Syracuse University

From the SelectedWorks of Robert Oddy

December, 1974

Reference retrieval based on user induced
dynamic clustering.

Robert N Oddy, Syracuse University

Available at: https://works.bepress.com/robert_oddy1/19/

B bepress®

http://www.syracuse.edu/
https://works.bepress.com/robert_oddy1/
https://works.bepress.com/robert_oddy1/19/

REFERENCE RETRIEVAL BASED ON
USER INDUCED DYNAMIC CLUSTERING.

by

Robert N Oddy

REFERENCE RETRIEVAL BASED ON

USER INDUCED DYNAMIC CLUSTZRING

Robert N. 0Oddy

Ph.D. Thesis

University of Newcastle upon Tyne, December 1974

=)

ACKNOWLEDGHENTS

My chief debt is to Miss E.D.Barraclough, who has
been always ready to discuss the work, contributing many
stimulating ideas, and to provide encouragement. Next,
I should like to thank the staff and graduate students
of the Computing Laboratory; particularly Professor E.S.
Page, who gave me the opportunity to do the work, and
members of the 0STI-supported ledusa on-line information
retrieval project, who made data available for my

experiments.

I wish to thank those members of the staff of the
University Library who have an activé interest in library
automation for numerous instructive and provocative
conversations. I have also benefited from contact with
many information and library specialists in other
institutions. I gratefully acknowledge the financial
support that I have received from the Office for Scientific

and Technical Information (OSTI).
My family have been far more patient and encouraging
than I had a right to expect and I am indebted to them all,

particularly my wife and children.

R.N.Oddy

i

")

ABSTRACT

The problem of mechanically retrieving references to
documents, as a first step to fulfilling the information
need of a researcher, is tackled through the design of an
interactive computer program. A view of reference retriev-
al is presented which embraces the browsing activity. 1n
fact, browsing is considered important and regarded as
ubiquitous. Thus, for successful retrieval (in many circum-
stances), a device which permits conversation is needed.
Approaches to automatic (delegated) retrieval are surveyed,
as are on-line systems which support interaction. This type
of interaction usually consists of iteration, under the
user's control, in the query formulation process.

A program has been constructed to try out another
approach to man-machine dialogue in this field. The machine
builds a model of the user's interest, and chooses refer-
ences for display according to its current state. The model
is expressed in terms of the program's knowledge of the
literature of the field, namely a network of references and
associated subject descriptors, authors and any other entity
of potential interest. fhe user need not formulate a query
- the model varies as a consequence of his reactions to
references shown to him. The model can be regarded as a
binary classification induced by the userfs messages.

The program has been used experimentally with a small
collection of references and the structured vocabulary from
the Ledlars system. A brief account of the program design

methodology is also given.

iii

Chapter
Chapter

L] - . L] .
-

*
N -

.
-

L]
U A~ P NN -

W NN NN NN NN NN =2 -
L]

Chapter

L I) e e e @
wW NN -

*
—-—

W W NN N
L] L]
WO = -

L6 2 I AN 3]
. .

CONTENTS

1. INTRODUCTION
2. REF SRENCE RETRIEVAL

The problem 16

Ignorance and uncertainty 17
Towards solutions 22
Indexing 23

Searching 28

Automation of delegated searching 31
Semantics 34
Associations and clusters 37

Interaction 44

An example: iledusa 49
Feedback 57

Summary 62

3. INFORIMATION HEURISTICS

Dialogues for reference retrieval . 65
Modelling the user's interest 68
The knowledge base 68

Retrieval by association 7

ilodel of context 79

Creation and maintenance of the model
Using the model 81

Document similarity 88

Displays and messages 30

Modifying the model 94

A search (example) 101

Summary 108

4. FUNCTIONAL DESCRIPTION OF THOHAS

The "data base™ 109

Labels 110

Lines in the supergraph 112
The model 113

iv

16

64

80

e

109

Chapter

*

N = 4 o
L
N -

N NN NN B = o
L J -
N =

N

Chapter

Program function 116

The user's statement: GET_USER_MESSAGE 118
INFLUENCE_STATE OF lODEL 122

Monitoring performance: COMPUTE SCORE 122
Removing points from the context ;. aph:
PRUNE CONTEXT 123

Adding points to the context graph:

ADD _TO_CONTEXT 124

Incorporating textual requests:

FIND _NODES 125

Establishing coherence:

UNIFY CONTEXT GRAPH 126

RESPOND_TO_USER 128

Using the context: PICK A DOCUMENT 130
DISPLAY SIwWILAR 131

REVIEW COURSE 134

Other features of the program 136

Summary 137

5. DATA RECOGNITION AND FILE ORGANIZATION 139

Matching user's reguests in the data base 140
Partitioning the bibliographic labels 143
Proper name compression 146

Phrase compression 149

The matching process 153

File organization 156

File processing within MTS 164

Partition organization 165

Summary 172
6. IMPLEMENTATION 174

Programming languages 174

The structure of the program 177

The "top-down" approach in use 179
Data structures 180

Implementation of data structures 192
Use of storage 194

llanagement and documentation of the
programming 195

Summary 198

Chapter

1,
2.
3.
4.
5

Chapter
1.
2

7. PsRFORLANCE OF I'HE PROGRAM 200

General remarks 200

The test collection 205
The trials 211

Comparison with Medusa 222
Further experiments 227

8. CONCLUDING RENARKS 233
The problem of scale 233
A summing-up 240

BIBLIOGRAPHY 244

Chapter 1

INTRODUCTION

Retrieving references to books, papers, reports,
and all the other forms of documentation .z parti of
the job of a library system: prerequisite, in fact, to
delivering the actual books, or documents, to the
reader. It is a task that may be performed, partly or
in whole, by the library user himself, and its nature
will depend upon the requirement which prompted him to
go to the library, and the type of tools provided for
this purpose. We shall be discussing such a tool - an
interactive computer program - in the light of our view
of the underlying problems of reference retrieval.

Research workers' requirements for information
vary, according to the stage that their work has
reached. Sometimes one needs factual information, such
as is assembled in reference handbooks. At other times,
in contrast, one is nagged by an ill-defined need to
find stimulation either from literature or from
colleagues. There is a continuous spectrum of require-
ments between these two. The present work is concerned
with needs that have an element of ili-definition, and
that, perhaps, includes any that are not at the "factual™
extreme of the spectrum. We felt that it was important
to try to come to grips with the problem of serving a
library user who is not able to formulate a precise
query, and yet will recognize what he has been looking
for when he sees it. A man, left to his own devices

among the bookshelves, accomplishes searches of this

sort by browsing. Lancaster(1968) describes a type of
search which undoubtedly occurs fregquently in
libraries:

"Personal searches tend to be browsiw: searches.

o o o Having found some promising references,
[the seeker] locates the documents cited and, from
the text and bibliographies of these, may be led
to other sources or made aware of additional
subject labels that might usefully be consulted in
the tools with which he began the search. During
this whole process, the 'information need' tends
to be modified, to a greater or lesser extent, by
what is found during the search, and the final set
of documents, accepted by the searcher as

'ugseful' in relation to his requirements, may be
somewhat different in character from the 'kinds'
of documents he visualized as useful when the
search commenced." - pi81.

it seems that the notion of information in this

context is extremely coumplicated. The concept of
information has been discussed by Belkin(1974) and
Erookes(1974), and they require that a suitable defin-
ition should take account of the state of the recipi-
ent's knowledge. It is because the information
obtained (somehow) from a document alters the mental
state of the reader, that he can conduct the type of
browse described above. For the same reason, the
"information content"” of a book is very likely to differ
from one reader to another. For the time being, there-
fore, it would seem that we need to read books and
other documents to obtain certain types of information;
and that fact retrieval from some kind of information
machine is not sufficient. In designing a mechanical
aid to literature searching, we should take the view
expressed by the eminent chemist, Lord Todd(1967):

"We must surely make the maximum use of computers

and associated automation, but if we carry it to
the point where the scientist no longer browses

in the literature without first of all formulat-
ing questions then I beleive we shall do harm to
science." - D9,

For some requirements - and they are not uncommon -

the ideal search strategy would appear to consist of a
visit to the shelves, and a perusal of the books
themselves. The difficulty, of course, is in determin-
ing an arrangement of the books which assists the user.
The arrangement should bring together literature on
similar topics but, for the purposes of browsing, it
need not take account of the fine detail in the subject
matter. Hierarchical classifications, such as that of
Dewey and the Universal Decimal Classification (UDC),
are frequently used by libraries to generate a shelf
order for the material. However, searching in the
shelves is generally regarded as myopic, except in the
smallest libraries, even though it is very often
effective. 1In a large library, books which are
potentially useful to one reader may be widely separ-
ated spacially, and the separation of the short, but
very important, documents published in the many period-
icals devoted to any particulsr subject is much more
pronounced. Hence the need for reference retrieval.

The crucial characteristic of a reference retrieval
device is that it aims to help the user to make choices
from among unseen documents. The searcher wants a
document for the (subjective) information it contains,
so we have the very difficult problem of finding a
proxy for the information, which must be very much

smaller &nd more manipulable than the document itself.

We need a symbolic description of the document - there

is no question of it being regarded as &r alternative
form of the information contained in the document, in
the sense of information that we have in mind here.
The most that we should aim for, at present, is a
substitute which the user will interpret as meaning
"this document may contain information I want". This
is what class numbers (Dewey, UDC, Library of Congress,
for example) and sets of keywords do for a document.
With a good descriptor language, documents which
are relevant to a searcher's problem will have descr-

iptions which he recognizes as being promising. The

emphasis is on recognition: we are not saying that a
query can be formulated in advance by the searcher to
match those same descriptions. It seems reasonable to
assume that there will be some similarity between the
descriptions of documents which are relevant to the
same query. DBut the nature of the similarity may be
very subtle and hard to recognize by anybody other than
the enquirer. In any case, conventional query formul-
ation attempts to predict the descriptions of the
required documents. These are the considerations that
led the present author to the design of a reference
retrieval system which offers no facilities for query
formulation, in the usual sense, and proceeds on the
besis of the user's reaction to references and docuwinenty
descriptions which it shows him.

There is another important dimension to the
program design: it is the concept of dialogue used.
Frequently, an enquirer can satisfy his information

needs by talking to somebody with knowledge of an

appropriate subject. Telling him the broad area in

which the problem to be solved lies, is relatively easy.
Their dialogue (in which, by definition, each
participates) refines the region of enquiry, until the
subject expert understands the other's problem in his
own terms. He may then be able to offer information
which may lead to a solution. The dialogue is not
always a simple question-and-answer interchauge. The
subject expert may miss the point and give a solution
to the wrong problem; then the enquirer must btring him
back on course - he must learn through conversation in
what terms he should communicate his need. This is the
approach adopted for our reference retrieval program.
A computer program necessarily has a very limited view
of the world; that is, the "terms" in which it can
represent the user's problem area are rather primitive.
This program's "knowledge" base is a richly connected
network of references, subject terms and authors'
names. 1t forms a model of the searcher's interest,
derived from the network and continuously modified in
theﬂ}ight of his reactions to references, which have
been chosen for display according to the state of the
model.,

The program, named Thomas, was written for the
IBM 360/67 at the University of Newcastle upon Tyne,
and designed to communicate with a user at an IBM 2260
CRT character display terminal. The bibliographic data
was obtained from the Hedusa project in the Computing
Laboratory of the University, reorganized into the

network structure and accessed by the program from disk

storage. The literature covered is in the ficlds of
medicine and biochemistry, and records originated at
the US National Library of Medicine as Medlars
(Medical Literature Analysis and Retrievo: System)
records. The indexing vocabulary in kKedlars is
strictly controlled, and each subjeof term in our
network either belongs to that vocabulary, or is a
synonym added to the Nedusa system by the Newcastle
team,

We now give a sample dialogue conducted vy &
medical research worker - an anaesthetist. This
searcher was of the opinion that very few articles had
been written on his precise topic. However, we had
ensured that the test file contained references in his
broader field of interest.

We shall indicate the lines supplied by the
searcher by preceding them with the symbol P . This
"start" symbol is used on the terminal to tell the user
that he is required to type his next input, but it does
not remain on the screen. A slight departure from the
genuine computer displays is made in the interests of
legibility in this printed form: we use the lower case
alphabet here, whereas the IBM 2260 terminals are

without those characters.

THOMAS, THE REFERENCE RETRIEVAL PROGRAL

Help can be obtained whenever the prc .ram has
displayed the start symbol by typing '?°?
immediately after it.

