error-rate when implementing

heuristics, where unsatisfactory output can be

attributed either to coding errors or to poor

heuristics, thus adding to the complexity of testing.

No precise measurements of program;rh ,_ performRnce •

were made in this project, and there is no clear

distinction between design and coding phases, but

rough estimates can be made. The programs are written,

first, in what we might refer to as a design notation,

which is the basis for the PL360 coding. If we

consider all tasks performed from {and including) the

writing of the design notation to the acceptance of

the PL360 coding as "correct", this particular

programming job was done at a rate of about 100 PL360

statements per 8-hour working day. Only one incon-

sequential, and easily corrected, error was discovered

in the complete final version of the program during

some 300 dialogues with Thomas.

(ii) When our ideas on the problem change it is possible

to identify, quickly, those parts of the program

which will be affected.

~iii) Documentation of the program is aided by the metho·J..

1he design-notation provides a precise and well

organized description of what the PL360 procedures

do, and there is a close notational correspondence

between the two. In fact, the description of the

program Thomas given in Chapter 4 follows the design

notation, and its writing was aided considerably by

having that specification to hand.

•

The structure of the program is, on the whole,

hierarchical; we have used the "~op-down" approach advocated.

b Di.kstra 1972). There are many interesting discussions

•

•

•

on the topic in the literature (Wirth,1971; Henderson &

Snowdon,1972; for instance), and Snowdon(1974) has put

forward an interactive program development tool which

encourages the conscious use of the principles involved in

clearly structured proGramming. We shall not therefore

embark on a lengthy discussion here, but show how the

principles have been applied in building Thomas.

2.1 The "top-down" approach in use

We should like to write programs that have a structure

which makes them readily understandable. The most desirable

attributes that an algorithm (i.e. a procedural program)

should have to achieve this aim are as follows:

(i) It should be seen to be of the form

"First do A, then do B, then do C, ••• "

(ii) It should be short,

(iii) The data objects that it handles should resemble, in

the notation, the "problem" entities of which they

are abstractions.

A programmer can be confident that such an algorithm do

what he intends it to do. The first attribute can be

achieved, very nearly, with the Algol program control

devices: procedure calls, for, while and repeat statements

(for making loops into 11 do X11
), and if and case state:M::nts

* (for alternative paths) • To achieve the second attributer

the programmer should build his system out of short (e.g.

less than a written page) procedures - modular programming.

The third attribute of a clearly written procedure can be

* A good source of information on Algol 60 is Dijkstra
(1962). It includes a copy of the "Report on the
algorithmic language Algol 60 11 • For later suggestions,
;.....,,..,,,n;.....,,. +'h, ,..~!=:P !=:t::=~tP.ment. see Wirth & Hoare(1966).

achieved by inventing data types as needed, tobether with

appropriate operators and programming constructs. It leads

to obscurity if we use an integer type of variable to

denote, for example, a file address consisting of three

numbers which we have decided to store, packed, in one

computer word.

These considerations, added to the fact that the

implementation language, PL360, is Algol-like in its

structure, led to the choice of Algol 60 as the basis of

the design notation. Because this notation was intended

to be open-ended, there has never been any intention to

automate the generation of programs from it. So, the

technique amounts to writing programs in an extending

Algol, and translating them by hand into PL360.

Let us follow part of the development of program

Thomas. Some of these procedures are described in Chapter

4, starting in section 3, and the reader may wish,

occasionally, to refer back to the accounts given there.

1i·ie shall start with the requirement to write a program tLat

creates and maintains a model of its user's interest, to

help him search for references on a particular topic. To

start with, we simply state the requirement a little more

formally, as a process:

procedure TOPIC_SEARCH;

begin SB'J.l_UP_kOD.BL;

end.

repeat Iii1PROVE_MODEL

until USER SA~ISFIED

•

•

·-

•

•

•

Firstly, an initial model will be created by a process

named SET UP J .. OD.2L. The model will be modified in stages,

as the dialos'Ue proceeds, until the user has seen as much

as he wants. :u.;P!WV£_I,:ODEL is a process which results in

a change in the model, and USER SATISFIED is a Boolean­

-valued function which determines whether the user has

commanded the dialogue to stop. All the symbols in

upper-case letters are names of separate processes. rhe

procedure TOPIC_SEAHCH acts as a manager which has delegated

the various jobs and which coordinates the acti~~ties of

its subordinates. Most of the processes introduced would,

at some stage, be defined in the Algol design notation in

terms of further processes. Each Algol procedure is finally

translated into PL360 using conventions which evolved early

in the project. Some processes named in the Algol proced­

ures are close enough to the capabilities of the machine

not to need an Algol definition themselves. In these case~.

we can either write a procedure directly in PL360, or put

the appropriate code in-line when translating the calling

procedure. There follows an outline of the PL360 versio-

of TOPIC SEARCH. Because the reader is assumed not to te

familiar with PL360 nor with the conventions referred to

above, this will be the only example given and, even so, ~~

will be simplified. Procedure nemes are abbreviated to

eight letters in the PL36U translations:

global procedure ~UPICSEA(R14);

begin

external procedure SETUPiJOD(R14); null;

external procedure IMPROVEM(R14); null;

end.

external procedure USERSATI(~14); null;

,5 lines of declarations

management, including a

local flag: stop
'---------------·

~ETUPI.~OD;

RESET(stop); R2:=~stop;

while -,stop do

and codi~1g for -~-t~~~
declarat1on for tne I

---------------------- _______]

begin IMPROVEM; USBHSATI; end· _,

I an instruction concerned with storage m,, a_:_~~me_~~j

USERSATI is a translation of the Boolean function USER

~ATISFIED and, by convention, will put its resulting value

in the flag addressed by register R2, namely stop. The

•

PL360 while statement is then equivalent to tne Algol •

repeat.

The elaboration of initialization processes like

:::>ET_UP_l.~ODEL should normally be deferred until more is

known about the central processes. We therefore move o

I!.iPHOVE hiODEL. In the mechanism we are desig::1ing, the

model is to be adjusted according to the user's input,

which will normally be his response to the program 1 s last

display. The repeat statement in TOPIC SEARCH takes care

of the iterative aspect of the dialogue.. The tasks of

giving and receiving messages, and of changing the model

are delegated to IMPROVE ~ODEL. Let us first define the

process quite vaguely:

•

•

•

-·

read a mescage from the user;

use it to influence the state of the model;

make a response to it

end

The intention is to invoke three more procedures to

perform the constituent processes in this definition.

Phose procedures will be regarded as the definitions of

the meanings of the phrases, and they will be :,-itten

independe~tly. There is, however, a link between them

which must be represented in the more formal definition -

namely the message, occurring as the pronoun "it" in the

second and third phrases. We must introduce an abstraction

of a message: a data type, one instance of which will be

made available to the procedures to formalize the link •

fhe message that the user types will be a simple sequence

of characters, but we judge that it will probably be best

to structure it in some way on receipt. Ne therefore

invent a name for the data type, messa~e, a~d postpone

defining its properties until we know more about the w2y

we wish to use it. We can write the Algol def~nition of

IIfJ.FROVE I.:ODEL now.

2rocedure IMPROVE MODEL;

begin message m;

end.

m: = G ~T USER_l11ES .S.il..G E;

ll~l<'LUENCE _ .STATh_ OF _i..:ODEL(m);

RESPOlW _TO_ USER (m)

A note about the implementation of the mo~0l: beca~se

it forms the basis of the system, the model iG reearded as

global to every procedure. Naturally we know q1ite alot

about the structure of the model, but we co not yec need to.

make it explicit in the proc;rarnrning.

GET_USER_l .. ESSAGE, which is a function of type message,

must process the input in a way that is not yet decided,

so we defer its definition. Here is an informal definition

of INFLUENCE STATE OF MODEL:

begin

end

update the performance figure in the model, according

to the user's reaction;

prune rejected points from the context graph in the

model;

add selected points to the context_craph;

find and add explicitly requested points;

make sure the context_graph is connected

Each process, except the last, uses some i~forsatic~ wt

it is assumed can be derived frow the user's 1:1r ::::. sacc. ;, c

iuvent a set of functions which require a Iuessap~ as

argument and yield just the types of value2. most sui table

~or feeding to the procedures that we shall invoke to

perform the required processes. They are called selector

fu~ctions. The selector functions called by the procedure

which follows are called reaction, reject_list, select_list

and request_list. We still do not have to decide precisely

•

in what structure the data they return should be. For each ~-
data type that we invent, we keep a record of its selectors

•

•

-·

and make a note of their types when they 2re known.

procedure INFLUE~WE_STJt'rE_OP_lWDEL(rn);

message m;

begin

end.

C011:PUTE_SCORE(reaction(m));

PRUNE_CONTEXT(reject_list(m));

ADD_TO_CONTBXT(select_list(m));

FIND_NODES(request_list(m));

UNIFY CONTEXT GRAPH

The programming continues in this way, and we shall

show a little more below. However, we pause at this point

to remark on an omission in the definition of l~FLUE~CE

STATE_ OF _L:ODEL, which did not, in fact, come to 1 it;h t

until the Boolean function USER_SA~ISFIJill (see the definit­

ion of TOPIC_S£ARCH, above) was elaborated. The problem

then was to decide how the program should determine that

the user had seen enough. The dialogue would bc.ve been

clumsy if, before accepting a substantive ~riessec;e iron'

user, the program had to ask him if he His hed ~ r._ :'' t-:::-p.

r.:uch better that he could say "stop" in place of the norna1.

message. We required, therefore, a means of recognizing

the stop message by GET_USEH._I1"ESSAGE, and of passing the

request on so that IliFLUE .. WE_STATE_OF_IilODEL and RESPOlill_TO_

USER should not execute in the normal way, and so that

USER SATISFIED should return the result true. The method

chosen was to record in message a special value for

reaction, denoted by STOP, and modify INFLUENCE STATE OF

~O~EL to the form given in section 3.2 of Chapt?~ 4.

We return to work down the hierarchy of processes a

little further, to illustrate the handling of the model

and of graph at this hit.;h level of descr_:_J.. ion. J, rr1ath- •

efuatical description of what we mean by the supercraph 2nd

the model are given in Chapter 4 sections 1, 1.1, 1.2 and.

2: it is, very largely, in terms of sets of points. We

define FIND NODES:

procedure FiliD_NOi>ES (requests);

query list requests;

beE~in global Eoint set explici t_requests, inhi bi t_list,

context_graph;

end.

point ~addresses;

addresses:= LOCATE_NOJES(requests);

explicit_requests:= explicit_requests U addresses;

inhibit list:= inhibit list - addresses;

context_graph:= context_graph U addresses

U STARS(addresses)

'l'here are several remarks to make aocll.t 0r:c::..s p ~·cecLtre:

(i) The parameter, requests, is the value returned by

the selector function request_list acting Oil a

message. We have given this type of data a name,

.9..uery ~' but have still noT .. needed to decide on

the details of its structure, except what is implied

by the use of the word ~; i.e. that the querv's

are organized in a sequence, so that the order in

which the user provided the texts is maintained.

•

·-

•

•

••

l il') '" ~ .we have invented another data type~

specified that the ae;gree;ates of Eii! t. E ntioned

should display the properties of set····.

(iii) For manipulation of sets, the operators u (union)

and (asymmetric set difference) have been

introduced. In the PL360 translation, one would

expect these to be implemented by procedures, but we

shall only become concerned with that when a concrete

representation for sets is chosen.

(i v) Because the Algol procedures are defL1cd

it is necessary to state that the model components

explicit_requests, inhibit list and context_graph

are the same variables as those accessed by other

procedures. The symbol global is used for this

purpose.

(v) The procedures LOCATE NODES and STARS are point set

valued functions.

We now define ~TARS, a procedure which computes a set

of points adjacent in the supergraph to the points in itf

argument set •

. Point set procedure STARS (centres);

~oint set centres;

begin ,Gl-obal point set inhibit_list, context_gra:ph,

check_ tags;

Eoint set result;

point p,q;

result:= emptx;

for each p in centres - check_tags do

for each q in LINKED_TO(p) do

if q ¢ inhibi t_list U context_gr<3.ph U ce:nt~::--:::·.3 ~~}-en

result:= result U { q}
STARS:= result

end.

The construct for each ••• permits us to specify that a

process should be performed for each member of a set,

without straying into implementation questions concerned

with the order of the elements in storaee. The operator

¢: means "is not a member", and the brackets < , -r.urn their
\._)

contents into a set.

To access neighbouring points in the supercraph we

use the procedure LINKED TO:

Point set procedure LINKED_TO(p);

POint p;

LINK:SD TO:= node_links(NODE_AT(p)).

'.rhe procedure NODE_AT is responsible for finding the dat;~

object containing information relating to a point in

supe:q:~::-e:,ph (the label - see Chapter 4, sec ~.ion 1 . ·1 - a'. 2 ,.·.,~

set of adj~cent points). Objects of this

to in other parts of the program as node 1 s. ::k:r'e, WP- need

the set of points adjacent to the node, a~1d de,:':.:.'J.e thee~~-

they should be available through a selector function ca 1 le1

node links. We have not, at this stage, explicitly

considered implementation of the supergraph (although, of

course, that question is certainly in the back of one's

•

•

mind). It may be noted, however, that we already have a •.

hint of some of the details of file organization given in

•
Chapter 5, section 2. The point's are beginninc to look

like file addresses, and to make the selector node links

(and thus the procedure LINKE.0_110) work fast, the data

structure retrieved from the file by HODB_AT should

contain the addresses of all adjacent nodes.

re shall leave the program development at this point.

Regarding the treatment of sets in the "Algol" definitions,

it should be pointed out that more elegant notations can be

used if non-procedural programming is adopted (e.g. Elcock

~ . .! al,1971).