Please give a short name for the search:
b Alv.Resp.

Start searching:
P pulmonary alveoli

The user has named the search, so that printed
output will be identifiable. He has then typed the term
for a subject related to his need. The program's model
of the user's interest is centred on the subject key-
word 'pulmonary alveoli', and includes a few references,

one of which is (carefully) chosen for immediate display:

Influence of fasting on blood gas tension, pH,
and related values in dogs.; Pickrell et al, Am
J Vet Res,34,805-8,Jun 73

T. J.A.Pickrell, 2. J.L.lauderly, 3. B.A.
lluggenburg, 4. U.C.Luft, 5. animal experiments,
6. animal feed, 7. arteries, 8. blood, 9. hody
temperature, 10. carbton dioxide, 11. dogs, 12.
fasting, 13. hemoglobin, 14. hydrogen-ion
concentration, 15. irrigation, 16. lung, 17.
oxygen, 18. pulmonary alveoli, i5. respiration,
20. time factors

b2

The searcher's request for assistance is answered by a
display suited to this particular part of the

dialogue:

optional):

(if any).

it.

quotes).

Examples:

There can be three parts to your statement {all
1. Your reaction to the reference justi shown
2. A selection from the names (authors) or

terms shown, by number. A "not" in the statement

signifies rejection of all numbers that follow

3. New names or terms (terms preferably in

The elements of the statement should be
separated by commas.

Press enter key when you are ready to proceed P

This must come first:
llYesN OI‘ ”N’O"

'posture!, 'circulatory system!'
Yes, not 11,12

No, 7,13,4

'heart rate!

Yes '

When he has finished with the instructions, the user

returns to the dialogue:

B2

fasting, 13. hemoglobin, 14. hydrogen-ion

concentration, 15. irrigation, 16. lung, 17.
oxygen, 18.
20. time factors

b No, 10,17,19,20

10. carbon dioxide, 11. dogs, 12.

pulmonary alveoli, 19. respiration,

The reference

is not what he wants, althcugh it has

interesting aspects -~ carbon dioxide, oxygen,

respiration and time factors. The model changes, and a

new reference is displayed:

The arterial-alveolar nitrous oxide difference:
. a measure of ventilation-perfusion mismatch
%uring anesthesia.; Markello et al, Anesth Analg
Cleve),52,347-50,llay-Jun 73
1. R.ilarkello, 2. H.Schuder, 3. D.Schrader, 4. E.
White, 5. aged, 6. anesthesia, inhalation, T.
blood, 8. carbon dioxide, 9. cardiac output, 10,
human, 11. hydrogen-ion concentration, 12.
methods, 13. middle age, 14. nitrous oxide, 15.
oxygen, 16. partial pressure, 17. pulmonary
alveoli, 18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio
b Yes

The enquirer was pleased to see this reference. It
appeared to be an authoritative account of a different
school of thinking on his own problem., The effect of
hiis response is to enrich the model, drawing on the

"knowledge" base, in the region of this document.

A Positive End-Expiratory Pressure - Hasal-Assist
Device (PEEFP-NAD) for treatment of respiratory
distress syndroume.; Tummons, Anesthesiology, 38,
592-5,Jun 73
1. J.L.Tumnons, 2. blood, 3. carbon dioxide, 4.
human, 5. hydrogen-ion concentration, 6. infant,
newborn, 7. masks, 8. methods, 9. nose, 10.
oxygen, 11, oxygen inhalation therapy, 12.
positive-pressure respiration, 13. respiration, -
14. respiratory distress syndrome
BYes, 13, not 6

He has mentioned 'respiration' for the second time now,
but that makes no difference. Hotice that the term that
he first thought of - 'pulmonary alveoli' - is absent

from this document's description.

Effects of continuous negative pressure on lung
mechanics in idiopathic respiratory distress
"syndrome.; PBaucalari et al, Pediatrics,>7,485-
93,ar 73

1. E.Bzucalari, 2. 0.L.Garcia, 3. #¥.dJ.Jesse, 4,
bicarbonates, 5. carbon dioxide, 6. esophagus,
7. female, 8. gestational age, 9. human, 10.
hydrogen-ion concentration, 11. infant, newborn,
12. lung compliance, 13%. male, 14. methods, 15.
oxygen, 16. partial pressure, 17. pulmonary
alveoli, 18. respiration, 19. respiration,
artificial, 20. respiratory distress syndrome,
21. ventilation-perfusion ratio, 22. vital
capacity

»No, 19

This reference is judged not relevant, but the user
makes it known that artificial respiration interests
him. The term ‘'infant, newborn' (no.11) is present,
implying that the reference has been chosen for

display inspite of the fact that one of its descriptors

has previously been explicitly rejected by the user.

The assumption made about the user's intention when he
says '"not X" is that he does not want references to be
selected on the basis of association with X, rather

than that he does not wish to see anything to do with

Decrease in pulmonary capacity during lipid
inrusion in healthy men.; Sundstrom et al, J

Ap Physiol, 34, 816 20,Jun 73
1 u.bunastrom, 2. C.W¥.Zauner, 3., M.Arborelius,

4. adult, 5. carbon .ionoxide, 6. dietary fats,
7. human, 8. hyperlipemis, 9. male, 10. middle
age, 11. oils, 12. oxygen, 13. parental feeding,
14, pulmcnary alveoli, 15. pulmonary diffusing
capacity, 16. respiration, 17. soy beans, 18.
triglycerides, 19. ventilation-perfusion ratio

B [no reaction - user enters a null llne]

The searcher prefers not to commit himself tQ a
Judgement on this reference. It is interesting,
though not really pertinent to his present reguire-
nent. The model is not affected very much by this
type of response: the user is saying, in effect, "no

comment, give me another".

Cardiovascular function after pulmonary surgery.;
Wronne, Int Anesthesiol Clin,10,27-%9,Vinter 72
1. B.Wronne, 2. adult, 3. aged, 4. arrhythmsia,
5. blood pressure, 6. blood volume, 7. brcichial
neoplasms, 8. cardiac output, 9. cardiovascular
system, 10. human, 11. lung, 12. middle age,

b13. postoperative complications
No

Changes of venous admixture with inspired oxygen
in hyaline membrane disease and foetal aspiration
pneumonia.; Corbet et al, Aust Paedistr J,9,25-
%0,Feb 73
1. A.J.Corbet, 2. E.D.2urnard, %. anoxemia, 4.
fetal diseases, 5. human, 6. hyaline membrene
disease, 7. infant, newborn, 8. oxyzen, 9.
prneunonia, aspiration, 10. pregnancy, 11.
pulmonary alveoli, 12. pulmonary circulation, 13.
respiration, 14. ventilation-perfusion ratio

P No

The anti-atelectasis factor of the lung. I;
Lachmann et al,2 Erkr Atmungsorgane,137,267-87,
Feo T3
1. B.Lachmann, 2. K.¥insel, 3. H.Reutgen, 4.
animal experiments, 5. carbon dioxide, 6. extra-
corporeal circulation, 7. human, 8. lung, 9. lung
compliance, 10. mice, 11. microscopy, electron,
scanning, 12. models, theoretical, 13%. pulmonary
alveoli, 14. pulmonary embolism, 15. pulmonary
surfactant, 16. rats, 17. respiration, 18.
respiretion, artificial, 19. review, 20. surface
tension, 21. vagotomy, 22. ventilation-perfusion
ratio, 23. work of breathing

BYes, not 11

fhe dialojsue continued until a further 15 referarces

nad been displayed, as the user was obviously enjoying

it, but no more relevant ones were found. We shall not

-y 4

follow the search in detail through to tr¢ point at

which the user felt that he had seen all that the
program had to offer. DBefore leaving the exanple, let
us jump forward a few steps in the dialogue. The
situation is that the user has rejected several
references in a row and the program, which measures its
own performance in the task of extracting favocurable
reactions from the user, now makes an attempt to get
back on course. It shows him again a reference that

he has previously judged relevant:

We are not doing so well now. You may already
have the important references.
Please reconsider this document:

A Positive End-Expiratory Pressure - Hasal-Assist
Device (PEEP-NAD) for treatment of respiratory
distress syndrome.; Twnmons, Ltnesthesiologv, 38,
592-5,dJun T3

1. J.L.Tunmons, 2. blood, e o

14. respiratory distress syndrome
B lio

iow, this judgement is a complete reversal of the
earlier one, so the program has not succeeded in 1its

course correction. The next display is:

We are not making progrecs.
Please reconsider this document:

The arterial-alveolar nitrous oxide diiference:
a measure of ventilation-perfusion mismatch

during anesthesia.; Iarkello et al, Anesth Analg
(CleVe),52,347—50,May—Jun 73
1 . Rolharkello, 20 R.Schuder, L] L] .

18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio
D Yes, 1, not 19,20

This was still the most important reference seen.

The user had noted that the term ‘'time factors'! was
attached to several of the references, and had a wide
variety of meanings, so he now stated that he was no
1ongerrinterested in it. The response enabled the
program to display a few more new references on topics
in anaesthetics.

Naturally there are many aspects of the program
which are not illustrated in the dialogue above.
Nevertheless, it should give the reader an impressicn
of the simplicity of dialogues with program Thomas.

It can be seen that the program is not suitable in
itself for large-scale, exhaustive literature
searches. Even for such requirements, however, it may
be a useful tool for getting a search underway.
Pinding a few references will help the searcher to
decide what he is looking for, and should also provide
a lead-in to the literature through chains of

citations.

A full description of the program ccumences in
Chapter 3, and occupies three chapters. Firstly,
there is an account and discussion of the design,
which attempts to explain why the program is the way it
is. This is followed, in Chapter 4, by & more formal
description, or specification, of the important features
of the data base and program. Illethods of recognizing
subject terms, titles or names requested by the
searcher, and the way in which the data base is
organized in storage are matters that have reccived no
mention so far in this introduction to the work. They
are dealt with in Chapter 5. The process of recogniz-
ing user-supplied data is that of finding the record
in the data base which best matches that data.

Chapter 6 is something of a digression. It was
considered worthwhile to include an account of the
methodology of design and programming used to imple-
ment Thomas. The principles of top-down, structured
prosramming were appliec to the construction cf the
software in a low-level language. The method was
successful for experimental programming in an
application field which does not fit conveniently
within the scope of any established programming
language.

In Chapter 7, we discuss the retrieval perform-
ance of the program and present the results of the
trial searches. The evaluation of an on-line
information retrieval system is difficult. One must
decide whether to separate, for the purposes of

measurement, the machine's contribution from the

user's., If we do not, then we are regarding the user

as part of the system, and the evaluation must take into
account his aims and performance. It has not been
possible to observe a significant number of genuine
searches, conducted by real users, within this project.
Eefore we embark on the material specific to our

own work, however, we present a view of the subject of
reference retrieval - the problems and some of the
techniques used to tackle them. Chapter 2 is devoted

to this.

Chapter 2
REFERENCE RETRIEVAL

1. The problem

Documentation, or "inforumation science", is not a
discipline in its own right, but rather a problem
oriented field. Reference retrieval is one of the
protlems in its domain: how can an individual, with a
desire to inform himself by reading, be aided in the
selection of satisfying material from a large doéument
collection? It may not be at all easy to recognize,
objectively, a good solution (Kunz & Rittel,1372).
From the enquirer's point of view, 2 retrieval device
should not waste his time by presenting items that are
not to the point, and it should not withhold items

which would be influentizl in his current activities.

Several disciplines and technologies have been
brougzht to bear upon the problem, either in attempts
to understand it or to provide workable solutions:
various branches of mathematics, including logic (e.g.
FPairthorne 1961, Needham 1965, Hillman 1964, Par-Hillel
1964); linguistics (reviews by Montgomery 1972 and Xay
& Sparck Jones 1971, for example); psycholozy (e.g.
Farradane 1967, Miller 1968, Treu 1971); engineering in
various forms, including computer, ccmmunications and
optical hardware (e.g. Overhage & Reintjes 1974),
programming techniques and data organization (e.g.
Salton 1968), and systems engineering (e.g. vickery 1973,

Kraft 1973%). There are as many statements of the problem ‘

of reference retrieval, as approaches to the topic. Ve

shall now try to give an expression of tha problem
which is more precise (and manipulable) than that given
above., It is based on the arguments conccrning the
classification of dynamic collections given by

Fairthorne(1956 and 1958).