Top-down p:r:;ogramming is not an infallible method for

effortless problem-solving. It is often necessary to know

how the machine will do a task before writing the high-level

procedures, in order to obtain a satisfactory breakdown of

the design. Bottom-up programming starts near the computer

and works up towards a solution to the preble~. It is

often necessary, even when the approach claimed is top-do~~,

and is sometimes explicit but more often implicit. Sub­

conscious bottom-up programming probably permeates every

stage in a feat of top-down programming; it is the progr

mer's use of his experience. Conscious, though not

necessarily explicit, bottom-up programming occurs when ws

decide, for example, whether a search is best done by hash­

ing or binary search, or when we choose one Algol definit­

ion rather than another because it can be rendered easily

into PL360. There is, however, a basic difference between

the two approaches. In constructing a system, we do not

know the solutions to all our problems in advance, and it

is natural to start by working from the top. The proced­

ures we write will then be those'actually needed in the

system.

2.2 Data structures

Once again, we must avoid a general discussion and

refer to Hoare(1972) for a comprehensive treatment of the

subject of data structuring. What we require for the top­

-down programming method we are using is the ability to

invent any data structure, and not necessarily all at

once. In the procedure, IMPROVE_l.'iODEL, in the previous

section, it is acknowledged that we need a structure of a

type called message, but no fu~ther details are given -

rightly so, because they would only obscure the meanine of

the process. In INlnUENCE_STATE_OF_J,:ODEL, certain aspects

of the message type are introduced: reaction, reject_list,

select_list and request_list. The attributes of each of

these come to light at various stages in the development,

as does the need for yet more components of the data

structure representing a processed user input string.

In general, if we wish to introduce a concept as a

structured aggregate of information, then we just inven~ a

n~e for it (made into a basic symbol by underlining it)

and use it as a data type in a declaration of one or more

instances of that concept. When we wish to get at some of

the information which we understand to be part of the

concept, we invent a selector function, which selects

data of a particular type and in a particular semantic

role from the total abstract object. As programming

proceeds, details of the original concept are filled in,

•

•

and thus a collection of selector functions is built up. ·-

At any point the entity is understood in terms of the

•
collection of selectors invented for it. When a collection

of Algol procedures is translated, the new data structures

are implemented simply by arranging for all the selectors

to work easily - this usually means no more than setting

out corresponding fields (or pointers) one after the other

in a storage map.

Examples:

(i) node N; Many instances of this data type

reside in the data base, and collect-

ively define the supergraph.

selector functions:

node_kind(N) takes one of the values NAI.TE, DOC,

SUBJECT

If node_kind(N) = NAME,

node_name(N) is a string, representing a

~ surname, and

~

node_initials(N) is a string, the initials of

the forenames.

If node_kind(~n = DOC,

node_phrase(N) is a strine, the title of a

document,

node_ref(N) is a string, the location in a

journal.

If node_kind(N) = SUBJECT,

node_phrase(N) is a string representing a

subject term.

node_links(N) is a point set containing all the

adjacent points (addresses).

In Hoare's terminology, this example is a discrimin-

ated union of Cartesian products - we have joined

into one data structure three composite structures

("products'' of more elementary types). The selector

function node kind simply serves to discriminate

between them.

(ii) string tree T; This structure is used to

identify suffixes on words.

selector functions:

left_member(T) is a string,

left_subtree(T) is a string tre~,

right_subtree(T) is a string tree.

A pictorial representation of a string tree is as

follows:

left_member(T)

,-
1

I
I
I
L_

~

left_subtree(T)

T

-- ____ I

right_subtree(T)

It should be emphasized that this definition of a

tree arose purely from the introduction of the

selector functions in the program; it was not

decided upon in advance.

2.3 Implementation of data structures

•

•

Hoare(1972) discusses in detail the considerations •

which influence the implementation of abstract data

•

•

••

structures. In a large system of procedures, we also h&ve

to decide whether to establish systeffi standards for the

various concrete data structures, or whether represent­

ations can vary according to local needs. Because data is

passed from procedure to procedure in parameters and

function values, standardization is the predominant policy

in this project; there are exceptions. When storing

structures with pointers (containing variable length strings,

for instance) on the disk, the representation must be re­

locatable, so the pointers are stored as offsets from the

start of the region (or "record"). At other times the links

are absolute addresses for simpler access and, more import­

ant, so that we can incorporate certain existing structures

into others simply by making reference to them, wherever

they happen to be, instead of moving them in storage.

On the coding of data structures, we shall not go into

the details, which are generally very straightforward, but

merely remark that most structures have two components - 2

fixed part containing fixed length data and pointers, and

a variable part containing such things as linked list

structures and sequences of characters.

The representation of sets deserves mention, howe·vr::r,

Sets differ from other abstract data objects in that there

are no selector functions; all processes are specified, in

"Algol", by means of set operators (U, n, -, E, and so

on) and the for each • • • construct. Underlying these

operations are four basic ones: (i) determining whether an

element is a member of a set, which is a search operation,

(ii) scanning a set, i.e. considering every member, (iii)

adding an element to a set, and (iv) taking an element

away from a set. For sets that are frequently searched, a

hash table representation is efficient. In this program,

we have a limited number of global sets (in the model),

which must remain accessible throughout execution of the

program. If a point belongs to any of these, there will

be an entry for it in a globally accessible hash table,

indicating by means of a short bit vector which sets it

belongs to. Elements can be added and removed very easily,

but the scanning process is very inefficient. If the

program requires to scan a set, a linked list structure is

used to represent the set, sometimes in addition to the

hash table representation in the case of global sets.

These structures are kept in a large globally accessible

storage area, with the exception of sets declared locally

within the Algol procedures. The ~node_links~ portions of

the node structures in the data base are put into the same

area when called for. While they remain in that area they

can be accessed through the same hash table that holds

information for searching the global sets.

2.4 Use of storage

We have chosen an Algol program structure, so storage

must be organized in a stack (except for that used for

global variables). The stack must accommodate lists and

any other volatile linked or variable length structures we

care to invent. According to the conventions developed

for this project, the stack is maintained in contiguous

storage locations in virtual memory. A PL360 procedure is

•

•

told where it may star~ to store local data, and before tt·
returning control must destroy its local variables by

•

•

•

adjusting the top of the stack downwards again. The

details of the technique are different from, hut compatible

with normal IBM 360 subroutine linkage conventions to the

. extent that MTS library routines can be called without

trouble.

The problem arises when the result produced by a

procedure (corresponding to an Algol function procedure) or

a new value assigned to a parameter is of unpredictable

size. Conventions, making use of a second stack, allow the

main stack to be·handled in such a way that, while the

fixed part of a resulting data structure is provided by the

calling procedure, the called procedure is responsible for

ensuring that, on return, the variable part of the structure

is stored within the stack as known by the calling procedure.

Management and documentation of the programming

With '228 procedure and selector function names in the

Algol definition of the program, it is inevitable that an

appreciable amount of time had to be spent on managing and

documenting them. The system has been constructed in

sRveral sections, typically defined by 15 - 20 Algol

procedures. These are translated into a set of PL360

global procedures, and tested. Usually, there are calls on

procedures which have not yet been defined and simple

temporary substitutes must be written for these. Also a

main program must be written to run the test.

A difficulty which arises when testing pieces of a

file processing system is that large, complex, test data

structures are sometimes needed. Construction of these by

hand can be so laborious and error-prone as to be impract-

icable. To construct the data automatically often ~eQui~0J

the definition of another part of the system, which in ·Lurn

requires extra programs to independently check t:h.e ;.'lata a:nd

validate the structural representation. ~.Po make 1nattera

worse, it is often not possible to define the data struct:.· ··-:.

to be produced by the building sub-system before the

processing sub-system has been written and its requirements

are fully known. We must resort to a co:nplicated ad l~

testing of the two sub-systems in parallel, in which quite

alot of extra programming is necessary.

Program testing has been done on-line, and debugging

has assumed a much less prominent place in the development

of this system than is traditional in programming. ~ost

errors cause PL360 compiler diagnostics and are simple

slips in translation or typingo One subt1e logical error

in the Algol definition was due to the awh·ward ordering

relation among English suffixes while they are still

attached to the words. The first method of identifying a

word's maximal suffix which was tried comprised reversin~

the letters in the word and searching a sorted reverse­

-saffix dictionary using the binary search technique. It

cannot be done that way because the length of the suffix,

if any, is not known until it has been identified. ·A tree

searching method was used instead. When testing is

"complete", the object modules are added to a program

library, and the final version of the PL360 source in

printed form and on punched cards is filed away.

An analysis of the means of implementation of all

•

•

the procedures and functions called in the Algol-defined ta·
part of the program follows:

•

•

•

(i) Selector functions for a variety of data

structures are irrplemented:

a) by simple reference to a field in

storage map

b) by minor manipulation

(sub-total)

(ii) Other functions/procedures are implemented:

a) by translation of Algol procedure into

44

9

53

corresponding PL360 procedure 125

b) by small in-line code sequence

(i.e. 1 - 5 instructions) 27

c) by definition directly in PL360 23

(sub-total) 175

(total) 228

In addition there are 53 PL360 procedures which have no

Algol equivalent. These perform tasks such as storage

management and set operators, and, like the Algol definit­

ions, they are short and hierarchically organized.

The program documentation consists of the hlgol

procedures themselves, lists of all invented data types

and their selectors, descriptions of the representations

of data in the machine, and an index to procedures, record­

ing how they are defined, which other procedures they call,

which other procedures call them and, in the case of

selectors, which data type they operate upon. This

information has been found adequate for development. For

example, if it is required to change the implementation of

a data structure, one first makes a list of all its

selector functions. Looking them up in the index will

yield a list of all the procedures which call them, and

these will determine which PL360 procedures need be

changed.

Questions of managing design and implementation

decisions in a flexible way are considered by Parnas(1972).

His answer is the concept of "information hiding", and his

conclusion is

"that it is almost always incorrect to bee;in the
decomposition of a system into modules on the basis of
a flowchart. We propose instead that one ::egins with
a list of difficult design decisions or design
decisions which are likely to change. Each·module is
then designed to hide such a decision from the others.
Since, in most cases, design decisions transcend time
of execution, modules will not correspond to steps in
the processing." - p1058.

Clearly, Parnas' systems will be well-structured, but not

hierarchically, from the top, down. His methods seem, at

first sight, to be rather different from those described

here. However, inherent in the system presently under

consideration, there is a sort of dynamic modularization,

which can have Parnas' desirable information hiding

property when needed. \'re handle design decisions and

document the system in such a way that modules (in Earnas'

sense) can be temporarily assembled out of procedures~ for

specific purposes. Any retrieval criterion can be applied

to the progra~ documentation, in principle.

4. Sumrnary

In this chapter we have given an account of the

methodology of the implementation of the illustrative

reference retrieval program, Thomas. The method described

is not proposed as the only sensible one, even for experi-

•

•

•

•

•

-·

ments, because a great deal depends on the pro(srammer 1 s

past experience and what mieht be referred to as his taste

in programming styles. Nevertheless the method has very

useful properties for our purposes. The design and

pro~ramming aspects of the job are not clearly separated,

programming is quite fast and debugging is very fast,

documentation is facilitated, and, as a result of all

these, changes of n1ind on the designer's part Are relAtivelv

painless. The technique is one interpretation of the top-

-down progra:aming I!::ethod (Dijkstra,1972); and we' have, in

this chapter, illustrated its use by quoting from, and

co~nenting upon part of the actual development of Thomas •

1 •

Chapter 7

PERFO.KMAHCE OF THE PROGRAM

General reruarks

A great deal of the literature on reference retrievaJ

is concerned with methods of evaluating systems: the basic

measurable units and the performance statistics derivable

from them. Firstly, we should distinguish retrieval

performance and notions like efficiency and cost. We are

concerned in this chapter with the former. Most workers

in this field associate retrieval performance with a

system's ability to pick documents which are relevant to

the queries put to it. Consequently, most performance

measures are based on the 2 X 2 contingency table showing

•

how the system's relevance decisions compare with the user's.

If, in a collection of N references, there are C relevant

to a particular query, and the system retrieves L refer-

ences, of which Rare among the relevant ones, the system 1 s

performance in response to that query can be shown as

follows:

Relevant

Not
relevant

Totals

Retrieved

R

L- R

L

Not

Retrieved

c - R

N - L - c + R

N - L

Totc:.ls

1-c
I

--

N - c

N

Note that in any realistic collection, the value of C is

•

not known; it is, in fact, the size of the set A that was ·­

introduced into the discussion in Chapter 2t section 1.1.

•

•

-·

"Laboratory experiments" in reference retrieval

(prominent current examples are the work of Sparck Jones

and of Salton; important earlier work was done by Cleverdon)

make use of a small document collection, a set of queries,

preformulated or formulated by the system from natural

language questions, and, for each query, the set of

"relevant'' documents. In other words, in these experiments,

C is known, and the table can be compiled, completely, for

each query. By adjusting some parameter of the system

under test, the values of R and L are varied a2: 4, in order

to assess the relative merits of different values of the

parameter, the contingency tables obtained are summarized.

A normalization technique must be combined with the averag-

ing process so that systems, or variations in search

strategy, can be compared. We can combine the figures

obtained 'for a set of searches (by addition) ::md then

normalize, presenting ratios (named "micro evaluation" by

Rocchio,1971). Alternatively, and this reflects the view-

point of the individual user, we can work out some ratios

from each table first, and then average them (rtrnacro

evaluation"). The most conunonly used ratios are called

recall and £recision. In terms of a si~gle contingency

table, these are defined:

recall R

c
precision R =-.

L

Combining the ratios over several contingency tables can

be done in two ways:

or:

micro recall

LR·
micro precision =

i ~

l:L.
i ~

=
'\"' Ri

macro recall /__;
. c.
~ ~

,

-- 'Ri • macro precision L
i Li

In spite of the fact that recall and precision have

been vigorously attacked as an unsuitable pair of measures

(Fairthorne 1964, Robertson 1969, for example) they cant-

inue to be the most widespread criteria for retrieval

system worth, probably because they correspond to the

supposed aim of reference retrieval - to find as many as

possible of the relevant documents, and to avoid picking

up irrelevant ones in the process. They are even the most

frequently used basis for evaluating fully operational

systems, where C is unknown, and thus true recall is

unobtainable. In these cases, methods have been devised

for estimating recall, or using a similar ratio which, in

comparative evaluations, provides an indication of recall

lLancaster,1969; McCarn & Stein,1967). The criticisms have

been founded on the mathematical interdependency of the

iatios and the validity of the aYeraging processes (which

inevitably lose information).