11 Ignorance and uncertainty

Fairthorne brought Boolean algebraic models of the
retrieval process (from growing collections) into dis-
repute by pointing out that the principle of the
"excluded middle" is violated in any realistic classif-
ication. In classical sentence logic, the principle of
the excluded middle is that, for any proposition, p,
pV~p (i.e. p or not p) is a tautology. In other
words, a proposition, such as "document d belongs to
class A", is certainly either true or false. 1In reality,
a document (or its reference) may heve been marked in
such a way that "the document belongs to class A" is
known to te true, or it may have a mark which tells us
that it does not belong to class A, or we umay be in
iznorerce about its status as regards class A. Vhen
required tc retrieve documents in cless A, a system can
find all known to belong to A and either include or
exclude those about which it is really ignorant. If it
includes them it is said (in Fairthorne's terminology)
to be working in the all-but-not-only mode, otherwise
it is in the only-but-not-all mode.

A system of logic, founded by Brouwer, has been
developed (Heyting,1956) which rejects the principle

of the excluded middle. Perhaps the most meaningful

name for the subject, from our point of view, is

"constructivism". PFairthorne's and Hillman's reason
(Hillman,1968) for wishing to weaken the logical model
of retrieval in this way was that Boolean algebra
"serves to prescribe decision operations only for those
collections in which the complement of any set always
exists and is, furthermore, describable."(Hillman,1968,
p221). The need for description, or the specification
of a construction, leads to problems when dealing with
infinite sets, unless the excluded middle is rejected.
We shall make limited use of these ideas; they just help
us to discuss the problem of reference retrieval. It is
difficult to view Brouwerian logic as a prescription for
a system.

A document collection is not an infinite set, but
the combination of documents and users as handled by an
effective retrieval systen cannpt realistically be
considered "closed". The ideal response to any partic-
ular query might be any of the subsets of the document
collection, and normally the collection will be growing
and the users changing. TFigure 1 represents the
situation at any particular time with respect to a class
of docun.ents, named A. C stands for the collection,
and should not be thousht of as necessarily static.

The set K contains all documents which we know to belong
to A, and the set N contains all documents which we

know do not belong to A. Our (or the retrieval system's)
knowledge is that which is derivable from the marks
assigned to documents, by classifiers or indexers for

example. Let us use the symbol T 4o denote the

N:
/,’ \\
4 \
/ \
Az !]
, K: /
\ / !
\\ v
\‘_’/

Figure 1.

ordinary Boolean complement; in this case

— def -
X=C—X.

X is not necessarily constructible.

Qur ignorance of the collection with respect to
class A is (K U N). This set containrs, for exampls,
items that have not been classified, or have been
classified wrongly, or have not been indexed
sufficiently exhaustively for a decision to be made
about their inclusion in A, the class required by the
searcher. K and N are the only sets in the picture
which are well defined, but they are artificial: what
we wish to identify and retrieve is A. The problem of
a retrieval system is to make either X or E, or both,

converge to A.

To go into the problem further, we need to know

something about the nature of the searcher's certainty
that K< A or that NN A 1is empty. First of all
we should dismiss the type of search (mors likely to
be done by a librarian than a library customer) which
defines A to be that set of documents bearing some
particular mark, say 611+34. The searcher describes K
in the same way, and quite obviously A and K are co-
extensive; there is no problem. It is quite another
matter if the searcher defines A to be the set of
documents dealing with what he understands by the word
"intestines", say. If he accepts that the classifier
or indexer attaches to the word "intestines" a meaning
which is at least subsumed by his own understanding,
then he can define K as the set of documents which have
been assigned the index term INTESTINES, or the bewey
class mark 611+34, knowing that K < A (having
forfeited his right to deny it). He does not know
whether X = A, If he accepts that all the Dewey
numbers beginning with 611-:34 are also used to classify
documents dealing with the subject as he understands it,
he can lay down a rule for constructing a larger X & A.
Now, although there must be scme overlap in two
individuals' understanding of words, for verbal commun-
ication between them to be possible, the assumptions we
have made above are too strong to be plausible. As a
result, we have only accounted for ignorance of the
membership of some documents in the sought-after class,
A, Factors such as lack of exhaustivity in indexing
may cause some documents to be undetectable in a search

for class A. If we make a weaker assumption about the

relationship between the meanings attached to a word

by two individuals (the searcher, and the classifier
interpreting the clessification system), we can no
longer assume that the searcher knows that his formul-
ation produces a K that is entirely contained in A.

We then have uncertainty that membvers of K are also in

A; and, similarly, that members of N are not in A. The

picture now looks like figure 2. KX and N are still the

Figure 2.

well defined sets and are therefore still disjoint.
However, if we retrieve K we no longer get "only but not
all", and if we retrieve E we no longer get "all but not
only". TFundamentally, however, the problem is still the
same: attempt to bring either K or E into coincidence
with A. |

We have been very vague about the class A. It has

been defined as the set of documents being sought by a

particular user, and it has been noted that it might be

any member of the power set of C, the document collect-
ion. The concept of relevance is clearly involved here,
and the debate in the literature on that topic is by no
means concluded (for recent contributions, see Kemp
1974, Wilson 1973, Weiler 1973, D.J.Foskett 1972). So,
for the time being, we must remain vague'about A: that
is why Brouwerian logic was introduced into the present
discussion. But we can say a little more about it.

The class A is a maximal set of documents, all of which
the searcher will consider pertinent. It is not
necessarily unique - the composition of the set may
depend upon the order in which the searcher is present-
ed with the references., It is maximal in that an enqu-
irer will stop searching when his need for information
is satisfied. Both of these aspects are related to the
knowledge of the searcher at the beginning of the
retrieval process, and the changes it undergoesfduring
the search. Attempts to formalize the relationship
between informetion and knowledge are being made by,

for instance, Brookes(1974) and Belkin(1974).

2 Towards solutions

Je have expressed the problem in terms ofrthe
necessity of specifying either a set K of documents
"known" to be contained in A, the set which the seazrcher
is after, or a set E "known" to contain A. To introduce
the confusion that exists in real reference retrieval
systems, we have pointed out that there is some degree

of uncertainty in our knowledge that K<€ A or A < N,

In practice, if we insist on a high degree of certainty,

then X is usually very small and N is very large.

The two most widely used measures of retrieval
performance are precision, the proportion of retrieved
references that are relevant, and recall, the
proportion of relevant references in the collection
that are retrieved. If the searcher uses a fairly
certain definition for K, he may miss alot (low
recall), but he will find little that is not relevant,
i.e. he should get high precision. If, on the other
hand, he is prepared to use a K which is less certain,
he may be able to reduce his "ignorance" and thus
obtain higher recall, but the uncertainty tends to
reduce precision. Thus, there is a tendency for recall
and precision to be inversely related, though this
statement should be treated with caution (Cleverdon,
1972). We have discussed the isolated search. A
system's performance is peculiar to the search and
depends upon the way the system's features relate to the
particular A sought.

The important features of a reference retrieval
system, in the context of the present discussion are

(i) the indexing language, which places ultimate limits
on the definitions that can be given for the set,

X, and
(ii) the searching facilities, which determine how

much of the potential power of the indexing

language is usable.

2.1 Indexing

A detailed discussion of indexing is not within the

scope of this thesis. The topic is given extensive
coverage in A.C.Foskett(1971), Lancaster(1972) and
Vickery(1973). DLancaster(1968) describes "subject
indexing as a two-step operation:
1. Deciding what a document is about (i.e. its
subject matter);
2. Translating this conceptual analysis into index

terms which act as shorthand symbols, or labels,
Tor the subject matter of the document."™ - p3.

He points out that the interests of the intended users
should influence the indexing. The symbols are taken,
traditionally, from the vocabulary of an indexing
language, which often also makes explicit a set of
relationships between the symbols. Kost British
academic libraries use a "decimal classification" (e.g.
UDC - British Standards Institution,1963), in which the
vocabulary is strictly controlled and the relationships
are implicit in the numerical symbols used. Further
digits are added to a symbol for lower levels in the
hierarchy. Other indexing schemes use words and
phrases which occur in the natural discourse concerning
the subjects represented in the collection. The vocab-
ulary may be controlled by the use of a thesaurus,
which will also give relationships between entries,
such as "broader term", "narrower term" and cross-
-references. Some vocabularies are virtually uncontrol-
.led: terms are taken from the titles, abstracts and even
texts of documents in the collection. It is not easy
to set up relationships between terms in such systems.
K.P.Jones(1971) gives an interesting discussion of
relationships in thesauri.

Another dichotomy in indexing techniques is the one

between the "prec-coordinate" and "post-coordinate"
types - the dividing line is not very clear. 1In a
system employing pre-coordination, each document is
indexed by few terms, standing for complex concepts.d
To retrieve a document, a search formulation must specify
the terms for component concepts in recognizably the same
combination as was used to index it. In a post-
-coordinate system, more terms for simpler concepts are
posted to each document and various combinations of
them are coordinated at retrieval time, thus giving the
searcher more versatility at the cost of greater scope
for ambiguity ("false coordination" in the jargon of
indexing). We have skated over the very involved
topic of classification and indexing, giving brief,
uncritical attention in very general terms to some of
the major themes. A substantial experiment to evaluate
the various comnonly used methods reletive to each other
was done by Cleverdon et al(1966), and another, more
recently, by Keen(1973).

Using the picture of the retrieval problem given
in figure 2, we can now point out what various possible
attributes of an indexing method can do to performance,
i.e. to increase either the recall or the precision
ratio.

Firstly, recall devices. These reduce the level

of ignorance in the system. For any particular search,
they allow us to specify a larger set, K, of documents
which we can expect to lie within the required class,
A, with some degree of certainty.

(i) Exhaustive indexing (discussed recently from the

(ii)

(iii)

5

statistical point of view by Sparck Joncs,1973%h).

Terms for all topics covered in the docuiient

should be included in its description: the indexer
does not know for certain what aspect of a
document the searcher will find important.

Richly conpected thesaurus. If, in determining

K, we are to be able to infer from a search
prescription, that a document which is not indexed
with terms appearing in the prescription is, never-
theless, in A, then we shall need connections
between terms in a thesaurus.

Specific indexing. Indexers are usually instructed
to use the most specific term available to describe
a topic (e.g. MEDLARS, see Lancaster,1969), This
allows inferences based on class inclusion to be

made.

Now we move on to precision devices. Uncertainty

in the definition of K should be reduced by these.

(1)

(i1)

(iii)

(iv)

Choice of symbols. Vocabulary should be well
accepted by practitioners in the subject field
(Tancaster,1972, pp27-37).

Qualification of various uses of a word, so that
meanings are not confounded.

Specific indexing (see iii, above). Needed because
specific terms cannot be deduced from broader ones.
Term weighting (lMaron & Kuhns 1960, Sparck Jones
1973, Salton & Yang 1973, Robertson 1974).
Numerical weights associated with the terms
assigned to a document can tell us which are the

important topics covered or which terms are more

discriminating in the collection as a whoie.

(The zoologist who is interested in ratis per se
will not wish to encounter every experiment that
has used rats. A system which enabled hiam to

attach high weighting to the term RAT would give

him better precision).

(v) Pre-coordination. This involves the indexer in

specifying the relationships between concepts as

expressed in the document. False coordination

during search is reduced. Flexibility at the

search stage is the main problem. Some sort of

formal syntax must be used (e.g. Farradene et al

1973, Austin 1974, Coates 1Y73).

In comparison with the above, it is interesting to

review Lancaster's list of "principle causes of sezrch

feilure in information retrieval systems" (Lancaster &

Fayan,197%, p141). His categorization is based on

detailed analysis of failures during the MEDLARS eval-

uation (Iancaster,1969). Slight changes in terminology

have been made for convenience.

Recall failures

Index language Lack of speoifici

terms
Inadequate thes-
aurus structure
Pre-~coordination
causing "over-
preciseness "

Indexing Lack of

specificity

Precision failures

Lack of specific
terms

Defects in hierarchy

False coordinations

Incorrect pre-

-coordination

Exhaustive irdexing,

causing retrieval

Searching

User/System

interface

The failiures listed

interfacet

wrong in defining K

rejection).