•

•

·-

Another type of criticism, for example t~1at ty

Cooper(1973), is that measures depending upon ~perhs.ps

dubious) collection dichotomies are not necessarily

related to system u!il~. The alternative lS some form

of subjective evaluation - the user attaches a value to

the service he has received. In Cooper's proposal, the

user states what price he would pay for a relevant reference,

and how n:uch he would pay to avoid seeing a non-relevant

one. In a recent paper on this topic, Cleverdon(1974) has

argued the need for the evaluation of the utility of

inforJr,ation systems, while at the same time recogni~ing the

power of recall, precision and other such measur~s in the

laboratory. Cooper is criticized for confusing value with

performance: it is conceivable that a system which performs

very well, may be unusable, and therefore of little value,

because people cannot easily express their information

need in the required form. The distinction which Cleverdon

draws is problematic, now that the enquirer can conduct his

own search on-line. The user now plays a major role wi thii>

the svstem itself. Is it still sensible to atts~pt an

evaluation of the mechanical part of the system in

isolation?

The diversity of views concerning methods of evaluating

a reference retrieval technique is probably attributable to

differences of opinion on the nature of the retrieval

preble~, and what qualities enquirers look for in a system.

It seems sensible to seek measures which will enable us to

state how well our program performs the tasks which we

designed it to tackle. Rather than prolong the discussion

of evaluation in general, therefore, we shall turn to the

attributes that should be tested in the retrieval method

proposed in this thesis.

No matter how a library user approaches the literature,

whether straight to the books, or through the most advanced

retrieval system, he views a small part of the totality of

literature. There is no doubt that some users, on some

occasions, would like their view to be accurately and

efficiently restricted to one small area. ~his requirelflent

falls at one end of the search/browse spectrum, and our

program, Thomas, may not be valued very highly by such

users. Most searches, however, have an element of browsing

in them (Herner,1970), and the user's view should include

a certain amount that is peripheral to the strictly

relevant. Imprecision in retrieval is not without value.

It may increase the user's awareness of potentially

interesting work or information sources, and can help him

state or decide what really is pertinent to his own work.

On the other hand, high recall is also not necessarily

required by users. Cleverdon(1974) suggests that, "for

many subjects, a recall ratio of 25% or less of the r.eJ., \":~r·;

doc-uments will give a complete 100% recall of inforwation."

- p174. These points should be borne in mind when using

recall and precision to describe the performance of an

interactive retrieval system.

A major deficiency of the evaluation in this chapter

is that it has not been possible to conduct extensive trials

with real users. The scale of such experiments is beyond

the resources of this project.

2. The test collection

The collection of references used to test the retriev3:

methods described in this thesis is a subs8t of the refer­

ences added to the Ledusa current mvareness file (see

Chapter 2, section 2.4.1) in September 1973. Out of about

19,000 references we have chosen 225. Firstly, searches

conducted by medical scientists and biochemists, on the

Medusa system, were selected if they had resulted in any

retrievals from the September section of the file. By

search, we mean the complete query formulation process,

which may contain several "SEARCH" commands. All references

so retrieved by Medusa, whether relevant or not, were

selected. The important point about this method of select­

ion is that we have queries and corresponding relevance

judgements ffiade by practitioners with genuine information

needs. In addition, if the Boolean search s~rategies

formulated with Medusa's aid were to be put to the subset,

the output would be precisely the same. The figures so far:

1. Number of searches,

(i) retrieving no relevant references: 14

(ii) retrieving 1 or more relevant ref.: 32

1'otal 46

2. Number of different references: 225

3. Total no. of relevant references: 91

A network of records (the "supergraph") was built up

from these 225 references. All the authors and index terms

associated with the references were extracted from the

Medusa files and linked to the document records. In the

MEDLARS records used by Medusa, some terms are accompanied

by qualifiers (see displays in Chapter 2, section 2.4.1);

the qualifiers have been dropped for Thomas' data base.

The distinction between "printn and "non-print" terms is

also ignored.

Using the MeSH (~edical Subject Headings) category

structure, many links were inserted between index terms.

There are several categories, each is a hierarchy of terms,

and many terms occur.in more than one place in this arrange-

ment. :Because there are a large number of terms missing

from our test file, the tree structures were disconnected

in places. Simple conventions were adopted for linking

them up. The following picture illustrates the rules:

missing terms: 0

missing links:

inserted links:
I

I

Terms were not linked if the shortest path between the~

had more than two lines.

I

Several thousand synonyms have been added to Medusa's

dictionary. Those attached to terms already selected for

the supergraph were included, except where the phrase

compression algorithm (Chapter 5, section 1.1.2) would have

caused the synonyw to be recognized correctly. Many of the

synonyms in Medusa are word permutations of the correct

term, and our program can deal with these without the need

to store them separately.

Here are some further figures describing the test fiJe:

Humber of references: 225

Number of authors: 537

Number of MeSH terms: 1357

Number of synonyms: 551

The distribution of the MeSH term postings follows (a

posting is equivalent to a line joining a subject node to

a document node in the supergraph):

Terms No. of postings
1---------- -----

HUII':AN 1 50
MALE 87
FELALE 84
AN II. AL EXPERI!I'iENTS 77
ADULT 51
LIDDLE AGE 44
kETHODS 40
1' Il'iE FACTORS 3 6
EHGLISH ABSTRACT 30
CHILD 30
RATS 27
AGED 27
ADOLESCENCE 27
CHILD, PRESCHOOL 20
I'HCROSCOPY, FLUORESCEHCE 16

No. of terms

4
3
6
5
3
6
8

15
7

19
35
46
83

238
864

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Average no. of postings per reference: 15

Average no. of postings per term: 2•48

With the exception of f1iiCROSCOPY, FLUORESCENCE, the named

terms in the above table are all check tags. (As we hu.ve

already said in section 3.1.1 of Chapter 3, check tags are

terms which the indexer ruust consider posting to each

document). The remaining check tags in the test file are

AGE FACTORS
CASE REPORT
CATS
CATTLE
COitPARATIVE STUDY
DOGS
GUINEA PIGS

INFANT
INFANT, NEWBORN
IN VITRO
MICE
PROGNOSIS
RABBITS
REVIEW

There are a few more in MeSH which happen not to occur in

the test file.

We should now satisfy ourselves that there is a

substantial amount of overlap between the subject areas

represented by the queries. If this were not so, our

method of assembling the test collection would lead to

performance figures distorted in favour o.f program Thomas.

We need to know that there is a choice for the program to

make, in order to see how discriminating it really is.

Firstly, the supergraph represented in the test date

base is a single connected graph; i.e. every po~nt conta~~~~

in it is reachable from every other point. If we eliminate

the check tags, and restrict our consideration to paths of

the form:

D-S-D-S- --D,

where the D's are document nodes and the S's are subject or

name nodes, then we find that no document node is more than

8 lines distant from every other document node in the super­

graph. It is therefore possible to conduct a dialogue in

which a pair of the most widely separated references are

displayed within a few exchanges with the prograw.

The overlap of topics covered in the test dialogues

with Thomas (which are described in the following sections)

is shown here in the form of a hierarchic~~ clustering of

searches. The searches are those conducted with ~homas,

using the "standard rules" described in section 3, below,

and corresponding to the 32 productive Medusa searches.

For this purpose, a search is defined by the set of refer­

ences displayed, and the similarity of two searches is

measured in terms of the overlap of their defining sets.

The technique for producing a hierarchy of clusters is

that described by Jardine & van Rijsbergen(1971). We

calculate the similarity measure for every pair of

searches, A and B:

= •

FJr any value of 8, 0 ~ 9{ 1, we can draw a graph in

which the nodes correspond to searches, and a line joins

every pair of nodes, A and B, for which SAB!9. The

clusters at level 9 are defined to be the connected

components of the graph obtained for that value of e. tie

set e = 0 initially, and draw the graph; then we increase

the value of G. At various values, lines disappear from

the graph. If, as a result, a cluster is split into two

or more smaller clusters, the value of e is called a

"splitting level". We present the clustering obtained in

figure 15: it can be seen that the searches overlap each

other to a considerable extent.

0 m
lf'\
0

N

N
~

ro

•

l!\
-- ..- t­

o .
0

Figure 15.

~ "<:;j- \0 t<'\ L\\

~ lf'\ ro t<'\ ::--
~ ~ N t<'\ t<'\ . •

l!\
~,

~,

I

-~I

~{-[!-----~ _N _c: ro --{=:
N -N

Ril
~,

~-------{-["-
~--~ --N

0
~ lf'\ , r('j

--~----------·--------~

I I ~"<:;j-
N

N
•

I I

l!\
"<:;j-

•

splitting level ----•~

Hierarchical clustering of 32 Thomas
dialogues (see text).

3. 1'he trials

The design of the trials for our program was guided

by the desire to simulate the behaviour of real users.

Sal ton(1972), in his comparison of SJ.:AR'I' .s.nd U~DIJARS, is

prepared to accept the validity of relevance judger:,ents

made by subject specialists other than those who posed the

original queries. He reports a 69% overlap in relevant

sets as judged by users and an independent assessor. The

problems of obtaining relevance judgements have been

studied by Cuadra et al(1967). However, in testing a

system designed for interactive use by the scientist him­

self, it seems necessary to use his own decisions. The

example search given below shows that it is not at all

obvious how the user demarcates the output of a retrieval

system. Medusa users return relevance judgements to the

project team, and those applying to our subset of the

collection were available for use in the trial dialogues.

All references retrieved by tledusa in response to a search

are marked, by the user, in one of four ways:

A relevant, useful, already known

B looks relevant, not known, intend to read

* : not relevant but interesting in another connection

(serendipity)

- : not useful

For our present purposes, we regard A and B as meaning

''relevant" - the user would respond ~ if the reference

were displayed by Thomas. The marks * and - are both taken

to mean 11 not relevant'' - the response to Thomas is no.

This may be a little harsh on our program because, in

reality, a user may wish to be n6n-committal about a refer-

ence, and in that case, a negative response may be mislead­

ing. Plso, in many cases, the decision as to whether a

reference should be marked * or B is difficult to make:

one would expect a strong connection between a user's

various professional interests. All the analyses given

here are derived from dialogues based upon the 32 Medusa

searches which yielded relevant references.

The first thing that was necessary, in preparation for

the trials, was a summary of each Medusa search, giving an

outline of the formulation, including lists of terms

selected by the user, and a list of all the references

retrieved from the September 1973 section of the file,

together with the relevance judgements. In addition, the

number of postings in the test collection was noted for

each term chosen by the searcher during the Medusa session

(that is, for those terms present in the test file). An

example will show the form of the summaries prepared (refEr

to Chapter 2, section 2. 4.1, for a sample L:edusa session)~

Name of search: MWA2 "Adrenal medulla"

Formulation:

entered by user: ADREHAL L1EDULLA (m1)

SECRETION (m2)

INHERVATION (q2)

STORAGE (not in dictionary)

CATECHOLAMINES (m3)

thesaurus search from m3,

user chose: DOPA (m4)

DOPAMINE (m5)

EPINEPHRINE (m6)

NOREPINEPHRINE (m10)

entered by user: L;ORPHillAJ~S (m12)

thesaurus search from m12,

user chose: CODEINE (m13)

DIACETYLMORPHINE (m14)

r.~ORPHINE (m 17)

entered by user: NICOTINE (m21)

ATROPINE (m22)

search prescription:

r6 = m1 and (m4 £!_ m5 or m6 or m10 or m13 or rn14

or m17 2E m21 or m22)

expected return - small

Retrieved references (titles only): Relevance

1. Catecholamine storage in liver metastases of
a malignant carotid body tumour. A bio- B
chemical and morphological study.

2. Isola ted chromaffin granules ILaintenance of B
ATP content during incubation at 31 degrees c.

3. Urinary epinephrine and norepinephrine responses
to chair restraint in the monkey.

4. Tetrahydroisoquinoline alkaloids: uptake,
storage, and secretion by the adrenal medulla
and by adrenergic nerves.

5. Catecholamine response of chickens to exogenous
insulin and tolbutamide.

6. Uptake of calcium in chromaffin gr2-cnules of
bovine adrenal medulla stimulated in vitro.

7. An analysis of pulse frequency as an adrenergic
excitant in pulsatile circulatory support.

Terms in test file, with postings:

.A.DRENAL MEDULLA 7
CATECHOLAitiiNES 5
DOPA 1
DOPAMINE 3
EPINEPHRINE 8
NOREPINEPHRINE 11
DIACETYLr;iORPHINE 1
MORPHINE 2
ATROPINE 1

*

B

B

*

*

The search specification, r6, was arrived at in several

stages, interleaved with thesaurus searching and the entry

of new terms.

~ow we are ready to conduct a search with proeram

Thomas. In the absenc~~ of the user, we must have a set of

rules to follow during the course of the dialogue:

Rule 1. Start the dialogue by typing the first term

entered by the user. If it is not found, try the

next, and so on.

Rule 2. In response to references displayed, ar,swer YES

for those marked A or B by the user, NO otherwise.

Follow this general relevance judgement by a

detailed one, if appropriate: terms listed with

the reference which were entered or chosen by the

user (and are therefore in the Vedusa session

summary), should be "recognized" the first time

they occur.

Rule 3. Stopping rule: stop when all A and B references

in the corresponding Medusa search have been

displayed.

We shall refer to these rules as the standard rules. As

an example we give a dialogue with Thomas, corresponding

to the Ivied usa session summarized above.

I ADRENAL MEDULLA I

Ref. no.
in summary

Isolated chromaffin granules maintenance of ATP 2
content during incubation at 31 degrees C.;
Iaumgartner et al, Eur J Pharmacol,22,102-4,Apr 73.
1. H.Baumgartner, 2. H.Winkler, 3. H.Hortnagl,
4. adenosine triphosphate, 5. adrenal glands,
6. adrenal medulla, 7. animal experiments, 8. carbon
isotopes, 9. catecholamines, 10. cattle,
11. chromaffin system, 12. in vitro, 13. magnesium,
14. norepinephrine, 15. nucleotides, 16. time
factors, 17. tritium

rES, 9, 14 (Remark: the terlils

CATECH01Jd,;I1Jr~S and

NOREPINEEHRINE have

been 11 recognized"

according to rule 2)

Catecholamine storage in liver metastases of a 1
malignant carotid body turuour. A biochemical and
morphological study.; Hortnagl et al, Virchows
Arch <Zellpathol),12,330-7,30 ~ar-737
1. H.Hortnagl, 2. H.Hortnagl, 3. A.Fropst, 4. H.
Schwingshackl, 5. G.Weiser, 6. H.Winkler,
1. adrenal medulla, 8. carotid body tumor,
9. catecholamines, 10. chromogranins,
11. complement fixation tests, 12. cytoplasmic
granules, 13. dopamine beta hydroxylase,
14. fernale, 15. human, 16. liver neoplasms,
17. membranes, 18. microscopy, 19. microscopy,
electron, 20. middle age, 21. neoplasm metastasis,
22. norepinephrine

YES

Tetrahydroisoquinoline alkaloids: uptake, storage, 4
and secretion by the adrenal medulla and by
adrenergic nerves.; Cohen, Ann NY Acad Sci,215,
116-9,30 Apr 73.
1. G.Cohen, 2. adrenal medulla, 3. adrenergic false
transmission, 4. alkaloids, 5. animal experiments,
6. dopa~ine, 7. epinephrine, 8. isoquinolines,
9. neural transmission, 10. norepinephrine,
11. rats, 12. sympathetic nervous system

YES, 6, -7

An analysis of pulse frequency as an adrenergic 7
excitant in pulsatile circulatory support.;
Harrison et al,Surgery,73,868-74,Jun 73.
1. T.S.Harrison, 2. J.F.Seaton, 3. adrenal medulla,
4. animal experiments, 5. assisted circulation,
6. blood pressure, 7. cardiac output, 8. carotid
sinus, 9. dogs, 10. epinephrine, 11. hydrogen-ion
concentration, 12. norepinephrine, 13. pulse,
14. vascular resistance

NO

---------------·--------------
(Viral hepatitis and the corresponding a~tigen); X
Houston, Ued LablStuttG),26,101-4,~ay 73.
1. R.G.Houston, 2. l>ustralia antigen, 3. complement
fixation tests, 4. heJlJagglutination inhibition
tests, 5. hepatitis, homologous serum, E human~
7. methods

NO

Uptake of calcium in chromaffin granules of bovine 6
adrenal medulla stimulated in vitro.; Serck-Hanssen
et al, Biochim Biophys Acta,307,404-14,11 May 73.
1. G.Serck-Hanssen, 2. E.N.Christiansen,
3. acetylcholine, 4. adrenal medulla, 5. animal
experiments, 6. biological transport, 7. calcium,
8. cattle, 9. chromaffin system, 10. cytoplasmic
granules, 11. EDTA, 12. epinephrine,
13. fluorescence spectrometry, 14. microsomes,
15. norepinephrine, 16. perfusion, 17. proteins,
18. spectrophotometry, atomic

NO

Catecholamine response of chickens to exogenous 5
insulin and tolbutamide.; Pittman et al, Camp
Biochem Physiol <A),45,141-7,1 l.~ay73-.-
1. H.P.Pittman, 2. R.L.Hazelwood, 3. adrenal
medulla, 4. animal experiments, 5. blood sug~r,
6. cattle, 7. chickens, 8. epinephrine, 9. female,
10. fluorescence spectrometry, 11. hypoglycemia,
12. insulin, 13. norepinephrine, 14. tiffie factors,
15. tolbutamide
L---~

YES (Remark: we have seen all the

"relevant" reference:;

now)

•

•

For the purposes of analysis, the search stops with the

appearance of reference 5 - "Catecholamine response "
We shall assume that there are no relevant references in

that part of the test file which the user did not see in

the Medusa session.

The search can be summarized, for statistical

purposes, by the sequence:

R R R - - - R

meaning that we were shown 3 relevant (R) references,

followed by 3 non-relevant ones (-) and finally the fourth

relevant reference. We have assumed that the recall ratio

at the end of the sequence is 1. If we plot precision

against recall at each recall level in the sequence, we get

a graph like this:

1

Precision

0 ·----t----+------t-----J

0 1
Recall

The final precision is 4/7, which happens, in this case~

to be the same as that obtained by Ledusa. Having fixed

ce·r·tain of the system parameters and the d12.logue rules,

32 searches could be run and sequences of Rrs and _rs

found for each one. Graphs corresponding to the sequences

exhibit a wide variation and, although we have summarized

theru below, little weight can be attached to the average

performance graphs. Figure 16 contains a few individual

performance graphs to show the extent of the variation.

The technique we use for producing the average

perforlliance curve from a set such as that in figure 16 is

1

Precision

·5

0

Recall

Figure 16. Some individual search performances.

one of the possibilities discussed by Keen(1971) in

connection with the SlilART system. Firstly, because the

curves do not all extend the same distance along the recall

axis, we must extrapolate them to the left. We have to

decide what the value of precision is before the first

reference in a dialogue is displayed. Keen discusses five

possibilities and points out that for comparative eval­

uations, it does not rr1uch ruatter which we choose. We

follow the usual practice of assuming that precision is 1

when the recall level is 0. Figure 17 shows a curve so

extended on the left. The next step is to standardize the

curve. This is necessary because the number of points on

1

Precision

·5

0

Figure 17.

0 ·5 1

Recall

Performance curve extrapolated to the left
and standardized.

the curve varies (according to how ffiany relevant documents

there are for the query). ie choose an increment of recall

(say 0·1) and interpolatein all the straight line segments

of the curve at the recall values so determined. The

points on the standardized curve are shown by crosses in

figure 17. Now the curves for a set of searches can be

averaged. The result will look like figure 18.

There are two interesting features in these curves.

The final precision, n in figure 18, is the average of the

final precision ratios of the separate searches and is

related, inversely, to the search length in retrieval

Precision

·-TC

Recall

Fit,-ure 18. Average performance curve.

dialogues. An average final precision of 1 would mean

that all the relevant documents come out before any non­

-relevant ones appear, for every search; i.e. the search

length is always minimum. The slope of the left-most

segment of the curve indicates how soon the first relevant

document appears. The smaller ~ is, in figure 18, the

longer the systeffi takes to retrieve the first relevant

reference. If~= 90°, the first reference displayed

would always be relevant.

The average performance curve obtained from the 32

dialogues corresponding to fruitful Medusa searches, and

conducted according to the standard rules ~iven above in

this section, is shown in figure 19.

Figure 19.

1

Precision

·5

Average performance - basic trials,
standard rules.

32 searches

'/'(. = ·578

4. Comparison with Medusa

We cannot produce a compatible average performance

curve for the U;edusa searches, because that systenj does

not impose an ordering on the retrieved references, so that

there are no sensible cutoff points. There are, however,

other ways of expressing the performance of the program,

which offer crude methods of comparison with Medusa, and

are more appropriate to the intentions in the design.

It is claimed of our program that a user can obtain

satisfactory performance at low cost in terms of his

initiative and effort. The rules of the trials are intend­

ed to be usable by an experimenter who is ignorant of

medical and biochemical vocabulary. Very little initiative

is needed. We should like to compare the efforts expended

by the users, and simulated users, in the two sets of

dialogues, and also the effectiveness with which the two

systems select relevant references. Unfortunately, neither

comparison is entirely straightforward.

The nature of a user's effort varies from one part of

a dialogue to another. Sometimes he must make selection~

sometimes think of words, on other occasions assess

relevance; and, of course, there is the physical effort of

typing commands or responses. A simple approach has been

taken here to obtain a comparison: we just count "tokens 11

typed in each dialogue. Medusa tokens are:

(i) co~mand names, e.g. COMBINE, UP, SEARCH,

(ii) subject terms: multi-word phrases count as one token,

(iii) system-assigned codes, e.g. M9, R6, Q13; count one

each time the user types one,

liv) logical connectives: AND, OR, NOT, LINK; each count

as one token.

Thomas tokens are:

(i) subject terms,

(ii) special words: YES, NO, NOT,

(iii) numbers, repeated by the user from displays,

(iv) null messages, e.g. no comment about a displayed

reference.

Effort estimates, expressed as counts of tokens, are listed

in Table 5 for the 32 Medusa searches which we are using

(eM) and for the corresponding dialogues with Thomas, using

the standard rules (eT).

The other comparison we must consider is retrieval

effectiveness. Unlike interaction with ~edusa and most

other reference retrieval systems, a dialogue with Thomas

has no query formulation phase. The user should approach

the relevant references by viewing, and judging, a sequence

of references in the neighbourhood of the nodes in which ~e

has expressed interest. We should not expect the first

reference displayed to be relevant; in the early stages,

the program will normally have little ini'ormation to act

upon. The characteristics of interest are:

(i) how quickly the program displays the first relevant

reference, and

(ii) to what extent its output remains pertinent up to the

point when all the relevant references have been

displayed.

The first can be measured by counting the number of

non-relevant references displayed before the first relevant

one. The second by the proportion of relevant documents

among those that follow, up to the last relevant one, i.e.

the precision at recall level 1, isnoring leading non-

-relevant references. In table 5, we list this precision

value (n'), the overall precision as defined in the previous

section (n), and the number of leading no '<·-relevant refer­

ences (A) for each of the 32 Thomas dialogues. If, for

exarnple, a dialogue is summarized by the sequence:

- - R - R R - R

the values which go into the table are:

A.= 2,

T(= 4/8 = ·5

n'= 4/6 = ·67

For comparison, the table also includes the Medusa precision

figures (TCr~) • The comparison can be made between 1t and 7C., r;i

in which case one makes no allowance for query formulation

(or the establishment of the context) in Thomas, or, regard-

ing the leading non-relevant references as equivalent to

Medusa query formulation, one compares 11./ and '7\,1• An

appropriate, powerful statistical test for the overall

relationship between the columns, as suggested by the

averages, is the Wilcoxon matched-pairs signed-ranks tes~

(Siegel,1956). This is a non-parametric test (no &ssump-

tions about the distribution of the data need be made)

which takes acc6unt of the pairwise difference between two

samples. Application of the test tells us that the differ--

ence between~ and ~M is not statistically significant,

and that 1(> JtM is acceptable at the ·01 level of

significance. We can be confident that eM> eT (in fact,

every number in the eM column exceeds the corresponding

one in the eT column).
_.-

'tie conclude that, for the t·est collection and under

·---- ··-------
Thomas dialogues, ~.:ed usa

standard rules searches
---.-----

Search effort .. ef~:rtl'il~~ no.)., 'It n.' eT
..____

1 1 ·4 ·5 6 18 ·4
2 0 •2 •2 14 25 1
3 1 ·6 ·75 8 16 ·6
4 0 1 1 5 13 ·5

5 3 ·57 1 9 13 ·5
6 0 ·5 . 5 4 28 1
7 0 1 1 11 31 i ·875
8 0 1 1 4 25 ..,

I

9 1 ·5 1 2 11 ·5
10 1 ·33 ·5 13 43 ·25
1 1 2 . 6 1 16 73 ·375
12 2 ·5 1 9 48 ·4

13 0 ·8 ·8 9 46 ·8
14 0 . 625 ·625 16 68 1
15 0 ·8 •8 8 28 ·8
16 0 ·71 ·71 7 19 ·833

." --

17 1 ·33 ·375 14 29 ·2
18 0 1 1 5 46

I
1

19 0 •83 ·83 9 20 ·357
20 0 1 1 1 13 i 1

I

--j-- I --
21 2 ·33 1 4 I 33 I ·33 I
22 0 ·27 ·27 20 33

I ·375 I
I

23 5 ·29 1 11 4B • 18

24 3 ·29 ·5 12 52 ·22
·- -

25 6 ·14 J 15 40 ·33
26 0 ·36 ·36 19 56 ·57
27 0 1 1 6 19 1

~
2C3 1 0 5 ·67 8 25 ·5

29 1 ·6 ·75 6 19 ·75
30 3 ·6 ·86 15 47 ·5
31 0 ·67 ·67 5 24 ·5
32 7 ·1 3 1 14 55 1

Averages: 1•25 ·58 ·77 9·5 33·25 • 61

Table 5. Thomas - Medusa comparison. (See text)
225

standard dialogue rules, program Thomas is aba'it as effect­

ive in retrieval as Medusa, but at lower dew<,,nd on user

effort and without requiring the user to formu1ate a query.

If one wishes to regard the first few in~eractions (on

average 1·25) as equivalent to query forruulation, then

Thomas is more effective than Medusa - precision is about

25% better in Thomas. As with most small scale experiments,

we cannot infer that the performance will be equally

satisfactory when Thomas (or a program like it) is operat­

ing on a realistic collection of references. CJearly, an

important factor in a large file is the generally much

higher level of term postings. If a user starts his search

with a very highly posted term, of order 1000 postings, for

exalliple, the initial sequence of non-relevant references

could be rather long. It is difficult to issue guidance to

the user, such as "try to avoid broad terms", l:Jecause his

impression of term specificity will not always be in

accord with statistical specificity, which is what matters.

In our file, for instance, the term CATECHOLAh:l.NES is

adjacent to 5 reference nodes; it is more snecific,

statistically, than either .NOR.t.."'PINEI'HRilm (11 references)

or EPINEPHRINE (8 references), both of which a:::-e na:-row2r

terms - i.e. lower in the thesaurus hierarchy (MeSH) and

likely to be thought of by the user as specific. It will

be recalled that the program monitors its perforrHance

~Chapter 4, section 3.2.1) and, if it appears to be doing

badly, will return to a reference that the user has

approved of, or show him subjects related to one that he

has selected (Chapter 4, section 3.3.3). It is at this

point that suggestions could be made to him, based upon

term postings. Some tests have been done to cauge the

variations in performance due to initiating a dialoeue

with terms of different specificity, and these are

described in the next section. The f:.ampL:s are small, and

once again no guarantee can be given that the results would

be reflected in large scale searches.