2.2 Searching

describe

Lack of
exhaustivity

Omission of
important
concepts

Use of inappropr-
iate terms

Failure to cover
all reasonable
approaches to
retrieval

Strategy too
exhaustive

Strategy too

specific

Request more
specific than
actual inform-

ation need

on peripheral
topics
Use of inappropr-

iate terus

Strategy not
sufficiently
exhaustive

Strategy not
sufficiently
specific

Use of inappropr-
iate terms

Defects in
search logic

Request more
general than
actuel inform-

ation need

beside "searching" and "user/system
the ways in wnich a user can go

(or N, if he is searching by

Indexing or classification - the process of

characterizing documents for reference retrieval - is

the crucial operation in a bibliographic information

system. The preceding account gives sowme of the

general notions and, because search technigues are so
dependent on indexing, this section will aquite frequent-
ly digress into the topic of indexing. A4 sesrch
strategy takes advantaze of the available docuument
descriptions with the object of satisfying the need that
prompted the user to search the literature. The
strategy used will depend on the type of need and the
amount of effort available for the search as well as the
theoretical possibilities afforded by the indexing.

When all searching was done manually, it was
generally considered that users of libraries would be
served best by a hierarchically classified collection.
By choosing, at each level of the hierarchy, the cleass
that best matches the field of interest, the searcher
can home in.on a small set of potentially useful
documents without even considering most topics covered
by the collection. However, no hierarchical classific-
ation can suit all searches, and there will be occasions
when it is necessary to extend the search across many
branches of the tree. An interesting discussion on
the nature of classification for retrieval is given by
Sparck Jones(1970).

Post-coordinate indexing is an attempt at document
description without an a priori hierarchy of classes.

In its simplest form, each document is assigned a set

of keywords, and a search formulation must specify

which combinations of keywords an acceptable document
should have. The so called "EBEoolean search" formulation

is, perhaps, the most frequently used. Terms are

combtined by logical connectives; for example

BIBLIOWETRICS or (STATISTICS and DOCULENTATION)
would be used to select references which had been
indexed either with the term BIBLIOLETRICS or with both
STATISTICS and DOCUMENTATION. Another commonly used
type of strategy is known as the "quorum search".

The searcher specifies a list of terms and says how

many of them must be present in the description of a
document for it to be retrieved. One might, for example,
require any two (or more) of the following four terms:

RELEVANCE, PERTINENCE, SUBJECTIVE, SIGNIFICLHNCE.
This is a special case of the technique of linear
associative retrieval, in which a measure of similarity
between possibly weighted query terus and document
descriptions is used to rank documents by "closeness"
to the query. Performing these types of coordination

by hand is laborious and such methods did not become

widespread until the advent of machinery to aid the
task. Among the earliest mechanicel systems were
optical coincidence cards (Batten,1947), and edge-

-notched carés (WMooers,1951). The former is an

inverted file - a card for each subject term - and many

computer-based systems employ the same principle in

their file organization (Lefkovitz,1969). Mooers'
system is a mechanical version of content-addressable
memory. Linguistic problems are more serious in post-
-coordinate indexing: an example, false coordination,
has already been mentioned.

Pre-coordinate systems are linguistically more

satisfactory for the human searcher, because the syntax .

in the description makes the relationships btetwcen the

component concepts clear. The linguistic subtleties

make automatic searching difficult, however.

2.2.1 Automation of delegated scarching

liow, having given the general picture, we shall
concentrate on aspects of the automation of reference
retrieval. Very nearly every text on information
retrieval begins by pointing to the "information
explosion" as an urgent reason to enlist the aid of
fast machinery. They are probably right. Both the
literature and the user population are growing, so the
total volume of indexing increases, and so should its
complexity. Searches also become ever more arduous as
more discrimination is needed. If we are to delegate
a substantial pdrtion of the work to a machine, we must
either give the machine linguistic skills (particularly
in the area of semantics), or we nust find efficient
ways of dividing the tasks between man and machine
(Doyle,1965). The questions to be answered arec: how
should the user express his need? having answered that,
how srould the collection be described? then, what
search strategies and matching algorithms should be
applied?

The answer most frequently given to the first
questiion is "in whatever way seems natural to him".
Loyne(1969) gives reasons for using a natural language
to express queries. Apart from ease of use by casual
users, he points out that "natural languages are highly

economical and efficient systems" for communication of

complex messages. There is nothing new here: special-
ized information services have received queries in
natural prose for & long time. An information worker
constructs a formal query, using all his knowledge of
the document collection and its descriptive adjuncts -
this is called "delegated searching". 1In fact, he will
analyse the query in much the same way that the
documents have been analysed on entry to the system.
Automatic systems exist which emulate this type of
service. Abstracts or full text of documents are
prepared for machine reading, and analysed for content
indicators; requests are treated in the same way, and
the resulting representation compared against the
document descriptions. The most exhaustively documented
system of this type is a versatile collection of experi-
mental modules called the SMART system (Salton,1971).
Kumerous comparisons have been made between system
performances observed with various linguistic algorithms,

ranging from simple word stem extraction, through the

use of thesauri to normalize vocabulary, to the const-
ruction of parse trees for phrases. Retrieval is

usually performed in SIIART by ranking the whole collect-

ion (100 - 1000 documents) according to their similarity

to the request; documents within a certain distance of

the top of the list are considered retrieved. The more

complex syntactic representations which were prominent

in earlier papers (Salton 1962, Salton & Sussenguth 1964,

Szlton 1966) have produced disappointing results: "when
the phrase generation procedures using simplified

syntax are compared with other, simpler, content analysis .

methods which include no structural or semantic

components, the surprising conclusion is that on the
average better results are obtainable without the
syntactic components than with them." (Salton,1973,
pp259-60). liontgomery(1972) is highly critical of the
syntax analysis procedures used in SiKART, however, so
Salton's conclusion may not be so surprising. As for
the more straightforward processes, which reduce
documents and gquery to weighted term vectors, Salton
(1972) shows that they give results comparable to those
obtained by conventional human indexing and Boolean
searching (with a collection of 450 documents).

Another system which handles natural language
(documents and queries) is BROWSER (Williams,1969).
Significant terms are extracted from the text using a
dictionary of "root words". Dictionary entries have
"information values" attached to them which vary
inversely as the total number of occurrences of the
root word in the document corpus - they are indicative
of the usefulness of the term in searching. Sparck
Jones(1972b) defines "term specificity" in a very
similar way (i.e. as a statistic associated with a
term's usage in a set of document descriptions).

A rather more complex linguistic analysis is
rerformed by the LEADERMART system (Hillman, 1973 and
1968). Sentences are decomposed into logical relations
between noun phrases. The noun phrases, it is presumed,
are what the sentence (and its containing document or
query) is about, and the relations involved determine a

weighting for the noun phrases,'as well as providing

information for partitioning the collection (i.e.
classifying it).

The descriptions, above, of the three systems -
SIART, BROVSER and LEADERMART - are, of course, incomp-
lete; we have concentrated on what they do to their
natural language input. Their common feazture is that
they process requests in the same way as the document
texts in their files, which is the answer to our second
question - how should the collection be described? - if
we assume that the user should indeed express his need
(to an automatic system) in his natural language. So
the indexer has disappeared from the scene, and the
author is communicating directly with the potential
reader., Now that each is using his own language (with
no interposed, controlled indexing language), the thirgd
qqestion - what search strategies and matching algor-
ithms should be applied? - has no simple answer. We
need to know precisely what are the connections between
the words (symbols) we use and the concepts we are
trying to communicate, and that is the province of

semantics,

2.2.2 Semantics

The discussion, here, of semantics will be very
brief: there are many review articles which cover the
subject (Kuno 1966, Bobrow et al 1967a, lontgomery 1969,
Kay & Sparck Jones 1971, Pacék & Pratt 1971, Liontgomery
1972). All of these reviewers are interested in making
linguistics work in the development of man-machine

communication, and all lament the lack of guidance from

theoretical studies, particularly studies of semantics.

Among theoretical linguists, semantics has received
comparatively little attention, and every prominent
semanticist has his own theory. One significant

common thread that runs through all the work in this
field is that an important aspect of the meaning of
words is the relationships they contract with each
other. Whether the relationships determine the

meanings (Lyons,1968), or vice versa (Katz & Fodor,1963)
is a matter for debate, as is the question of the nature
of the relationships; whether they can be classified
into types - e.g. synonymy, antonymy, inclusion -
(Sparck Jones,1965).

On the practical plane, it has been shown that a
certain amount of "understanding® can be displayed by
programs which manipulate networks of words (Quillian
1968, Simmons et al 1968, Simmons & Slocum 1972).
However, although it is clear that the environment of a
word in a simple (though large) network can be highly
suggestive of its meaning to a human observer (Doyle
1961, and see figure 3 for an illustration), much more
is needed to tell him (or a machine) how to use the
word. The success of Winograd's progrém SHRDLU
(Winograd,1972), supports the intuitively obvious

hypothesis that the understanding of natural languages

(i.e. that which brings forth an appropriate response
to a message conveyed in a natural languzge) demands
knowledge of the area of discourse, wunich includes the
discourse itself, and the ability to solve problems in

that area. The meanings of words are embodied in

Q atgatfiounce ()

O Primacy
®
1450r1ance
D prierity
() uraency
timelineos
@
casc im point
s00d
Gurl‘“' good z-nlc
ned
peTt
{) apt
understanding >
& oL
@, ° &
0 d
O
a Tight O
Porop; adaissible
Bvarcne. J.t.
an O
O context
)
definition
impresaion 05
O e Q) errect
L4
(J O
concept () interpratation
O auletance
poiat of application
view O
e X explanation
ohin discovery
O
O o Q
atiitude . insight -
esmociation. of fdeas
O
rhapaody

Figure 3.

~

D inventian

The verbal environment of

"relevance',

Al]l the associations drawn in this picture
were taken from Roget's Thesaurus (Penguin

edition).

figure.

The reader may judge how much of
the meaning of the words is evident from the
The present author is reminded, by

it, of much of the substance of recent
published discussions on relevance in the
information retrieval context.

36

R TRl . T e

Ty

procedures, which may invoke manipulation of the
program's model of {1he world., If it is true that
proper use of natural languages cannot be divorced from
other mental activity, and knowledge, then we must make
do with much less in our mmechanical intermediaries
between author and reader. The amount of knowledge
handled by a useful information service is vast.

So, although relatively simple syntactic analysis
of document texts may produce acceptable symbolic
characterizations (by conventional standards), one
should not yet expect enormous benefits from using
natural language as a medium for expressing a search
request. Cuccessful operational systems which use this
mode of communication (PROWSER and LEADERNWART, for
instance) probably depend for success more on inter-—
action with the user, on-line, than on their ability to
make something of his English. We shall come back to
the question of interaction in a later section, but
first we consider some of the uses to which relation-
ships between words have been put, in attempts to

enhance reference retrieval performence.

2.3 Associations and clusters

& great deal of Qork has been done on the
discovery and use of associations between words, and
other entities involved in reference retrieval. The
background to this activity, linguistic, psychological
and philosophical, has been discussed by P.E.Jones(1965),

and Tegue(1970) has written a useful review.

Associations occur in various ways

(i) "Semantic" relations between words. Hierarchies

(ii)

and cross-references in subject catalogues and
thesauri for information retrieval (K.P.Jones
1971, Sparck Jones 1972a). These are the
plausible relations: we tend to think of them as
inevitable, derivable from the nature of the
world. This is probably largely illusory, as
indicated by the fact that classifications

become out of date and vary from one library to
another.

Statistical relations between words. This is an
association with a measure instead of a type.
Words are meaningfully associated if they tend to
co-occur (Doyle 1961, lLiarcn & Kuhns 1960 are prime
examples among many who assert this). If the
tendency is strong enough, the words can be
regarded as synonyms for retrieval purposes
because, used as index terms, they are nearly
interchangeable - this is the justification for

the kejwogd classification procedures used by

-Sparck Jones{(1971). Suppoce, now, that we fingd

the words which tend to co-occur with the statist-
jcal associates of a particular word. These are
what Stiles(1961) called "second generation terms",
and are the words which tend fo occur in the same
context as the original word. Some of them will
be synonyms of that word, in the linguist's sense
(sparck Jones,1965). The ideas of semantic and

statistical second generation links were brought

¢

4

(iii)

(iv)

(v)

together by Gotlieb & Kumar(1968) when they
analysed the statistical association of pairs of
terms in the Library of Congress subject headings,
using the existing hierarchy and cross-references
without distinguishing between the types of relat-
ionships. A large scale statistical term associ-
ation experiment was done by Jacquesson & Schieber
(1973) using a file of 40,000 references, indexed
by 1400 terms. They found that even in their
strictly controlled indexing vocabulary (i.e.
where there should have been no synonyms), there
was, in fact, an appreciable amount of o%erlap in
the use of words.