5. Further experiments

Three sets of trials have been made to determine the

program's perforrJance under conditions of min.imum effort

by the user, and also to show the effect of the specificity

of the starting point in the dialogue upon the search

length. The dialogue rules are as follows:

Rule 1. Start the dialogue by typing one term: the rule

for choosing this term is discussed below •

.1:\ule 2. In response to references displayed, answer YES

for those marked A or B by the user, NO other­

wise. Note that we do not 11 recognize 11 any

displayed terms.

Rule 3. Abort search if the program requests the user t··

supply another term. The program does this if

there are no documents in its model that the

user has not already seen, i.e. it is stuck.

Rule 4. Normal stopping rule: stop when all A and B

references in the corresponding lJedusa search

have been displayed.

Now we define a family of three sets of dialogue

rules by varying the criterion for selecting the starting

term (Rule 1). The selection must always be made from

those terms typed in, or selected by the Medusa searcher.

Using the same example as we used in section 3, i.e. the

search entitled MWA2 "Adrenal medulla 11
, the candidate

terms are:

term postings in
test collection

ADREAAL l.1EDULLA 7
CATECHOLAWINES 5
DOPA 1
DOPAMINE 3
EPI~EPHRINE 8
NOREPINEPHRINE 11
DIAC.C'TYLMORPHII{E 1
1.10RPHD~E 2
ATROPINE 1

The dialogue trials:

(i) High posting rules. Start with the term with highest

posting - NOREPINEPHRINE in the example. The term

must be associated with at least 9 references in the

entire collection, and it must not be a check tag

(see section 2).

{ii) Medium posting rules. Use a term with a posting

number in the range 2 to 10, wnich is closest to the

average for terms in the list for the search under

consideration. In the example it would be

CATECHOLAMI}IES.

{iii) Low posting rules. Use the term with lowest posting

(must be 1 or 2). In the example we would use

ATROPINE (in preference to JJOPA and DIACETYLMORPHINE,

because the original user typed it, rather than chose

it from a thesaurus display).

The values obtained for the number of leading non-relevant

references, the overall precision, and the precision from

the first relevant reference are recorded in table 6.

Those resulting from the standard rules are repeated

(A., 1(. , 1t
1

), and the values obtained using the high posting

rules ('Ah' r(.h' T(h
1
), medium posting rules (:A-m' 1{ • 1t 1

) and
m· m

• I

low postlng rules (A1 , ~l' ~1) are included. It is not

always possible to apply all three variants of the rules

to a search, so the number of observations in the experiment

is redrced. In addition, some searches had to be aborted

(Rule 3):

High posting rules 2 aborted,

Medium posting rules 4 aborted,

Low posting rules - 11 aborted.

This was mainly due to the absence of relevant documents

described by the chosen terms, and the high figure (11) for

the low posting rules serves to emphasize the disparity

between statistically specific words (i.e. ones that are

used little) and conceptually specific words.

Because the performance of a retrieval system depends

very much'upon the query, statistical tests to estimate the

significance of the differences between average performance

figures must be based on the differences between matched

pairs of measures. For this reason, we cannot obtain

samples from table 6 which are large enough to give

statistically significant results. This being said,

however, the table does tend to confirm our expectations

of the program's behaviour. The search length increases

with the number of postings of the term that the user

starts with. Not only is the length of search before

reaching a relevant reference larger for highly posted

teros, but the continuing search appears to be longer

(indica ted by the lower precision, 1'(.~). The program's

model of the user's interest starts by being large, and

Standard. High posting Medilrrn post-;ng_l_Low posting\

rules rules rules rules
-- -----------l- _J

Search rt'
I A. I " I I

no. A 7(, '\h 7th ilh m 1lm ' 1tm A1 TL1 7'(1 I
I

--- f------- -----l ---- --- ---·-1--·--·---

1-----

1 1 .4 .5 - - - 1 .4 .5 - - -
2 0 .2 .2 2 .29 .4 8 .15 .4 0 .4 .4

3 1 .6 • 75 1 .6 .75 0 .5 .5 - - -

4 0 1 1 0 .67 .67 0 .4 .4 0 .5 .5

~-

5 3 .57 1 3 .4 .57 - - - - - -
6 0 .5 .5 3 .29 .5 - - - 0 .5 .5

7 0 1 1 0 1 1 - - - 0 1 1

8 0 1 1 - - - 0 1 1 - - -

9 1 .5 1 8 .11 1 1 .5 1 - - -
10 1 .. 33 .. 5 1 .2 .21 3 - - I - - -
11 2 .6 1 1 .25 .28 0 .75 .75 0 1 1

12 2 .5 1 - - - 0 1 1 - - -
-- ------·- --------

13 0 .8 .8 - - - 0 .8 .8 - - -
14 0 .625 .625 - - - 0 .625 .625 - - -
15 0 .8 .8 - - - 0 .8 .8 0 1 1

16 0 • 71 .71 - - - 0 • 71 • 71 - - -

17 1 .33 .375 0 • 21 .21 - - - - - -
18 0 1 1 - - - 0 .6 .6 0 .6 .6

19 0 .83 .83 1 .45 .5 0 .32 .32 - - -
20 0 1 1 - - - - - - 0 1 ~

~- -

21 2 .33 1 2 - - - - - - - -
22 0 .27 .27 0 .27 .27 - - - - - -
23 5 .29 1 4 .33 1 - - - - - - I

'

.5 3 .33 .67
I

24 3 .29 - - - - - -

25 6 .14 1 3 .25 1 - - - - - -
26 0 .36 .36 0 .36 .36 3 .4 .57 - - -
27 0 1 1 - - - 0 1 -1 0 1

r . I

28 1 .5 .67 - - - 3 .33 .67 - - - I
-----.--------- -------- !------- ---- 1----t----4

29 1 .6 .75 - - - 1 .6 • 75 - - - l
I

30 3 .6 .86 - - - 4 .55 .86 0 .75 • 75j

31 0 .67 .67 - - - 0 .4 .lr- 0 .5 .5 I

32 7 .13 1 - - - 2 .33 1 - - ~j ==
1==-- -
Averages 1 .25 .58 .77 1 .81 .38 .58 \1 .26 .57 .70 0 .75 .75

I

No. in 32 16 15 23 22 11
sample

Table 6. Specificity tests data. (See text).

230

must be reduced: the refinement continues after the first

relevant reference is displayed. We can also see from the

table that the system's performance is acceptable, even

when the user makes very little effort indeed. Altogether,

63% of the searches conducted under these rules succeeded

in achieving 100% recall (i.e. were not aborted).

Clearly, with a collection of realistic size, a user

who contributes little initiative is likely to encounter

long searches because the terms (in a controlled vocabulary

such as we have used) will frequently be highly posted in

comparison to the norm in this test collection. If,

however, the user is able to give more direction to the

search by making more detailed responses to the program's

displays, the search length will then depend upon the

distance in the network from his starting point to a

relevant document node. The test collection generates a

network which is not only connected, but high1y convoluted,

i.e. no node is very far from every other node (section 2).

To prove the same for a large collection is a formidable

task; but it seems very likely to be true. The subject

terms (MeSH) are arranged in several trees, known as

categories. The maximum depth of the trees is four nodes,

so the path from one leaf node to another in the same

category is at most 6 lines long. There are three means

of moving from one category to another, in very few steps:

(i) many terms belong to more than one category (no steps),

tii) there are a large number of cross references between

terms in different categories (1 step), (iii) most

documents are associated with terms from different

categories (2 steps). It would be very surprising if any

category of terms were completely cut off from the rest.

Finally, if there is a path between every pair of subject

nodes, then there is a path between any two document nodes.

Chapter 8

COiiCJJUDIHG H.bi.;ARY~S

There are several topics to which further work could

be devoted: improvements to the information heuristics and

data recognition algorithms, studies of file handling for

large, rich networks of records, indexing languages with

more complicated features (involving syntax) and their use

within an on-line program of the Thomas sort, investigation

of problems arising out of file size. We feel that the

last of these is sufficiently important to warrant a

discussion before we conclude. Finally, we reiterate the

main theme of this work.

1. The problem of scale

It is important, in the reference retrieval field,

that the experimenter who chooses, or is constrained, to

use a small collection of documents should bear in mind t:12

applicability of his designs to realistic, large scale

collectio~s. Can we predict the performance of ThorL::tf, · "~

a. 11 prnduction model" based on Thomas, operating on ~l C.eta

base concerning a useful field-specific collection of, sa~

100,000 documents? The problem is not si1Dply one of

i;nplerrientation; we should like to know whether the heur:Lst ..

ics used by Thomas will still be able to help the problem­

-so} ving, browsing user. In fact, we believe that the two

aspects of the difficulty are closely related. Both the

san and the machine will run into trouble if associations

become too numerous in the network.

We shall assume that the supergraph (see Chapter 4)

will consist of data similar to that used in the experir;l•::r'.t

discussed in Chapter 7. The document nodes are associated

with author nodes and with subject nodes corresponding to

the terms assigned to them from a controlled vocabulary C:y

the indexers. Links between subject nodes are derived from

the indexing language thesaurus. Under these circumstances.

the major cause of difficulty will be the highly posted

terms, which will generate very large stars in the super­

graph centred on certain subject nodes and containing

several thousands of document nodes. If such clusters are

brought into the context graph, the program's model would

become unusable. Not only would each choice of a reference

for display be a major task for the central processor, but

the likelihood of the choice being a successful one would

be greatly reduced.

·!:e must concentrate on the size of the P:~del of the

user's interest. In a full-scale operational system, the:re

must be features which restrict its size: we cannot allow

the model to grow in proportion to the size of the !::nzper ·

graph. Let us examine the components of the model, as

listed in section 2 of Chapter 4, and see how points are

ajded to these during a dialogue. We start with the

straightforward sets of points:

ti) "explicit requests 11 , "good documents", ••accepted

documents" and "reviewed nodes 11 (see Chapter 4 for their

definitions) are all limited in size by the length of the

dialogue.

(ii) "last selected 11
: the points selected by the user from

the last display - clearly a small set.

(iii) " inhibit 1 i s t 11
: the p o in t s r e j E: c t b'i t. y ~~ r:· :.:: user)J

throughout the dialoeue. This set grows as the dialogue

progresses, but every point in it must havs been involved

in at least one d.ispl2.y so, once again, Gill.: len~trL of t:le

dialogue is the limiting factor.

(iv) "context graph". Points are added by procedures

ADD TO CONTEXT (Chapter 4, section 3.2.3) and :B'IND_NO.lJi~S

(Chapter 4, section 3.2.4). These include a few specified,

individually, by the user, but the main bulk of points will

normally by supplied by the function procedure.~' I,IH.h."ED

DOCUL:SNTS (called by ADD_TO_Cm~TSXT) and STARS (called by

FIND_HODES). Both of these functions retrieve the sets of

points adjacent to those in their arguments. (The proc­

edure LJNI.B'Y COWL'.EXT GRAPH- Chapter 4, section 3.2.5 - alsc~

causes these functions to be invoked on occasion).

Now, the basis of a constraining featur0 is already

present in the program - the treatment given to the built­

-in set of check tags. These have cropped up several -~i..r!es

in the thesis, and were first n1entioned in Chapter 3~

section 3.1.1. They are highly posted E:Lt 1.:;ject terLiS w}·,

were given special status in Thomas beca~se it was faunQ 1

in the course of development, thEit pcrforn:ance ·,v3s s ::;ri ·:-·;.:

ly i~paired 1mless their use was restricted. The foro th~t

the restriction took was simply to prevent, at all ti~es,

LEJ.l\..ED DOCUMENTS and STARS from fetching the neighbours of'

any check tag nodes from the supergraph. The effect of

~oing this is that no document node can be considered for

display solely on the basis of the presence of a check tag,

even if the user explicitly shows interest in that term.

If, however, a document is already in the context graph,

any user-selected check tags with which it is associat0d

will count in its favour when the pro~ram makes a choice

for display.

Check tags are defined, ~priori, for the Medlars

indexers, and are consequently among the more highly

posted terms. There are other terms which are used very

frequently; and if the system were applied to another file

of indexed references, there may very well be no equivalent

to the "check tag" list in Medlars. ~e need more flexibil­

ity than is provided by a prescribed set of check tags.

Many measurements have been taken in the past few years on

the use of indexing terms, and there is remar1:-able consist--­

ency among the various indexes: terms are posted according

to a hyperbolic distribution, i.e. a few terms are used

very frequently, and the frequency figure falls rapidly so

that lliany terms are used only rarely (Fairthorne,1969).

Houston & ~all(1964) studied term frequencies found in te~

indexes and fit the observations to a family of log-nc!':: ~

distri1Jutions (the points fit hyperbolic distribution~

just as well). Figure 20 shows the cumulative iistr:i'
·• ,· (.

of postings given by Houston and Wall for ~ collectj_on of

195,000 references. We prcpose that, for Thomas'

successor, terms be added to the check tag set when their

frequency of use reaches some chosen level, say 400

postir...gs. Using figure 20 as an example, approximately

15~~ of te:-ms would then be restricted and about 65% of all

terEs would have fewer than 100 postings.

On the question of implementation, we note that the

restricted subject nodes are distinguished from the others

by the fact that the program never wants to know their

..........
Q)

rl
ro
()
Cf1

1000

400

100

10

Fi{I'ure 20.

./

cumulative distribution:
% of terms having x or fewer

postings (linear scale)

Cumulative distribution of term

postings to 195,000 docUJI.lents.

(Houston & Wall,196L). The

slope and intersect at x = 1

vary from one index to another.

immediate neighbours in the supergraph. ;'/e c~:m, thersfor."r:; $

simultaneously do away with explicit mention of check tags

in the program, and all the long lists of file ad~resses

which represent the links from restricted subjects to

documents. The supergraph is now a directed 0raph in

which if there is a line from point x to point y, then

there is also a line from y to x, unless x is a document

point and y a restricted subject point. When the record of

a restricted subject is retrieved, no links to documents

will be available, although links to other subj e:~cts may be.

Removing unwanted pointers, and r;;arking the record as

belonging to the restricted class (so that links are not

added to it in future) can be easily carried out by the

network updating procedure as soon as the number of postincc:

exceeds the limit.

In the present project, we have developed a program

to implement a particular type of mechanical assistant fo

the browser. It is far from being a complete reference

retrieval system: there are no convenient aids for the

(librarian) manager of the system, for example. Proble~~

of size should be considered in the context of ;:::t co:r.rpJete

systes. Decisions on such matters as the indcx~ng pro2~f

and the collection weeding methods should be tackled in tL.c:

lisht of file size. Hence the comments above should be

regarded merely as guide lines, and an argument in favolli'

of the feasibility of our technique for retrieval applied

to real-life document collections.

Before we leave the subject of size, we should

emphasize that, although the proposal to severely restrict

the role of highly posted terms would seem to lead to

practicable information handling, we have n0 reliable

evidence that it will not impair the retrieval c:::':.l)abili ty

of the program, when applied on a large sc2le. In Thomas,

28 (2 ·06;~) of the 135'7 I.';ef:.H terms were des:L::_):lated check

tags; we were forced to distinguish then in order to

obtain the sort of dialogues we had in mind. On the other

hand, with a large network, we may wish to restrict as many

as 1500 (15%) of the 10,000 terms in MeSH to eliminate the

large stars. Can we be sure that the information lost is

not significant for our purposes?

There is some evidence that medium and low posted

terms are more useful for retrieval than high posted on~s~

in small experimental collections, at least. Sparck Jones

(1972b; 1973c) has discussed, and established the utility

of, term weighting based on the frequency of occurrence of

the term in the document collection. The wei~ht of a term,

and therefore its influence in linear associative retriev;,.

varies inversely as the number of times the term is paste:

There are other ways of weighting index terms tsee Spare

Jcnes.1973c), but the use of collection frequency w0i

gi~ss the most notable improvements in perforoance over

unweic;hted index terms, in small-scale experiments. In

other wordss if we reduce the influence of hig~Jy posted

terllis in relation to that of less frequently used terms,

the retriEval mechanism becomes more effective. The

experiments of Salton & Yang(1973) and Svenonius(1972)

c.:;.:>o~::: .,o confirm this, and it is assumed to be true on a

large scale by Williams(196~), who has incorporated

collection frequency term weights, called "information

values 11 , in the BRO';JSER system.

239

2. A summinr:;-up

The problem of reference retrieval can be ~8id to be

one of communication: the transference to and interpretation

by an inforH!ation system, of incompletel.,.: .~ orJLed id.en.s &

The source of the ideas is the searcher, and we take the

view that searching is part of his problem-solving activit­

ies. He must at times use the information system in the

process of completing his ideas. The program design

described and discussed in the foregoing chapters acknow­

ledges the fact that under these circumstances ::l. uf;er

cannot easily specify his requirement, even in his own

language. If we permit the enquiry to be made in natural

language, we are faced with an interpretation problem

which, as yet, has no satisfactory solution, save within

a very tiny universe of discourse. If we simply extract

keywords from the user's question, or ask hL• to put the

question in a simple, rigid form using keywords, then we

must have ways of locating instances of the same or closely

related concepts, expressed by means of different words.

We have here the ideal application area for inter­

active computing. A search cannot usually be entirely

delegated to a machine: it is really a projle~ to be solve

by the Elan who, because the task contains so much tedium,

can be aided by a computer. The retrieval ~tern should

be a synthesis of man and machine. On-li!1e informati.on

retrieval systems are now plentiful, and the main reason

for their success is the possibilities they offer for

interleaving human decisions and ruechanical processes.

In spite of all the effort that has been expended on

these systems, however, we thought that for lliany searches

query formulation is still difficu~ t and T:rt'_:LL.ble ~ : rtd

decided to try to do without it. The pro~rarn omas

allows a user to browse among the refere11CLS lin preference

to the term thesaurus) in its data base and, becau.;e the

normal :;,cie of operation is to show the user references,

one after another, there is no need for a "corrrrr,and lc-.nguc:ge '',

as found in most on-line systems. The user ~ust, of course,

specify at least one topic of interest; but during most of

his dialoe:,-ue with the machine he will be deciding upon the

pertinence of what he is shown by the program. The

computer's actions will be determined by the decisions

which he makes known to it. Thus, the ffian is brought into

the system, doing the task for which he is particularly

suited.

In program Thomas, the dialogue structure is new.

The conceptual basis for it is the model, or representation,

that a person develops during conversaticn of another's

view of the world. He does this so that he may unders~ar~

the ideas being conveyed: the ffieanings of words depeLd ~.~y

bach upon the context in which they occur, and the ow­

le,J6e c:.;;ainst which they are set by both ti1e SJ1Cc'a aEd

the listener. Our program uses the C:::LlCfuLr2r 1 ~. ilc?Sf".-1. 1~.::·c --cc

build up a picture of the bibliographic context of his

p~oblem. The program's dispJays should help the user to

appreciate how the words have been used to describe the

documents, so that the man also constructs a picture of the

other 1 s - the program's - "viewpoint".

Thomas' knowledge consists of the names of a set of

bibliographic items and a large number of associations

between them. The model of the user's topic that it builds

is in terms of that; it is a small part c·f tha·t net·,vork ,-<:·

data- a cluster of inter-related items of biblio~raphic

interest: references, subjects and authors 1 nau1cs. The

cluster changes as the dialog'Ue with the ~-''-''-'r procresses,

and it is not one of a number of clusters determined

statistically from the characteristics of the collection

as a whole and independent of any queries. The clusters

formed by Thomas to model the searcher's area of interest

are dynamic and user-induced as opposed to collection­

-induced.

Measuring the performance of a system with the

objectives that we have set ourselves is not at all

straightforward. Firstly, whatever measurements we take

on a small test data base may work out rather differently

on a large file. Secondly, it is not clear how we should

measure the success of a browse. Thirdly, wt should

observe many users with real information needs. In this

project, we have had to restrict ourselves to making sure

that the program finds the relevant references in its da\

base, quickly and without a great deal of E:ffort expend"'

by the user..];.s a result of the tests r>Grried cut, we :"'2~1

say that, on a small collection, Thonas ~~trie~ed relevant

references about as effectively as the Medusa system

~·:rhich was the source of Thomas' dsta base), b;:.t the de>}3.!1d

or1 user effort by Thomas is much less than that demanded by

hledusa. Thomas achieved this performance without giving

the user the ability to formulate a query. If we equate

the query formulation phase of a hledusa session with the

first few interactions with Thomas, establishing the model,

the tests show that Thomas' performance is substantially

_,

better than ~edusa's.

The most important follow-up to thi~ work would be

the creation of a much larger network, with a suitably

modified proLram. Experiments should be ~ne with many

different users, having genuine information needs. It is

important that the data available to the program should be

sufficient to satisfy many of the users' requirements. An

enlarged system could be the vehicle for experiments on

size, the efficient organization of large graph st~~ctures

on disk storage, and measurements of the performance of

man and computer together, looking for relevant references.

BIBI~IOGRAPHY

The names of some of the journals fr uently referred

to are abbreviated in the following pages. They are:

Am.Doc

CACIIJ

ISR

JACM

JASIS

J.Doc

JOLA

American Documentation

Communications of the Association for

Computing Machinery

Information Storage and Retrieval

Journal of the Association for Computing

Machinery

Journal of the American Society for

Information Science

Journal of Documentation

Journal of Library Automation

* * *

Alberga C.N.(1967). "0tring similarity and misspellings"
CACl.~,lQ, pp302-13.

Augustson J.G. & J.Minker(1970). "Deriving term relatio- •
for a corpus by graph theoretical clusters 11 J.A.SIS ··--­
pp101-11.

Auctin D.(1974). "The develop~ent of PRECIS: a theoretical
nnd technical history" :J.Doc,30, pp,+7-1C?.

Ayres F.H., J.German, N.Loukes & R.H.Searle(1968). "Author
versus Title: a comparative survey of the accuracy of
inforGation which the user brings to the library
catalogue" J.Doc,24, pp266-72.

Bar-Hillel Y.(1964). Language and information: selected
essays on their theory and application. Addison­
iiesley: 1964.

Barraclough E.D., A.S.Barber & ~.A.Grayl1972). Medlars
on-line search formulation and indexing. University
of liewcastle upon Tyne, Computing Laboratory, Technical
Report Series, no.34: 1972.

244

_)

Barber A.S., E.D.l3&:.L'rc_;_clough & ·.v .A.Gn.-~.yCi 973), nor~-li::e
information ret:f'ieval as a scie,'itis;: 1 s tx.:l 1 ISI3.,.?_,
pp429-40.

Barker F.H., D.C.Veal & B.K.'ilyatt(1972). "Towards autom2.tic
profile construction" .0:.::I~o ~, 28, pp44-5 5.

Batten .v.E. (1947). 11 ft punched card syst0m of indexinp, to
meet speciol requircucn ts :' Report of the 22nd Asl i b
Conference, pp37-9.

Bays C.(1973). "The reallocation of hash-coded tables 11

CACM,.:!_§_, pp11-4.

Belkin N.J.(1974). "Towards a definition of information
for informatics" Paper presented at lnfor;natics 2,
Aslib Co-ordinate Indexing Group Annual Conference,
25-27 karch 1974, Oxford.

Blair C .R. (1960). "A program for correctin.g ::;;·, :u ~:_ng
errors" Information and Control,l, pp60-7.

Bobrow D.G., J .i:i.?raser &:: i.I.R.',.Ju.illian(1967a). "Automated
language processing" Annual Review of Information
Science an_d Techno_l-ogy~2;- pp161-86. -

Bobrow D.G. & D.L.Lurphy(1967b).. "Structure of a LISP
system using two-level storc::::.ge" _9ilCJ.:,1o, pp155-9.

Bobrow D. G. & B.Raphael(1974). ":I;ew p:cc ';r.srnming languages
for artificial intellicence :r:·esearchH ;-:_s:);nputing
Surveys,6, pp153-74.

Bookstein A.(1972). 11 Double bashing" JASIS,?1, pp402-5.

Berko H. & 1\i.Bernick(1963). 11 h.utomatic document classifi.c-­
ation" JAC!'Ii,_!_Q, pp151-62.

Borko H. & M.Bernick(1964). ".h.utomatic document classL
ation. Part II4 Additional eXIJeri.iuents" J~~,.JJ_-;
pp138-51.

Bourne C.P. ec D.Ford(1961). '1 .n. 5:;;;_.~:".'/ ,-.f' methois f'ol·
systematically abbrev:i_.s:tirLb l';neli.sh words and :1C:L!1e2 11

JACf,8, pp538-52.

Briti:~ Standa~ds Institution(1963). Guide to the Univsrsal
:J~::8imal C_1a_:?__sificatio_~LJDC) B.S.1000C: 1963. -----·

Brookes B.C.(1974) "Robert Fairtho:rne and the scope of
Info::-I;;ation Science" J.Doc,30, pp139-52.

ruchholz ',; .. (1963). "File organization and addressing"
- ·-., • C' l-- T 1 2 8 6 111 J...::._, ,,ys·ve1:-:s <.~OUrna ,_, PP - •

Burnaugh H.P.(1967). "The BOLD (Bibliographic On-Line
Display) System" Information retrieval: a critical
view G.Schechter (Ed.), Thompson: 1967, pp53-66.

245

Bush V.(1945).
pp101-8.

C . l l 1- - D -I. . F - " " +h (" r '7 ~) ' ~ + t -arVl~ e ,,., JJ •• 11gt,1ns r::r .d._.rn..L, •)ti • ·'i.'iverac .l.\:::

refer en c e r E t r i e ·.r a 1 in 1 ~:r g e f r:_ '" s " _!:.§.~ ,] ~ p p 2 0 5-1 0 ~

Cleverdon C.i.V.(1972). 1'0n the rclat:i.cns'
precision" .• ~I.!S.:..~_,_7:~, pp195-201.

Clevercion c.·.v.(1974). "Ucr~r evaluation of information
retrieval <.:oystems 11 J .Doc 1)0, pp170-130.

Cl everdon C. W. , .T. Mills & 1.:. Keen (1966). Factors determin­
ing the uerformance of inde~ing s:tst~is. A3lib
C~anfie:fd"l:iroject, Cra!ll'ielCi: 1%bo !.?l~! __ :__!2~::·Si..EQ.!
_(1.)arls 1 and 2). Vol.2: T~_st result_~'-·- ~01...-:verdon &
.l{een •

Coates E.J. (1973). "Some properties of re=_z.:..-~' · r:.cc--;hips in
the structure of indexing languages" {_~ __ :.!.:l.~~-'?
pp390-404.

Cooper '.V. S. (197 3) • nOn select in;.::; a measur•3 of retrieval
effectiveness" JASIS,24, prS7-100; "Part II.
Implementation of the philosophy" JA}3IS, 24, pp413-24.

Crouch D.B. (1973). 11 f. :f-I'Occss for reducing cluster
representation 2.nd r8trieva1 costs" _Proc. ~Cf:l an:rma~­
conference, 1~73, pp224-7.

Dahl 0. -J. & C .A. R .Hoare (1 ~'?~!b). ".iiierarci' ~:~.- l-!:'O[;ran:
,structures" in Dahl ret a)_(l972a) q.'.r •. P::~'?'~~-220.

Di j l::s -~-ra. ~~Jt· ,i $ (: ·1 ~:;6:=-:) u

~-~ c ac3_ r· .·;:i c ::)1··· e f. s:
A n 1- .-: I~J e.:::.. o J' Al (' · ~-·l ~) ~'~- · -- '?. c ... '. ·.1n1.i :rt S(' fy

A -;:;-zfUIJ<,;---~·----·'-'-----~--· -~~---· """"'·-- ~...;-
j j C!L •

structured
pp1-82.

r~rccram;ning"

Dolby J.1.(1970). "An algorithm for variable-length
proper-name compression 11

... To-:-.A_, 3, pp2 5 7-75.