Similarity relations between documents. The
"distance" between documents can be worked out by
considering the extent to which they are similarly
indexed (Jardine & van Rijsbergen 1971, Rettemeyer
1972, van Rijsbergen & Sparck'Jones 1973).
Bibliographic coupling. Assuming that authors
tend to cite papers which have some bearing on
their subject matter, another meaningful distance
measure between documents is obtainable from tﬁéir
ribliographies (Weinberg 1974, Zunde 1971, for
exanple). Gray & Harley(1971) bring together these
two concepts of document similarity (iii and iv).
They use bibliographic coupling to suggest terms
to the indexer.

Arbitrary user-specified association. By this,

we mean links between records created by a user,

as envisaged by Bush(1945). He laid down design

principles for a personal filing mechanism in
which any document, note, correspondence and so
on would be stored and linked to exisiing records
in whatever way its user wished. Searching would
be done by following trails of associations.
Several systems have been constructed along these
lines (Glantz 1970, Treu 1970, Robinson & Yates
197%, Engelbart et al 1973). The facility for
adding arbitrary links to a communal information
structure, preferably under some sort of control,
might be a useful addition to a document retrieval
system, but we shall not discuss it further here.
Reference retrieval is concerned with bringing

to the notice of the user previously unknown
documents; not with organizing the information
for him after he has become aware of it.

Ne now turn to uses to which associations have been
put in reference retrieval. Two objectives have been
sought; they use similar techniques and are inter-
dependent, but should be distinguished. Co-occurrence
figures have been used to generate classes both of
documents and of index terms. The main motivation for
+he former is to achieve efficiency of file searching
by cutting down the amount of the document file which
must be examined (this is very important in systems such
as SuART which retrieve by measuring the association
between documents and gquery, and ranking the documents).
The motivation for grouping index terms is to enable the
system to expand a query (mainly) to achieve higher

recall. As Stiles(1961) put it:

"Literally hundreds of terms may have bheern used
to index documents on the various aspects of
particular subject and yet we nmust grope for
just the right set of terms."™ -~ p271.

[

The main stream of automatic classification {(or cluster-
ing) methods (whether of documents or index teris) can

*
be summarized as follows:

The documents in the collection are assumed to be
described by lists of weighted index terms. In other
words, each document is represented by a vector whose
dimension is equal to the number, t, of terms in the
vocabulary and which consists of the weights ol &all the
terms, as applied to the document. If a term is not
applied (posted) to a document, its weight is zero in
that document's vector. Frequently, in practice, the
only weights used are 0 and 1. The whole collection
of d documents is then represented by the dXt matrix,
i, having as its rows the d document vectors. HNow, a
matrix product operator,C@ , is defined and applied to
M and its transpose, MT, to form a similarity matrix:

either 5, = LH@Mi, for document clustering,

-
or S IWHSH% for index term clustering.

t
The result is a sguare, symmeiric matrix giving a
measure of the similarity between every pair of
documents (Sd) or terms (St)' The operator & is
usually'defined for matrix operands A (pXq) and B

(g Xr), to give a pXr matrix product C = AQ®B,

For document clustering, see Jardine & van Rijsbergen
(1971, good review included), van Rijsbergen(1974),
Salton(1971) Part IV Cluster generation and search,
Rettemeyer(1972) and Crouch(1973). For index term, or
keyword, classification, see Sparck Jones(1971),
Weedham(1965), hAugustson & lkinker(1970), Minker et al
(1973), Gotlieb & Kumar(1968), Borko & Bernick(1363,

an7 A C+3V Aal1001)

where C.,. = $Esq , 1<icp, 1<j<r.

Nij is a normalizing factor, a function of the vectors

{Aik} and {Bki}’ 1<k<q. For example,

N,. = 1gé;q(Aik + Bkj)'

Having obtained the similarity matrix (Sd or St)’ the
associations cen be found by deciding upon a threshold,
O, and replacing each elewent of the matrix by 1 if it
is not less than e,cu'O otherwise. The result is the
adjacency matrix representation of an association graph.
A simple example should clarify these generalities.

Suppose we have 5 documents indexed by 6 different

terms, t,l - t6’ without weights, as follows: .
gy = {tsrte.te)s a, = {5,850,
dy = {t1,t2,t3}, 8, = {tz,t4,t5},
45 = {tyt50 T

Then

a a2 O O O
_ a0 O =
- O O O =

=

i
O O = = O
O O = 4 -

Using the particular definition of & given above, the

document similarity matrix is

1/2 1/5 1/6 1/6 1/3

1/2 2/5 0 0
5, = LQuL = 1/2 1/6 0
1/2 1/3

symmmetrical
1/2

Now we choose a threshold, 8 =%, say. Then the

adjacency matrix is

1 0 0 0 1
1 1 0 0
= 1
Ad 0 0
1 I

symmetrical

which corresponds to the document association graph:

a
d1 2 R\\\k
® d
dg
| Sy

(we omit loops). We shall discuss similarity between
documents again in Chepter 3.

Having established an association graph, between
terus or between documents, there are various ways of
forming classes, or clusters. Examples &are maximal
complete subgraphs (cliques, within which each node is
connected to every other node), maximal connected
subgraphs (every node in the subgraph is reachable

from every other node), stars (one node is adjacent to

every other node). Augustson & Iiinker(1970) and Sparck

Jones(1971) discuss the possibilities. HNot all
techniques produce disjoint clacses and the threshold
(6), which obviously affects the association graph,
also affects the clusters obtained. The nced to select
a somewhat arbitrary threshold led Needhan(1965) to define
a "clump", using the similarity (rather than the adjacency)
matrix. An object is a member of a clump if the sum of
its similarities with all the other members of the clump
is greater than the sum of its similarities with all
non-members. In contrast, Jardine & van Rijsbergen(1971)
produce a hierarchy of document clusters by systematically
varying the threshold.

The detailed results of applying these techniques
are given in the literature already cited. Those who are
investigating document clustering must show that improved
efficiency is not accompanied by serious loss in retrieval
performance. The most thorough evaluation of the many
possibilities for query expansion by term classification
is contained in Sparck Jones(1971). The conclusion
seems to be that the best combination of clustering
techniques tried performs significantly, but not
substantially, better than simple term searching. There
is some later work (Sparck Jones 1973%a, van Rijsbergen
& Sparck Jones 1973) which explains the performance of
keyword classification in terms of characteristics of
the document collection (derivable from a similarity

matrix), with respect to the set of test queries.

2.4 Interaction

Throughout this chapter, so'far, we have had a

particular type of search in mind. The enquirer h&s a

need for information which is well formed in his mind,
and he is able to express it gquite precisely as a query.
We have discussed the problems that.arise ..en we
assume that, in order to satisfy the searcher, the
system must match, in some precise scnse, the query with
references in its store. Tancaster(1969) estimated
(with qualifications) that the iiEDLARS demand search
service achieved, on average 58% recall and 50% precision.
The construction of the formal search profile wac deleg-
ated to trained search editors. Relevance was assessed
by the end-users, and relatively low degrees of relevance
were accepted for computing the above figures (i.e.
"minor value" articles are considered relevant). If we
accept that results obtained in small scale experiments
(particularly the SHART document and query analysis
trials, and the automatic classification tests of Sparck
Jones) are valid for large collections, then the average
recall and precision figures could increase by about 10%,
i.e. to around 645" and 55% respectively. The studies
which have been reviewed are attempts to find out how
far we can go in creating jmachinery to which a man can
delegate his search, and they are important as such.
However, now that facilities are widely available
for the interactive use of computers, solutions to the
difficult linguistic problems are not required so
urgently. e have far more scope now for interleaving
mechenical and intellectual work. In 1965, Doyle wrote
that there were two alternmative attitudes to the solution

of linguistic problems:

"(1) We can seek to make our procedures apprcach in
complexity those used by the human intellect, and
this appears to be the route preferred by most of
the research people; or (2) we can try to take
advantage of the fact that humans are experts in
handling language, and have them worl in senior
partnership with computers." (Doyle, iu55, p238).

Combine this with the fact that even among those with
apparently well defined needs "a characteristic feature
of this [information gathering] process 1is that the
scientist's original inéuiry or interest is invafiably
modified and restructured on the basis of the inform-
ation presented to him." (Hillman,1968). The obvious
result is that we should design the means whereby a
searcher may explore the collection, gradually refining
his request. When we reconsider the traditional
distinction between browsing and searching, in this
light, we find it so hazy that we are forced to abandon
it (Herner,1970). This is not to say that all searches
are alike: on one occasion, a scientist may want to look
for a small amount of material to stimulate him, at
another time he may wish to do & thorough literature
search on some topic, and there are other possibilities.
Iancaster & Fayen(1973) have recently published a
comprehensive state:of—thewart account of on-line inform-
ation retrieval systems, in which they give brief
desciptions of about 30 major operational systems, mostly
of Worth American origin. That is clearly a small
proportion of the systems now in existence. MNost of the
work currently being done is concerned with man-machine
interface engineering (Walker 1971, Martin et al 1973)

and this is outside the scope of this thesis. We are

concerned with the information structures and processes

whiich can assist a user in his search. We shall not

undertake an extensive survey of systems here: many

ot

differ from ezch other only in superficial detai
(regrettably, some systems are incredibly verbose).

At the very least, an interactive retrieval system
must help the user to find the appropriate words, and
must provide facilities for developing his guery, having
shown him something from its files in response to his
previous messages., Williams(1971) has given a much
more detailed 1list of capabilities that he considers
important for a browsing system.

One of the major variations between systems is in
the indexing vocabulary used. Some systems (e.g. RECON
- Wente 1971; BOLD - Burnaugh 1967; the iledusa system -
Barter et al 1973) use a controlled indexing vocabulary,
and incorporate appropriate devices for exploring it:
on-line thesauri, with procedures for following the links
between terms. By having related terms displayed the
user is able to find words which he may not otherwise
have thought of. The user may build up; in stages,
boolean or guorum search strategies. Another important
component of these syvstems is a large "enitry vocabulary",
that is a set of words and phrases which are not in the
restricted vocabulary of the indexers, but are commonly
used by searchers. They ere linked to the preferred
terms. Higgins & Smith(1969) have suggested a way in
wnich the entry vocabulary could be extended by the users.

Other systems search the free text of titles,
abstracts or whole documents, having created an index to

all occurrences of every significant word or stem.

Significence is usually determined by the word's
absence from a "stop list" of common syntactic functidn
words (articles,prepositions, etc.). Examples of this
type of system are the Epilepsy Abstracts .ectrieval
System (Porter et al,1970) and the STATUS programs
(Price et al,1974), which are used to search legal texts.
One can often form Boolean queries in these systems,
specifying that the combination should occur within a
single sentence or larger unit of text. Another type of
search 1is for a pair of words occurring within a certain
distance of each other. Where there is no controlled
indexing vocabulary, no thesaurus is likely to exist.
It may be possible to display the neighbours of a word
in an alphabetical list, but on the whole free text
systems rely on further words being suggested to the
user when he is shown relatively large pieces of text.
To illustrate the concepts involved in interactive
retrieval, we give a brief desciption of, and a sample
conversation with a particuler operational reference
retrieval program. The lledusa system, developed at the
University of Newcastle upon Tyne is suitable for this
purpose for three principle reasons: Firstly, it
operates on a well-known data base - MEDLARS - with its
controlled vocabulary of iledical Subject Headings
(leSH). Secondly, it has features wnich clearly show
off the benefits of interactive search. Finally, the
data and test gqueries used in the new work described in
this thesis were obtained from liedusa files, as explained

in Chapter 7, section 2.

2.4.1 An example: Medusa

The descriptive material and sample run in this
section are adapted from the User lanual for ledusa,
prepared by J.A.Hunter (University of Newczstle upon
Tyne,1974). Medusa is an on-line reference retrieval
system which runs on the IBil 360/67 computer at the
University of Newcastle upon Tyne, using MEDLARS
(liedical Literature Analysis and Retrieval System) data
from the U.S. National Library of Medicine. Iledusa is
designed for direct use by medical research workers
(Barber et al,1973).