Do 1 by J .. :L. (1 971) • 11 Programming languages in mechanized
do cu.me!l ta tion 11 J. Doc, 27, pp1 36-5 5.

Doyle L.B.(1961).
s earc}lerf',"

Doyle L.B.(1965). "~Sxpanding the editing .Lmc"L on in
langu::-.ce dcc:ta }Jrocessing" CACM,§_, pp238-4:).

Earley J.(1971). 11 Tov;ard an unclerstandiJ
structurc;s" C/.C;,,I4, TlP617-27. ------ -·- - -- -

Elcock E. d., cT .;:i.ioster, P.·.:.D.Gray, c1 .J .;.kGregor &
A.:.:.; .. urray(1971). "A"tset~ a prc;;Tamm:i_ng language
based on sets: motivation and exarrrplcs 11 J/lachine
intel1ir:;ence,6 B.I.~eltzer & D.i,:ic:hle tEds:)-;·-Eclin.
Univ. Press: 1971 ~ pp467-92.

Englehart D.C., R.W.Watson & J.C.Norton(1973). 11 The
aug;nented knowledge workshop" Proc. ~Js.tional Computer
Conference, 1973, pp9-21. - -

FairtLorne R.A.(1956). "The patterns of retrie. l Am.
DC?_..£,1, pp65-70. Repr.inted in Fairthorne(1'?S·1), q.v.

Fairthorne R. A. (19 58) & "Delegation of classification"
Am.I,oc,_:i, pp159·-G4. i:epi'inted in Fairtho:::-·n.e("'1961),
q.v.

Fairthorne R. J". (1 96 -l) ~ _'I'_•J_v_:c;rc [~ __ i_r~forrna tion retrieval.
Butterworth s : 1 ~? 61 •

'(()130--;

IJIJ?1-30e

i:r1i' o rrna t~i 0~1 ..

"1"- note 011 the concept of 1 relev2.nce' 11

Glantz R.S&(1~70)~ "SHOEBOX- A personal file handling
systE:;n for textual data" Proc. AFIPS, 37, pp535-45.

Goodliffe E.C. & S.J.Hayler(1974J~ "On-line information
retriev:::1.l: so;11e com:nents on the use of Retrospec I in
an industrial library" ~slib Proceedings,26,pp177-88.

247

Gotlieb C.C. & S.r-T!l<-:::·(196~3). n:-.r::!n2ntic r-1 us"7·> c of
index terLl~~" ~-':<..:.:·:,.15, pp493-513~

Gray '.'l. A, (:, A. ,J.. E: rl c J (1 'J7 ·';) . "Computer assisted indexing 0

I '.:J '7 1''~ 74 -~~,~~ PP o 1- •

Halmos P.R. (1960). l~::ti.~~-E._?_-t:.__~_eory._ Van Nostrand Heinhold
Company: 1960.

Henderson P. & R .. ~.Snowdon(1972). "An experiment in
s truct1JTed }:<Tograrr,mi ng 11 ?T I'._!.?_, pp 38-· 53.

North

Higgins L.D. & F .. ,;· . .c::;~l· ~;h(1 ?69) .. "On·-li.ne subject indexing
and re tri ovnl '1 J.:~-~.i_;::E£!2, ~~, pp 1 4 7-5 6.

Higgins L.D. & .t:.~l.~)p;j_th('l/71). nJisc ~e:c,;~;s algorithms"
Computer J o ~~.E~@ -L, .~, ; ;>~>': ~~-- ~' :'!.

Hillman D.J.(1964)~ 11 'J'wo ;nol'.e1~> for ratrieva.:;_ Sj"Stcm
des.l.gn" Am ·iJ.'on .:.:. ,,,.)·-;;·! •'){~

.o _;..:_ __ ~ '-~' J:·'.t· L b -·'- .. I •

Hillman D.J.(1968). n;~e'-;otic:.:.ticm of' inqLlirie::> ln an on-l.i:r1e
ret.r: "'Val r•,·eot ,.,1: TC'TJ ,1 •. , r)">1 () 7Q

. .c. t 0 J u ., \;.c. .:.::..•.-:.:..::. 1::.., i.-' J- L. ~· -- :Ju •

HL:.lman D.J.(1J73). 11 Custo;;J:Lzcd user services -v--ia Jl•.te::-
actions wj_th L!"~LD ·:Li.1.'.R·J~n .I_~B:,_?!.~ r·r,c:·87-·~16.

uo,st·~ ,, ,. F ···-'·l·f1,,.-:_" .
..li u .J.<.l .J."II/. oj• c.... ~~··''· ·t.:::i.....L \ i :;,l()'-t l v

ir1 rnar:iiYLll~tive indc):e3°

I Biv: 3 y s t em /3 6 () Component d ': . ; c; ::_· i p t ion c: -- ~ .- ~: tl (.: ::::- ~ ~~ a c c F ''· ,<:;

s tcrat_~e -~~ac il~t tJr and. ~::~::!4 4 a·Lix~ l :; .. ::.:;.~~ ~,,. .:• t c· .:~··c.~€~;:-: .::: c ~ tr:.:, :i 11

?crn1 ... S.2E>-P3\~')SJ.,

Td -n)I 0 r ~ '~ • '7·f) II T + t • t t • ... e .JC... c.,: u. oa.l ·;:,._Jn ~ • '3 ~ • .i.U "erac .1. ve [3 ear en s .ra ,egleS
Ci.nJ. :1~,-::::.P..;::tc :.Ci.1e orgo.nizr..·t,ion in infor:nation retrieval"
~ha~tsr 13 in Salton(1j71) q.v., pp373-93.

InforGatics 1. Proceedings of a conference held by the
Aslib Co-ordinate Indexing Group on 11-13 April 1973
at Durham Univerl'Li.ty. Aslib: 1974.

J a c q_ u e s son A • & W • D • ~:. chi e L e r (1 9 7 3) • t' J' •::: r w a:; c~ o c j_ at i. on
analysis on a lsrge file of bibliographic data) usi
a highly--con troll eC. ina exing vo ca. buL"ry 11 _-I_SR, 9,
pp35-94.

Jardine N. & C.J.van Rijsbergen(1971). "r::'1:.e u:::e of
hierarchic clustering in informatior 2tric-:al 11 l~,R,
l, pp217-40.

Johnson P •• L.(1974). "An extended ALGOL for language
processing" Inforn'a tics 1 q. v. , pp182-93 &

Jones K. P. (1971). "Easic structures for thesaural system~>"
Aslib Proceedinfis,23, pp577-90.

Jones P.E.(1965). "Historical foundations of research on
statistical association techniques for mechanized
documentation" Statistical association rnethods for
l!Jechani zed documentation. Syinpos iurn ~-£(:, ~~:.:~ :-Engs,
Washington 1964. Stevens, Guiliano & Beil~rin lrds),
pp3-d.

Katz J.J. & J.i\..Fodor(1963). "The structure of a semantic
theory" _Langl._!._ag~, 39, pp170-21 0.

Kay M. & K.Sparck Jon.es(1971). "Automatic language
processing" Annual Review of Information Science and
Technology,§,-pp141-66.

Keen :8.1.1. (1971). 11 Evalu.ation parameters" Chapter 5 in
Saltonl1971) q.v., pp74-111.

Keen ~.L.(1973). 11 The Aberystwyth-index lanc;uages test"
J.Doc,29, pp1-35.

Keinp D.A.(1974). "Relevance, pertinGnce and infor1nation
systerr" developi1:ent 11 ISR,.:!_Q, pp37-47.

J~uth ~.E.(1973).
:)ez,rchin,:z c:tnd

K:~·,aft :D.E.\1973). 11 b. decisio.~ .. theory v~,.,:w of \.e infor,Ja1>··
ion retrieval situation: an operations rolcarch
cciiP:t·Jach!! JASIS,24, pp368-7f.

i.~u.no S. (1966). "Computer analysis of natural languages"
§.,;;.'E:.~um on mathematical aspects of computer sciencE:,;
~~ican .::.~_e.tller.mtical Society, 1~ew York, h.uril 1966,
pp52-1iO.

Kunz \'1. & E.\LJ.Rittel(1972). "Information science: on
the structure of its problerr,s" ISR,8, pp95-8.

Lancaster F •. it.(1969). "hmDLARS: Report on the evaluation
of its operating efficiency" Arn~o_£, _?0 ~ pp 119-42.

Lancaster_F • ."/.(1972). Y_?._cabulary control -~·or ~nformation
retr1eval. Information Resources Press: 19'12.

Lancaster F.W. & E.G.Fayen(1973). Information retrieval
on-line. Melville Publishing to.: 1973.

Lefkovi tz D. (1969). File structures for on-lin~steJns.
Spartan Books: 1969.

Long P.L. & F.G.Kilgour(1972). "A truncated search key
title index" JOLA,2_, pp17-20.

Lord Todd(1967). "Introduction: the problem s~at8d 11 in
de Reuck & Knight(1967) q.v., pp4-15.

Lum V.Y. & P.S.T.Yuen & J,~.Dodd(1971). "Key-to-addess
transform techniques: a fundamental perfor~ance st~dy
on large existing formatted files" CACJvi,14, pp228-Y?,.

Lyons J.(1968). Introduct.ion to theoretical linguistics.
Cambridge Univ. Press: 19o8.

I1iaron M.E. & J .L.Kuhns(1960). "On releva:1.ce, probabilistj_c
indexing and information retrieval" ~.::.-::_gr.;,1, pp216-44.

Martin '.J:.H., J.Carlis1e & S.Treu(1973). "The user inter­
face for interactive bibliographic searching: an
analysis of the atti tu~les of nineteen :l.~ii'on;mtion
scientists" JA§_!-S,24, pp142-7.

~cCarn D.B. & C.R.Stein(1967). "Intelligence Gystems
eva1uation" Electronic handline- of in·:-o:r::;at1on:
tEstinrr and eValUaiTor:. A.Kenf~-2-~CCf.:o-:). Acao·; _
___________ ;:.Q__ ?""i ---- - -
rress: 19o,, pp10~-~2.

I1:cCarthy J .• , P.Abrahams, D.i;d\·,:.:,r·cs 1

~ISP 1 • 5 __ P._';:_'O gammer 1 s ::tanu_?-1.
T.~2rt ~ M.Levin(1962).
; , IT ~,)res~~ : 1 9 6 2 •

WcCracken ~.D. & U.Garbassi(1970). A guide to OOEOL
.E..E.2.¥ammin~ 2nd Ed., ·,-riley: 19'T6-:--.. --

Lsn:3el H. (1967). "Planning the consequences of unrJlam;ed
action in scientific comm~nication" in de Reuck &
Kni6ht(1967) q.v., pp57-77.

~ille-.r. ~a (1~~8) ! • .~. ___ u •-'-..~,.• 1 Jv • "Psycholoe:;y and informationn Am.Doc,.:!_2,
pp286-9.

Minker J. & S.Rosenfeld (Eds) Proceedings of a symposium
on information storage and retrieval. ACM: 1971.

r.:inker J., G.A.;iilson & E.I'eltola(1973). "I:oc .. ·· l,t
retrieval experiments using cluster ,c,nalycJis"
JASIS,24, pp246-60

i.linsky iL(19(.8). "Introduction" ChaptGr 1 in ;~.e::1;:;.ntic
inforrr;ation processing~ f,:.kinsky(En), ,,·T;~, l'ress:
1968, pp1-j2.

~ontgornery C.A.(1969). "Automatic language processing"
Annual Review of In.forma!_ion Science and Technoloe;y,.:l_
pp145-74.

Montgomery C .A. (1972). "I~inguistics and information
science" JASIS,2, pp195-219.

r.:ooers C .N. (1951) • "Za tocoding applied to mechanical
organization of knowledge" A~.Doc,~, pp20-32.

!.',organ H.L. (1970). "~)pelling correction iE :,,:;· ·. e.ns
programs" CACI'£, 1 3, pp90-4.

l/wrris R.(1968). "~catter storage techniques!! CACL'I,.:!J..,
pp38-44.

fl1oyne J .A. (1969). In.forn1ation retrieval and natural
language. Report FSC-69-5005. IB~ Federal Systems,
Gaithersburg: June 19, 1969.

Ii1TS(1973). The I1lichigan Termin.a~ ::veter:' .. · .. Vol.1: I:TS and
the Computing Center. 3rd Ed. Univ. of Michigan
Computing Genter, Ann Arbor, 11iichigan: 1973.

IV~urphy D.L.(1972). "Storage organization and rr:anage1nent
in TENEX" Proc. AFI.l:1S,.±.:l., pp23-32.

Kurray D.~.(1970).
ary lookups"

"A scatter storage scheme for dictior­
JOLA,l, pp173-201.

Needham R.L. (1965). "Applications of the -~('1C\H'Y of
clumps" ~echanical t~anslation,3, n~113-27.

i-lew ell A. (1961) • Infor;;,a t.:. on Pro c e:::; s i ~-:: :· .. 1.-,.~:[:'.lc;~;:_age ~r -- v
h'.anual. :frentice--.Ha11-:·--Ts;6T-:--- ·-·-· · - -- -

Hue;ent ·.v.R.(1968). "Compression wo-::d ::..;_>::~5n:':: techniques
for inforwation retrieval" ~~-:I:.!~ •. 1., pr250--60.

Olney J.C.(1962). Building a concept nstwork for
retrieving information from large l~~raries. Part 1.
SDC Re;•ort 1L1-634/001 /00: ,:'an.1962 ~

Organick E.I.(1972). The 11:ultics system: an examination
of its structure. i.U1' }>ress: 1972.

Overhage C.F.J. & J.F.Reintjes(1974). 11 Project Intrex:
a general review" ISR,lQ, pp157-88.