Two means of accessing the system are provided;
Current Awareness and Retrospective liedusa. Both systems
allow the user to formulate an identical search, but
differ in the manner of searching the data available,

CURRENT AVWARENESS KEDUSA is intended for those users
who want to keep up to date with the current literature;
they will expect to return to the system each month, or
at least every three months, and search the data acquired
since they last used the system. The database kept for
the Current Awareness system is the latest three months
of the file. This is updated as new information arrives,
the oldest month being dropped and the new months citations
added. There are about 45,000 citations indexed from
2,200 journals for papers written in English, French and
German., Users running current awareness searches may
retain up to four different profiles from session to
session as. it is anticipated that they will wish to modify
their search criteria as their work progresses.

RETROSPECTIVE MEDUSA is intended for users rejuiring
a simple search on a particular topic from as large a
database as possible., Some 110,000 citations are avail-~
able for searching taken from 1,150 journals over the
past year. The citations are restricted to those written
in English. A Retrospective session is self-contained;
that is, any search formulation is lost when the session
ends. A special SAVPLE command, gq.v., 1is supplied to
permit checking of a search against the latest block of
citations before it is used to access the whole database.

lMedusa citations are indexed with terms selected
from a thesaurus of 10,000 medical subject headings(leSH).
The user has to formulate his search using terms from
this thesaurus. The main object of the Medusa system is
to enable the user to find the correct terms for his
subject. The task of finding all relevant terms is made

easier by their organization into categories - Cefe.
neoplasms, musculoskeletzl system, vertebratves, surgery.
The general term is at the "top" and the more cspecific
terms appear telow, down to four levels - e.g. vertebrates
- mammals - rodents - mice. The terms above and below a
particular term can be displayed easily or "he terminal.
Going "up", "down" and "across" the category structure is
the way in which a user finds available terms. Papers
are indexed under an average of ten main headings. An
important point about the selection of terms is the use,
by the indexers, of the most specific term for a subject.
In addition to the 10,000 LeSH terms, there are 7,000
entry terms which, in most cases lead to synonymous [TeSH
terms. Some entry terms call up compound scarch
expressions instead of single terms.

There is a repertoire of commands for exploring the
thesaurus, constructing search prescriptions, :...d
retrieving references. The user may introduce terio at
any time; the system will assign to them short codes for
easy reference later. Ve start with thesaurus exploration
commands:

DOl followed by a term code, will reveal the more
specific terms, if any. If successful, this
command will also generate the category term,
identified by the C prefix. This refers to all
of the terms in the relevant category below the
original term.

UupP will reveal the broader tern.
ACROSS will reveal related terms at the same level.
XREF will reveal any cross references to different

categories. These are indicated by an I printed
in the display of a term.

ctk
(]

Qualifiers are sub-headings which may be linked
main headings and categories to restrict the zontext in

which they retrieve references.

GUAL followed by a code will print a 1list of <hose
gqualifiers which may be legally linked %o 2 term
when forming a search statement.

LIST followed by a character string of three or more
letters will cause the system to print out
dictionary entry names which start with those
letters.

There are also commands to remind the searcher of details
of previously used terms. This is particularly useful in
Current Awareness liedusa where he may come back to a

seargh profile after some time. (We omit their definitions
here).

Now we come to the commands' for formulating searches
and performing them:

COLEINE followed by a term code, or by a group of codes
separated by one of the operators A4ND, i 1 KOT,
OR, LINX (for attaching qualifiers to terms),
will form a search statement. The system will
print out an R code number and give a rough
estimate of the number of citation. iiable to be
retrieved by its use, The R code nuiber can be
used in subsequent COUBINE commands and thus a
complex profile can be built up, without the
need to construct it in one error-prone step.

SEARCH followed by an R term causes the system to search
for citations satisfying the criteria of the term.
Citations found are printed out on the terminal
in sufficient detail to enable a user to locate
them, and with their associated index terms and
sub-headings. An asterisk against en irdox term
means that it is a "print" term, and apu..rs

- against the reference to the citation 1n "he
indexing journal Index ledicus. If index terms
are not desgired, as with a profile of established
reliability, they can be suppressed to give faster
printing.

SAMPLE 1is available only in Retrospective ledusa. It is
similar to SEARCH in use but only searches the
most recent month of citations.

In the run of Retrospective Medusa which follows,

all comments, i.e. lines not printed at the terminal,

appear in lower case. iLines typed by the user are

underlined.

MEDUSA IXFORIMATION RETRISVAL SERVICE
PILEASE INDICATE WHETHER YOU WIZH 70 US® CURRENT AVARLNESS
OR RETROSPECTIVE MEDUSA BY TYPING "C'" Ch *R™,
?R

RETROSPECTIVE MEDUSA

THE RETRCSPECTIVE SERVICE IS AVAILABLE FROL 12.00 - 14.00
ASD FRCOk 16.00 -~ 19.00 EACH WEEKDAY. SHOULD YOU SIGH ON
DURING THESE PERIODS 4AND FIND THE SYSTEM NOT AVAILABLE,
PLZAZE nING MeEDUSA STAFF ON 0632-28511 EXT. 2761.

SYSTE.! rOLVUS CITATIONS FOR APRIL AND ¥AY 1974, OCTOEER
1973 TO KARCH 1974, APRIL TO SEPTELEER 1973

. * SIGN INDICAT=ES THAT SYSTEM IS READY FOR A REPLY

SEARCH NUWBER 1 : USERCODE, Hhwx, TifLE ?
*0109, J.AHUWATER, DEWOH{STRATION OSEAKCH

ENTER TERmS. STAKRT BY TYPING In A LisDICAT TERM RELATED

TO AN ASPECT OF YOUR SEARCH
*STUDENTS

m1=STUDENTS T285 19772 X

DN 6 A EDUCATION (ANTHROPOLOSGY,

EDUCATION,)

DN O B EDUCATION, KOWPROFESSIOW(ANTHROPOLOGY,
EDUCATION,)

DN 1.5 C NANED GROUPS (NON MESH)

DN O D OCCUPATIONS (SOCIOECONONIC
FACTORS (POPULATION CHARACTERISTI))

The term "students" has been assigned the code L:ii. T285
gives the number of citations indexed under this heading,
and 1962 gives the date of introduction of the term. X
indicates the presence of one or more cross references.
This term is in four categories 4, B, C and D. 1In the C
category, the code DN 1.5 means that there is one term in
the next lower level of the category, and five in the level
below that. In the A category, '"education" is the broader
term, and the information which follows it gives the
category structure above it.

*DOWN M1A
C1=STUDENTS 17858
N2=STUDENTS, DENTAL T33 1962 4,B,C
li3=STUDENTS, HEALTH OCCUPAT 121 NEW TERE 4,2,C
N4=STUDENTS, MEDICAL T267 1962 A,B,C
M5=STUDERTS, NURSING T174 1962 A,B,C
Li6=8STUDXENTS, PHARMACY T9 NEW TRERI A,B,C
Li7=STUDENTS, PREWNEDICAL T9 1962 A,B,C
Here "down" has generated for the A categoryv the category
term C1, which encompasses all terms below and including
"students" in that category. TI858 gives the total tally
- the number of times the terms in the group have been
used in indexing references.
*FULL M4
W4=STUDANTS, MEDICAL 7267 1962
DN O A STUDENTS (EDUCATION
(ANTHROPOLOGY, EDUCATION,))
DN O B STUDENTS, HEALTH OCCUPAT(STUDE.TS
(NALED GRCUPS (WONW MESH)))
DN O C STUDENTS, HEALTH OCCUPAT(HZALTH HAN~-
POVER(FACILITIES I/ANPOWER SERV))
*XRZF I
18=STUDEJNT DROPOUTS T48 1962 X A,B,C

*STUDENT HEALTH SERVICES

NO=STUDENT HEALTH SERVICES T114 1962

DN O A HEALTH SERVICES (FACILITIES
AIPOYER SERV)
*COLLEGES
[i10=UNIVERSITIES T435 1967

DN O A SCHOOLS (EDUCATION
(ANTHROPOLOGY, EDUCATION,))

Note the action here in the case of a synonyn being

entered. M"colleges" is held in the dictionary as a

pointer to "universities", for which it generates a code.

*COMRBINE M1 OR M8 OR M9 OR K10

R1= K1 OR 18 OR M9 OR M10
EXPECTED RETURN: LARGE

Here large means 25 or more citations would be reirieved.
*SAMPLE R1

FIRST CITATION FOUND IN 21 SECS

CIT WUk 00290919

HOWELL R CROWN S HOWELL RW

PERSONALITY AND PSYCHCSOCIAL INTERACTIONS IN AN UNDER-

GRADUATE SANMPLE.
BR J PSYCHIATRY VOL123 699-701 DEC 73

*PERSONALITY ASSESSMENT *STUDENTS
- ADOLESCENCE ADULT
. AFFECTIVE DISTURBANCES FACULTY
_ (DIAGNOSIS)
FEKALE HUMAN
JUVENILE DELINQUENCY VALE
PSYCHOLIETRICS SCHOOLS

SEX FACTORS

SOCIAL CLASS

In this print out of a reference, the terms marked with
an asterisk are "print" terms which would appear in
Index Kedicus. Terms in brackets are qualifiers, €.g.

- (diagnosis).

CIT NUM 00290921

DUDDLE M

AN INCREASE OF ANOREXIA NERVOSA IN A UNIVERSITY
POPULATION.

BR J PSYCHIATRY VOL123 711-2 D=EC 73

*ANWORZXI4L NERVOSA(OCCURRENCE) *STUDENTS
ADOLESCENCE ADULT
EDUCATIONAL STATUS ENGLAWD

FELALE ' HUMAN

INFANT NUTRITIOWN MALE

OBESITY UNIVERSITIES

CIT UM 00291303

CANPBELL LP

IMODIFYING ATTITUDES OF UPPER ELEIENTARY STUDENTS TOWARD
SHOKING.

J SCH HEALTH VOL44 97-8 FEB 74

*HEALTH EDUCATION *SMOKING (7. sV CONTRL)
ADOLESCENCE ATTITUDE 70 1

ATTENTION INTERRUPT
MALE STUDENTS
Here the interrupt key has been used to stop a search.

Note that printing of the current citation is completed
before control is returned to the user.

*DRUG ADDICTION

11=DRUG ADDICTION T816 1962 X
DN 3 A DRUG ABUSE (PSYCHIATRY
D O B SOCIOPATHIC PERSONALITY (PERSONALITY
DISORD=RS (PSYCHIATRY))

*ACROSS HM11A

112=GLUE SNIFFING ‘ T18 NEW TZRM 4,8,C
[i11=DRUG ADDICTION 816 1962 X A,B
*UP M11A

M1%=DRUG ARBUSE T708 1962 X A,B,C

*CO«BINE R1 AND M13

R2= R1 ANWND M13
EXFECTED RETURN: SIALL

Here small means 10 or less retrievals.
*SANPLE R2

FIRST CITATION FOUND INWN 18 SECS

CIT NU# 00304555

RIENER K B

(UIFFERENT PROBLZLIS OF DRUGS IN TRAD® SCHCOYL AWD HIGH

SCHOOL STUDENTS (AUTHOR'S TRANSL)D
PRAXIS VOL62 1612-5 26 LC 73

*DRUG ABUSE(OCCURRENCE) *STUDSNTS

ADOLESCEINCE GE FACTORS

CAHNABIS COCAINE

COLPARATIVE STUDY ECONOLICS

EXPLORATORY EEHAVIOR FENALE

HUKAN LYSERGIC ACID DIETHYLANI
MALE LESCALINE

SOCIOECONOLIC FACTORS STATISTICS

SWITZERLAXD
*QUAL K13
1=EL00D
Q2=CEZREBR.FLUID
Q3=CHELl. INDUCED
Q4=CLASSIFICAT.
Q5=COLPLICATIONS
Q6=DIAGNOSIS

Q7=DRUG THERAPY
wE=EDUCATION
QO=EHZYiI.OLOGY
Q10=Z2TI0LOGY
Q11=FANIL&GENET.
QR@12=HISTORY
Q13=1.:.UNOLOGY
W14=THSTRULHTATION
Q15=KAHPOY LR
Q16=kBETATOLISIK
Q17=MORTALITY
Q18=NUKSING
@19=0CCURRELCE
R20=PATHOLOG
Q21=PHYSIOPATH.
Q22=PRZEV CONTRL
Q23=RADIOGRAPHY
Q24=RADIOTHKPY
Q25=REHABILITAT.
Q26=STANDARDS
Q27=5URGERY
Q28=THERAPY
Q29=URINE

The following three combine commands show how to build up
a search statement which will find references if they are
indexed under "drug abuse" linked to either of two
qualifiers. Note that a match will not occur unless one
of these qualifiers is actually specified for the main
heading "drug abuse", and that terms may appear several
times in one citation linked to different qualifiers.

*COMBINE k13 LINK Q19

R3= M13 LINK Q19
EXPECTED RETURN: SLALL

*COUBINE K13 LINK Q22

R4= K13 LINK Q22
EXPECTED RETURN: SMALL

*COLEINE R3 OR R4

R5= R3 OR R4
EXPECTED RETURN: SMALL

*SEARCH R5
APRIL AND LAY 1974 CITATIONS
FIRST CITATION FOUND IN 14 SECS

CIT WUM 00297727
IOWINGER P
HOW THE PEOPLE'S REPUBLIC OF CHINA SOLVED THE DRUG ABUSE
PROBLEIl.
Al J CHIN iED VOL1 275-82 JUL 73

*DRUG ADDICTION(PREV CONTRL) ATTITUDE TO KEALTH

CHINA DRUG ABUSE(PREV CONTRL)

DRUG ADDICTION(DRUG THERAPY)
DRUG AND NARCOTIC COWTRO
JIISTORY OF WMHEDICIHNE, 19T
AISTORY OF LEDICINE, KED
FUKAN

OPIUM(HISTORY)

BRI GS AH

DRUG ADDICTION(REHABILITAT)
HISTORICAL ARTICLE

HISTORY OF iEDICINE, 20T
HONG KONG

HORALS

4

CAX WE PREVENT DRUG ADRUSE IN INDUSTRY?

TeX MED VOLT70 49-54 JAN 74
*DRUG ADDICTIOW(PREV CONTRL)
DRUG AEUSE(PREV CONTRL)
HUMAN

CIT NUW 00287976
EIWSTEIN S

DRUG ABUSE TRAINING ANWD EDUCATION:
Al J PUBLIC HEALTH VOL64 99-106

*DRUG ABUSE

ATTITUDE OF HEALTH PERSO
CURRICULUM

DRUG AEBUSE(PREV COiTRL)
BUMAN

METHODS

SCIENCE

UNITED STATES

CIT NWUL 00234363
DISTASIO C WNWAWROT WM
HETHAQUALONE.
Al J NURS VOL73 1922-5
*¥*DRUG ABUSE(PREV COWTRL)
ADULT
DRUG WITHDRAWAL SYidPTOMS
(DRUG THE)
JAPAN
UNITED STATES

*INDUSTRIAL

NOV 713
*LMETHAQUALONE

IEDICINE
HEALTH EDUCATION
UNITED STATES

THE CO....UKITY ROLE.
FEB T4

*HEALTH EDUCATION

CRIKE

DECISION HAXKING
DRUGS
JURISPRUDEKNCE
RELIGION
SOCIAL VALUES

DRUG ALD NARCOTIC CONTRO
HUIAN

PENTOBARBITAL(THERAP USE)

OCTOBER 1973 TO MARCH 1974 CITATIONS

CIT NUM 00244640
GRoEXNE KEH DUPOUT

RL RUBENSTEIN Rii
ALPAETAKMINES IN THE DISTRICT OF COLULBIA. IT.

PATTERNS

OF ARUSE IN AN ARRESTEE POPULATION.
ARCH GZN PSYCHIATRY VOL29 773-6 DEC 73

*¥ U PHWPANINE
*DxUG ABRUSE(OCCURRENCE)
ADULT
Dﬁ”u LRUSE(PREV COLTRL)
ELALE

HULLAN
LETHADONE

CIT WUL 00260832
REDFIELD JT
DRUGS IN THE
ALISH.

Al J PUBLIC HEALTH VOL63

WORKPLACE--SUBSTITUTING SEHSE FOR SENSATION-

*CRINMINAL PSYCHOLOGY
*SOCIAL CONTROL, FORKMAL

DISTRICT OF COLUhBIA

DRUG ADDICTION(OCCUARENCE)

HEROIN ADDICTION
(OCCURRENCE)

KALE

VIOLENCE

1064-70 DEC 73

*DRUG ABUSE *IHNDUSTRIAL MEDICINE

ADOLESCENCE ADULT !
ATTENTION INTERRUPT .
CANNABIS DRUG ABUSE(DIAGNOSIS)
DRUG ABUSE(OCCURRENCE) DRUG ARUSE(PR®V CONTRL)
DRUG ABUSE(URINE) DRUG ADTi3TION
HALLUCINOGLENS HEALTH EDUCATION
HULAN HYPNOTICS AND SEDATIVES
LYSERGIC ACID DIETHYLAKI OCCUPATIONAL HEALTH SERV
OPIUM OREGON
SiiOKING (OCCURRENCE) STUDENTS
*SIGLOFF

EWD SEARCH WUMBER 1
ELAPSED TINME WAS 38 LINS 23 SECS

2.5 Feedback

The type of interaction supported by almost all
operational information retrieval systems can be
summarized in this way. When commanded to do so, the
system will display references, sometimes with details
such '‘as index terms or abstract. Having seen this type
of information, the user decides whether the computer's
response is relevant, and whether a change in the search
statement is necessary. He may construct a new requect,
perhaps a modification of a previous attempt, and command
the machine to search again. It is the user's responsib-
ility to arrive at a satisfactory profile. The system
may help him to find suitable words and it may do useful
clerical tasks for him (we havé seen that ledusa, for
instance, keeps a record of terms and intermediate
search statements with short codes for easy reference),
However, there is no way in which users can inform these
systems of their success in displaying relevant references,

and the systems have no way of making use of such inform-

ation (except, perhaps, to monitor it for the Lenefit of
system designers and evaluators). Whatever the difficulties
of formulating a theory of relevance for information

retrieval might be, there is an obvious suhjective

definition for it. A reference is relevant if, on the '
basis of available evidence, the searcher recognizes it

as the sort of reference he was looking for. If we could

use his relevance judgements to influence the search, we

would depend even less upon his ability to express his
interest.

There are, in fact, at least two large, computer
aided services which have experimented with relevance
feedback, neither of which provides the end-user with
on-line access to the files. A study was conducted by
UKCIS - the United Kingdom Chemical Information Service -
(Barker et 2l,1972). 1In analyzing search failures resylt-

ing from profiles constructed by users, they found that a ‘

disturbing number (34% of precision failures and 46% of
recall failures) were attributable to faulty original
statements of interest. An iterative bprocess involving

a fixed file was used to develop a profile., The first
search was done with a profile devised with the aid of
UKCIS staff. Abstracts of documents retrieved were
assessed by the user and terms occurring in them given
weights accordingly. Terms with weights above a certain
threshold were then used to retrieve more references which
were sent to the user for assessment. The process
continued until no new relevant documents were found,
then the resulting list of terms with high weighting were

considered by the user, who could make changes to his .

58

profile aceordingly. The new profile would then serve

15 regular current awareness needs. The difference in

performance Lotween original and new profiles was

w
t+

cstinnted: precision remained arout the cate, but recall
increzsed ty up to %04,

The other large scale use of relevance feedback is
reported by Vernimb & Steven(1973). ENDS (European
Kuclear Documentation Cervice) maintains a very large data

base; 15% of the references (i.e. 200,000) are available

on-line to END3 staff. A query is formulated interactively,

using Boolean strategies, and a small sample of the
documents retrieved are checked for relevance. 411 the
terms assigned to the documents in the sample are given
weights (which may be negative) reflecting their postings

to relevant and non-relevant references. In the batch

@]

processed search of the whole file, document weights are

ated using the term weights so obtained and those

[

calcu
with weights above a threshold value are retrieved and
ranked.

The major experimental work on relevance feedback
has been done on the SLART system; the techniques are
aescribed by Ide & Salton(1§71), and evaluations and

further details can be found in several chapters of

1

Salton(1971). SLART is a system in which a number of

i

processing options can be specified independently of

¢n other; the number of combinations that can be tried

i
<

ay]

is encrmous, CGenerally speaking, documents entering the

characterized by lists of weighted terms

[¢))

system ar
derived from the text. Queries are processed in a

siniler way and a correlation function is specified

which measures the "distance" between a query and a
document, two documents, or two queries. Retrieval
consists of ranking the collection of documents according
to their correlation with the query, choosing some cutoff
point, and selecting the documents above it.

If the characteristics of the relevant documents
retrieved are denoted by the vectors T and those of
the non-relevant documents retrieved are S4» @ query

denoted by the vector 9 is updated by the eguation:

nI‘ nS
- x> . r, - .
8 =G0 Xenn ~P g

where n,, and ng are respectively the numbers of relevant

and non-relevant documents retrieved in response to query
99> and « and ﬁ are experimental parameters. In words,

the terms occurring in relevant documents have their
weights increased by o« times the sum of their weights in
those documents (new terms may be introduced). Terms
occurring in non-relevant documents have their weights
decreased similarly, but using P as the constant multiplier
(terms whose weights become non-positive are deleted).

The retrieval process is repeated with 9q and relevance
decisions can, of course, be fed back as many times as the
experimenter wishes. The constants o¢ and PAdetermine the
extents of "positive" and "negative" feedback, respectively.
It has been found that negative feedback is necessary for
best performance. The majority of the improvement in
performance comes with the first and second iteration, and

can be substantial. A striking example of the effect of

feedback is given in Salton's second comparison of SHART
and i"EDLARS (Salton,1972).

A problem arises with the technique as a consequence
of the method of retrieval (which is called "linear
associative"). Whereas, with Boolean searching it is
possible to construct a query that will retrieve any
subset of a collection, so long as every item is indexed
uniquely, it is not always possible to find a query that
will bring any given subset to the head of the list with
linear associative retrieval., e cen illustrate this
with a collection of four documents, labelled A, B, C, and
D, and indexed by a vocabulary of 2 terms (weighted).

The collection can be repfesented by a set of two-

-dimensional vectors:

A

If we define the distance function to be the angular
separation of a pair of vectors, then no query can be
found to retrieve just A and C, for instance, no matter
how many iterations of query modification are executed.
Any query that retrieves A and C must also retrieve B.
The SLIART system can, in principle, cope with this
situation by clustering the document representatives and
applying the query, and subsequent iterations, independ-

ently, to each cluster to which it is "close". The effect

of relevance feedback on the query will differ from one
cluster to another, so that several different gueries
may be generated. To reach all the important documents,

it may be necessary to consider many clusters.,.

3 Summary

We have covered a considerable amount of ground in
this chapter, rather briefly of necessity. We started by
trying to state the problem of reference ‘retrieval,
because the work reported in later chapters was motivated
by the need to find practical solutions. If Kunz & Rittel
(1972) are right when they say of this type of problem
that "problem formulation is identical to problem solving",
our attempt at stating the problem is bound to have failed.
However, one needs a point of view from which one can
define goals and refine them as sets of subgoals, and the
nature of one's approach determines how far this refine-
ment can be taken. The decomposition of a goal into
subtgoals can be regarded as an interpretation of the
meaning of the goal. A goal has no practical meaning if
it cannot be decomposed into achievable subgoals. If
one can find no way of doing this, then one must eithcr
change one's point of view so as to avoid the problem, or
accept some modification of the goal which can be achieved.
If we do the latter, we are really changing the problem
and must make sure that the new problem is a useful one
to solve in the context of the old one.

We are continually coming up against such intractable
goals: matching concepts, defining relevance, understand-

ing natural language. Even the major goal - to build a

reference retrieval system - is ill-defined. The

evaluation techniques used to assess the success of
systems are indications of the goals that the designers
are trying to achieve. The traditional measures of
performance are recall, precision and fallout (the
proportion of non-relevant material retrieved). They are
calculated from the result of dividing a collection in
two different ways, according to: (i) whether retrieved
or not, (ii) whether "relevant" to the query, or not.

The corresponding goal is to divide the collection, using
the system, along the same line that human "relevance"
judges would split it. That is, of course, a corruption
of the goal which we tried to express in the first
paragraph of this chapter. The objection to the modified
goal is that there is no unique relevant subset of the
collection. _This is true even if the relevance judge is
the man who needed the information. We have already
remarked that the order in which he sees the references
will affect the composition of the relevént subset. (In
this connexion, there are some interesting discussions

on evaluation in Cooper 1973, Vickery 1973, and Cleverdon
1974). The requirement to set up the very difficult
goals is modified- substantially in our favour when we can
use a computer interactively. Decisions demanding
intelligence are now achievable - the man makes them.