Pacok iL z± A.',:.Pratt(1971). "The fu.ncticn of s<:r:=:.:n_tics in
automated lRnglJ.e.t;e processing" Proc :.,_2f z; ____ E)_ywpos}.::un
on inforn.ation storage and retrieval. J ,,J;J_-!_:-,ker &
S .H.osenfelci-{Bds J, ~: 19'11, pp)-:--1s:-

Parnas D.L.(1972). "On the criteria to t used in decomp­
osing systews in modules" CACi,r:,15, }J 1J'1053-8.

Porter R. J., J .K .l)enry & J. F. Caponio (1970). "Epilepsy
Abstracts Retrieval SysteliJ(EARS), a new concept for
ffiedical literature storage and retrieval" Proc. ASISt
1' pp171-2.

Price ILH., C.bye & B.Niblett(1974). "On--1i.ne searching
of Council of Europe Conventions and Lgreements: a
study in bilingual document retrievaJ." ISR, 10,
pp145-54.

Quillian ifJ.R.(1968). "Semantic Memory" (Ph.D "l.· e::s:;_s) in
~·.emantic inforoa~ion processing. M.Minsky(.2d.), Iv:IT
Press: 1968, pp2~7-70.

Resnikoff H.L. & J.L.Dolby(1965).
in written English, Part 1"
pp84-9.

Resnikoff H.L. & J.L.Dolby(1966).
in written English, Part II 11

pp23-33.

"~rhe nature of affixing
~echanica1 ~ranslation,B,

"The nature of affixine­
,:ecb.~'lnical translation}(). ----"··- --· ,;.._

Rettemeyer J.W.(1972). "J:'ile ordering and r:.::~:r:ieval cost"
ISR,8, P1J79-93.

de Reuck A. & J.Knight(Eds)(1967). Comnmniccti0n in
Science: documentation <:end automati.on. A l;iba
l''oundation Volume. Cnurchill, -London: 1967.

Ri c1cnaE J. & :1 sE. '.'IE.lden (197 3) • II Stru cturc~s fc,r 2.!1 inte:: .
c;.c':.ive on-line thesaurus" Int•:::rna.t.i or:..aJ Jo~:rTt'll o
~'-~~r~u tine; and Information eCTencss • _::f~--.f;p-:fT)--2 'i .---··-·

var. Rij sberg·2n C. J. (197 4). " ·'t.::tET ~· - ·. ::~i · (;Ets with
hierarc~1ic document c}uste:rinc L.:. G_(·:-:t.:nent -r:::t:::·ievalll
T -,R 1 () A 1 4 ..::2.:_,~~ PPi- .•

V ::on. P-'J's1--.c.~•;.cpr• (-' ·· 2- K Sp"""'n'r To11es("'~·7·;;;\ 111!. tost -fo.,.., ~ _ "·, . .:.. 1.· c::: .L l~ ~ -- > • u • u.. • , a.c ,, h u . l , , ,.·) • . ~ ~ .l.

the ssparation of relevant and non-rclsvant 1ocu~e~ts
in experimental retrieval collections'' J.Doc,29,
pp251-7. --

Robertson S.E.(1969).
retri.eval tests.
Ov E: ra.ll ueasure s 11

"The parametric :iescription of
Pt.1: The basic parameters"; "Pt.2:

J.Loc,25, pp1-27, 93-107.

Robinson h~.G. & .J.11.Yates(1973). 11 '.rhe Scrapbook inform­
ation syster:un Information Scientist ,1, pp135-43.

Rocchio J.J.,Jr.(1971).
document retr1eval 11

ppGS-73.

"Evaluation •; i c:'.'-' 1 •r:' in. t 2
Chapter 4 in Sal ~o~(1971) q.vn,

Salton G.(1962).
retrieval"

"I.':d1ipulation of tree::­
C!~Q:..::,.2_, pp103-14.

in i nf::.rmation

Salton G.(1966). ".Jata manipulation and programming
problems in auto;~,atic information retrieval" ~,2,
pp204-10.

Salton G.(1968).
retrieval.

Salton G.(Ed.)(1971). The S~hRT retrieval. system: experi­
ments in automaticC10Curnent urocessl.nii~rentice-da""Tl: 1 9 71 • _____ __________ ., _____ _

Salton G.(1972). "A new comparison between cor1 ~ntional
indexing (Medlars) and auto~atic text processing
(SkJ..RT)" <TASI~,~3, pJ?75-84.

Salton G. (1973). I!P.r.ocent stl.~di':?S i.n automatic b~xt analysis
and docu:nent retrieval 11 {!':_Ck,20, pp258-78.

Salton G. & l:;._-:.su.ssc~·lc:~uth,Jr.(1964). "Some flexible
information retrieved. systems using structure matching

d . II p . 'L' ..,. ")S ') 5 r::· '3 7 9 7 proce ures _..E.O~-· .::::.:::._~I-~.::_' PPY - •

Salton G. & C.S.Yang(1973). "On the Sl)ecii'ication of term
1

• t +. • • • II T u· ' ?r· . 3'1 72 va ues ln au o;na vlC l!1C1F:X.lng -~' ~ ~;' PP ? - •

Santos C.S. & A.L.Furtado(19~2). G/PL/I- Extending PL/I
for g_raph 2rocessin.e;..!.. L~onogr8_phsu1-~~:or.:-.J_;~.lter sc1ence
and computer applica~ions No.11/72, Compu·ter Scienc~
l)eDt., Pontificj_a Universidade Catolica de Rio de
.Janeiro~ 1 972.

Sen~w ;,:.:s., i~ •. J.Altman, ;;,.h:,;).s·Ll'c-.112.::1 ,,;: l- .i:l.:i!'ehd.er(1973).
":8~1ta structures a:nd ,~_ccessing in dat;c,~-t2se systems"
l>.:.,.: S~.,rst.e·1s .JCJurna1,12, pp 30-93.
·;;-r·--;;-~:--0--l;-,--_::·-_; On 0 _£. l. l'l.··f'o" ·r•:'a·t· 1' "n <' \T S t F• '" S il np';0-·4.1.

- • -1 " '.....4... v .J.. ..1. .J... '• ~\- .. ~J . v ..<..... Ll ~ .._ ,. . .1-U _l..... .,;' ' •

".II. Infc:rmation orgaEization 11 pJ.J45-63.
"i.II. Data representations anci the data j_ndependent
accessing model" pp64-93.

Siegel ;:: • (1956 ·). ~~o:n'Jararnet:.~ .::..:::.~ .;.c_.;:s __ t:...:a::..t,;.::;.i.;;.s...;t:.::i:...:c:...:.s;;...._,....L;;;..c--:-o.;;;.r_t_h_e_ , __ ...,_ ___ -:-
be'lavioural .::ciences. l.icGraw-riill: 19j6.

Simmons R.F., J.I.Durger & R.:.~.Schwarcz(1968).
utational model of verbal understanding"
33, 1Jp441-56.

"A comp­
Proc. AFIPS,

Simmons R. F. & J. Sloc;;,m (1 07 2). 11 Genera tir ,, E:~k j_::; h
discourse from 8 ;co;nan tic networks II Ch.C~:~' .t5. r pp891-J05.

Simon H.A.(1965).
njanagen;ent.

Snowdon R.A.(1974). Interactive use of a co~nuter in the ---- ·-·----'----·--:---preparation of structured probrams. Ph.D. Thesis,
University of Newcastle upon Tyne: June 1974.

Sparck Jones K. (1965). "ExperiliJEmts in semantic classific­
ation" 1lechanical translation,S, pp97-112.

Sparck Jones K.(1970). 11 Some thoughts on classification
for retrieval 11 J.Doc,26, pp89-101.

Sparck Jones K.(1971). Automatic keyword _cl_£l~s)_fication
for infor1na tion retrieval. Bu tterworth2: :, /1.

Sparck Jones K.(1972a). 11 Some thesauric history"
Proceedings,?4, pp400-11.

As lib

Sparck Jones K.(1972b). "A statistical interpretation of
term specificity and its application in retrieval"
J.Doc,28, pp11-21.

Sparck Jones K.(1973a). "Collection properties influencing
automatic term classification per.foru:ance 11 ISR,9,
pp499-513.

Sparck Jones K. (1973b). "I;oes indexing exhaus ti vi ty
matter?" JASIS,2<1, pp313-6.

Sparck Jones K.(1973c). "Index ter:11 weighting" ISR,9,
pp619-33.

c: t . . ~ V .,..., G . l . ~ ' -- ·~ . 1 . (.. ..,) (' ~ • 6 5) evens 11':.~., .~. lU __ lano o: .LJ.n.Le.L. prln I.Jds 19 •
St::-:.tistical associatio'1 rnethocls for !!'("hc:,;.:ni~~ed

.S.2_0uru ~~!tat ion • ~:, Y_~_l.;]I~n pro c e-~ a i r_?:_g_s~=·':.€-_~~ i r,.i't~1..:.~j !: _ _:_
r\aticr;C:l .bureau oi Stc.ii>.2<~.:rd.s l'..i.sc.)at. ~~o9 ~ 196?.

St.:_l:.::s 1I.:G .. (1 ~161). 11 1'he "' ~;:::;cc:'_c-lt.ic~·~ ~. :.::.c .
retrieval" JACh1,8, pp27~-9.

ir i"i'lformation

'~•-anor·' ;· c:: -~,' l "1 a72)' "An eXJ)Brl· T'11ent l. ·" \1 ;::; •. -- ••• •-· .wJ ' • • • "" .J..ndex term frequency 11

T "T'' 23 1''0 21 ~~~'--' PP U_;- •

Szanser A.J.(1973). "Bracketing techniqu~ in elastic
matching" 2.2_p:euter Jou::.:-nal, 16, pp132-4.

Tagliacozzo R., hl.Kochen & L.Rcsenberg(1970). "Orthographic
- error patterns of author names in catalogue searches 11

JOlA,3, pp93-101.

Tague J.(1970). 11 Association trails"
li_t_Jrary and information science.

Encyclopedia of
Marcel Dekker: 1970. _,.

T.reu S. (1970). ~.12.:1~~~_:':_:'1 t..~..:.~ human memo:.;_'~-- _l_'~-_:-~_ans of
interactive, COF!p:xter--tJased associ.ativs::: :r:·~,_ge and
retri evar:-----:fh-:ir:-~~hesis, Uni vt:rsi ty ·a·_:~-~- •-Ttsburgh:
mo.

Treu S.(1971). "A cc····-~;eotual framework - the sc:archc:r-
-system interfa.c~n in 'Xalker(1971) q.v., pr;53-66.

University of Newcast1e upon Tyne. ComputiLg T.,.~ bora tory
(1972). PL36Q pro1:rammin1;; manual.

University of Newcastle upon Tyne. Computing L2boratory
(1974). hledusa information retrieval service user
manual. PrepareC:lby J.Alan J:--J.unter.

Vernirnb C.O. & G.Steven(1973). "'~.NDS' - Enr:opean Nuclear
Documentation Service" Nuclear Enr;i~· · & Desig!!,
_2., pp325-33.

Vickery B.C.(1973). 1_nformation systems. Dutte:;_·worths:
1973.

Wagner R.A.(1974). "Order-n correction for regular
languages" CACM 9 17~ ppC:65-8.

V.'alker D. E. (Ed.) (1971) • In !eracti ve bi bliogrc::_IJhic search:.
the user/compu-tc:_r interJ~ace. Proc. of a workshop on
11 The user intei'face lor l"r1uractive seaTch of biblio­
graphic data Dasc':S 11

, Palo Alto, Calif. , Jan. 1971.
AFIPS Press: 1971.

Weiler G.(1973). "Eelevance agai.n 11 (Letter) }_;~1~,2_, p121.

Weinberg B.H.(1~74). "BibLiographic coupling: c:" review"
ISR,.l.Q_, pp189--96.

,_-: . - . J (1 9 ,-- ~ \
~e1zenoaum • o) 1 •

pp524-44.

~ente, van A.(1971).
consid -2-ra tions 11

11 >TASA/H:SCOH and
i !1 ';~· e. ~~ 1.< e r (1 9 7 1)

us f- r -';_ :. "c - c- ' 2 c e
q , , •• \ - -- 1 04.

Williams J .H., Jr. (1971). 11 ?unctions of a man-·machine
interactive information retrieval systerJ" J":\SIS, 22,
pp311-7.

Wilson P.(1973). 11 Situational relevance" ISR,9, pp457-71.

~inograd T.(1972).
'~he sis, MIT).

Understanding natural language.
Ecin. Univ. l7ess: 1972.

(Ph.D.

Wirth N. (1968). "PJ,_560, a programming lar::_:1:aE3t:· :f.' or the
360 cornput'::TS 11 ~Acr.;,15, pp37-74.

\'firth N.(1971). t1j'roc;:cam development by 8t··Tl':<'•c:e refine­
ment" CACL:,,1__1_, pp221-7.

\Virth N. &. C.A.P..Hoare(-i'JG6). "A contribut:i_on to the
development of OL" CAC;.~, 9, pp41 3-3~!.

\Voodward P.M. & S.G.l30nd(1974). f1gol 68-R users gu.ide:o_
2nd Ed • m~: S 0 ~ 1 9 7 4 •

Wright ;.:.A. (1960). '' T/Iechani zing a large incL::x: 11 Com.E.3! ter
Journal,l, pp76-83.

Yngve V. (1963). .Q_O;,JIT progra::-1mers rE·ference __ rr,_an::_l.9;_1_.
Press: 1963.

MIT

Zunde P. (1971) • 11 Structural models of compl e.x· _ ;:;r;,;ation
sources" ISR,l_, pp1-18.

..

	Syracuse University
	From the SelectedWorks of Robert Oddy
	December, 1974

	Reference retrieval based on user induced dynamic clustering.
	PHD merged 1
	PHD thesi 1
	PHD thesi 2
	PHD thesi 3
	PHD thesi 4
	PHD thesi 5
	PHD thesi 6
	PHD thesi 7
	PHD thesi 8

	PHD merged2
	Oddy 1
	Oddy 2
	Oddy 3
	Oddy 4
	Oddy 5
	Oddy 6
	Oddy 7
	Oddy 8
	Oddy 9

	PHD merged3
	robert 1
	robert 2
	robert 3
	robert 4
	robert 5
	robert 6