As for the machine, we must find out how it can best
select and present information, concerning which the man

shall make decisions.

Chapter 3
INFORMATION HEURISTICS

There is, at present, no prospect of creating an
automatic system capable of making an accurate record or
representation of a researcher's information requirement,
and delivering to him literature, of which it can be said,
with confidence, that it will satisfy the need. %We have
seen that the fine discriminating powers of the searcher
himself might be efficiently integrated with the crude
powers of a machine in a well designed interactive systemn.
When considering computer-aided literature searching, it
is as well to keep in mind the fact that the final result
of a search, from the user's point of view, is a set of

documents judged by him to be relevant. Whatever device

is used to inform him of references, and however much of
the total seérch process is delegated (to machine or
librarian), the end-user makes the final choice, rejecting
the irrelevant. To return to figure 1 in Chapter 2

(repeated here as figure 4, for convenience), the set of

C:

N

,/’~“\

s \
/ \
As [
| K: /

\ /

N p

references retrieved is a set XK U N; the user will

decide which belong to K (known to be relevant) and
which to N (known to be not relevant). The success of
the search depends upon the extent to which K meets the
searcher's expectations (4). It is important to notice
that as soon as the man has made a decision, the
"uncertainty" that we introduced to discuss the problem
of totally delegated searching disappears (i.e. K< A
and NN A = g).

Our aim, now, is to produce a mechanical aid to
decision making, or problem solving, for the particular
task of bibliographic searching. The decisions that the
searcher wishes to make concern documents. The program
developed here shows him references to documents, one
at a time, and invites him to assess their relevance: in
other words the sets K and N are specified by enumeration.
The search should be efficient, in that the user should
not have to consign many references to the set N; and at
the same time it should promote awareness of what exists
by permitting browsing among document surrogates (or

ideally the documents themselves).

1. Dialogues for reference retrieval

Few scientists rely on a single source to provide
all the information they need in their work. Among the
nost efficient and most frequently used sources is
consultation with colleagues or subject specialists. In
the course of such a conversation, some information will
be exchanged - facts, opinions, and so on - and very often

a few references to literature on the topic. Menzel has

written quite extensively on the role of personal

communication in science (e.g. Menzel,1967). Regarded

as a reference retrieval device, a subject expert is

usually very precise. The process of ret:ieval by an

expert has been studied by Olney(1962), who divides it
into three steps:
"1) interpreting the request as a statement of some
kind of problem;
2§ thinkipg up posgible solutions to that problem;
3 selecting certain documents as relevant
according to the contribution which information
contained therein is likely to make to the more
promising of these solutions." - pio0.
Olney very optimistically thought that a large biblio-
graphic retrieval system could be built on this basis.
No mechanical subject expert has emerged so far. However,
Olney's paper draws attention to an important aspect of
dialogue which is generally missing from "man-machine
dialogues", on the machine's side, at any rate. Each
participant in a cénversation tries to construct a model
of the other's interest, in terms of his own view of the
world. This is the basis of the first step, above, and
it is the conceptual basis of the program, Thomas,
described in this and the next chapter. Our machine's
world-model is very simple, and cannot be used, by the
machine, for problem solving. It is a set of document
references embedded in a verbalrcontext; the details
will Follow a little later.
The objectives of the program are to build a model,
which must be defined in terms of its "knowledge", to
show the man parts of it, and to use his reactions to

bring the model into closer resemblance with the man's

current interest., A set of functions with some suitable,

corresponding commands is the traditional approach to
designing interactive computer software, but for this
program it seems inappropriate. Firstly, although the
knowledge structure that we have given our program is
straightforward in principle, it is potentially very
large. If its full richness is to be used effectively,

we cannot put its'ménipulation under the direct control

of the man; that would require huge feats of memory on
“his part. Secondly, we wish to build a program which is
of use to the searcher who cannot specify what, precisely,
he wants and would, thus find it difficult to issue
commands. Actually, we have stated the view that, in
general, it is not possible for a user to specify exactly,
in advance, the attributes of relevant documents. For this
reason, the user of program Thomas does not formulate‘a
query.

The searcher starts by mentioning one or more points
of interest - a subject, a document title, or an author.
The program locates corresponding points in its
"knowledge" of the literature and forms the initial model
of the user's interest. The contents and various prop-
erties of the model are then used to determine a response
to the user: the program usually tries to show him a
Freference together with some words and phrases descriptive
of the document's subject matter. In his reaction, the
searcher may assess the relevance of the document,
indicate aspects of the description in which he is
particularly interested, or not interested, and introduce
new words. Thomas uses his assessment and any other .

inputs to update its model, and the cycle is repeated.

We shall go into the goals which the program tries to
achieve, and its methods in a later section of this
chapter.

From the user's viewpoint, a dialogue with Thomas
is a browse through a collection of document surrogates,
in which he may take whatever, and as much, initiative as
he wishes. The subjects covered by the collection are
seen by the searcher through their use in describing

individual documents.

2. lodelling the user's interest

Our program creates and continuously adjusts a model
of the area of intérest of the enquirer. The model is
constructed out of parts of the program's stored data
~about the literature. We do not consider in this thesis
techniques for incorporating new information into the
data base as a by-product of dialogues: this is not a
learning program, though that might be a fruitful next
step. A detailed description of the program is contained
in Chapters 4 and 5. In this chapter, we shall try to
give a view of the program from a higher level, so that
reasons for the various design decisions can be seen.

Let us start with the "data base", which is the program's

knowledge of the literature.

2.1 The knowledge base

We are not attempting, here, to make any contribution
to the art of indexing, or document description, so we
adopt the familiar pattern of associating index terms and

author's names with document references, and index terms

'

with each other. If we think of documents, subject

descriptors and authors as being points in space, the
association between two entities is a line joining the
corresponding points, to signify that they are, in some
sense, close. In principle, we need not restrict our-
selves to associating document and author, document and
subject, and subject and subject. We know from experience
in conventional manual literature searching that
document-document, author-author and author-subject
associations are all useful, and would be valuable assets
in the machine's data base. HNeither should we necessarily
restrict our consideration to documents, subjects and
authors: corporate bodies and projects have their place
in our knowledge of the literature of a field.
Associations between entities or ideas are themselves

classifiable into various types, as are the associations

between words or other symbols. Semanticists, philosophers,

psychologists, computational linguists and librarians have

all discussed the nature of the associations, but we shall

side-step the issue, and say that two symbols are associat=d

without trying to define the type of relationship that
exists between them. This is acceptable in our retrieval
methods, just as it was in L.B.Doyle's proposal, because
"instead of depending on his [the user's] imagination to
think up a search request, he is depending on his

recognition of semantic relationships." (Doyle,1961,p577).

Whitehall(1974) has described a successful manually
maintained, growing thesaurus for an industrial research
library. Associations between terms are plentiful, but

it is left to the user to decide on the nature of the

relationships.

The program's "knowledge" is in the form of a network
with labels on its nodes. Those that are associated are
Joined by lines. The important labels ar references to
documents, .8

"Medullary carcinoma of the thyroid gland. A
clinicopathologic study of 40 cases." Gordon et al,

Cancer,él,pp915—24,Apr.73.

Other labels are names of authors, e.g.

P.R.Gordon
and subject terms, e.g.

thyroid neoplasms
We treat names just like subjects in manipulations of the
network. The relationship of a name to a document may be
that of "authorship" or "editorship", for example, and we
may think of a subject being related to a document by
"aboutness"; however, the program knows nothing of the
types of these relationships.,

In the discussions and desciptions which follow, it
would be useful to have a small example network for
illustrative purposes. Unfortunately,even for very small
collections of references (20—30), the network is extremely
difficult to draw: firstly, because if it is to be at all
useful, it should be well connected, and one is then
confronted with a figure resembling a seriously malformed
spider's web; secondly, the labels on the nodes are long,
and must be listed separately from the nodes themselves,
thus making the associations difficult to appreciate at a
glance. UNevertheless, we shall describe a small collection

in sufficient detail for manipulation later.

"Ref.2

Ref.?3

Ref .4

Ref.5

Ref,.6

Ref.7

Ref.8

Ref.9

Ref.10

Example collection: "IR collection"

15 references from volume 16, 1973, of the

Communications of the ACM. Indexing derived from

that published with the papers.

"On Harrison's substring testing technique"”
A .Bookstein.
string, substring, hashing

information storage

(&3 4

and retrieval

"Some approaches to best-match file searching"
W.A.Burkhard, R.i.Keller.

matching, file organization, file searching,
heuristics, best match

"On the problem of communicating complex
information" D.Pager.

complex information, information, communication,
mathematics, proof, language

"Hierarchical storage in information retrieval"”
J.Salasin.

information storage and retrieval, hierarchical
storage

"Optimum data base reorganization points"
B.Shneiderman.

data base, reorganization, files, information
storage and retrieval

"A note on information organization and storage"
J.C.HEuang.

data base, data base management, information
storage and retrieval, information structure, file
organization, storage allocation, tree, graph

"A generaligzation of AVIL trees" C.C.Foster.

AVL, trees, balanced trees, information storage and
retrieval _

"Evaluation and selection of file organization - a
model and system" A.F.Cardenas.

file organization performance, file organization
model, secondary index organization, simulation,
data base, access time, storage requirement, data
base analysis, data management

"Design of tree structures for efficient querying"
R.G.Casey.
tree, information storage and retrieval, clustering,
searching, data structure, data management, query
ansvering

"General performance analysis of key-to-address
transformation methods using an abstract file
concept" V.Y.Lum. '

hashing

[)

key-to-address transformation, random
access, scatter storage, information storage and
retrieval, hashing analysis

"Comment on Brent's scatter storage algorithm"
J.A,Feldman, J.R.Low.

hashing, information storage and rcirieval, scatter .
storage, searching, symbol table

"A data definition and mapping language" E.H.Sibley,
R.W.Taylor.

data definition language, data structure, data base
management, file transliation

"The reallocation of hash-coded tables" C
reallocation, dynamic storage, hashing, sca
storage

. Bays.
tter

"A note on when to chain overflow iteus with a
direct-access table" C.Bays.

hashing, open hashing, chaining, information
storage and retrieval, collision

"Reducing the retrieval time of scatter storage
techniques”" R.P.Erent.

address calculation, content addressing, file
searching, hashing, linear probing, linear quotient
method, scatter storage, searching, symbol table

Index term list, with associations

There follows an alphabetical 1list of the terms used ‘

to index the IR collection. Iost are linked to one
or more of the above references, and to other index
terms. The latter associations were made arbtitrar-

ily (but, it is hoped, sensibly) by the present

AUWN-2O0C OIS WNN -

L NI NI WU Qe 8

author,

Term no. Term Assoc.refs Assoc.terns
access time 8 21,29
address calculation 15 9,34
AVL trees 7 55
balanced trees 7 55
best match 2 38
chaining 14 8,17
clustering 9 22,25
collision 14 6,26,36
content addressing 15 2
communication 3 33,35
complex information 3 30 :
data base 5,6,8 13,14,24
data base analysis 8 12,51 .
data base '

management 6,12 12,15

Term no.

Term

15

16
17
18

® 19

20
21

22
23
24
25
26

27
28
29

30
31

32

33
34

® T
37

38
39
40
41
42
43
- 44
45
46
47
48

49
50
51
52
53
54
55

data definition
language

data management

data structure

dynariic storage

file organization

file organization
model

file organization
performance

file searching

file translation

files

graph

hashing

hashing analysis

heuristics

hierarchical
storage

information

information
storage and
retrieval

information
structure

information system

key~to-address
transformation

language

linear probing

linear quotient
method

matching

mathematics

open hashing

proof

query answering

random access

reallocation

reorganization

scatter storage

searching

secondary index
organization

sirulation

storage allocation

storage requirement

string

substring

symbol table

tree

It can be seen that there are

Lssoc.refs

bssoc.terms

_L._L\),]_\
vl v O

~

S =200 ® O =20 = 20w 2NN
«- O WO

Y
Y
Y

N

6,9

14,23

45

6,19,32,52,55

44,50

17,20,21,24,29,
43

19,39,49

1,19,51
T1,34,47

8,27,54,40

26
47

1,55
11,33

33,42

17
10, 30,31

2,22,26,46
10
8,38, 40

46
5+36,47,52
20, 41
26,36

39

31

19,46
18,50

16
34,377,453
22,28,38

20

18,44,51
13%,21,50
17,38,53

52

24
3,4,17,25,29

many different types of

association between terms, and no attempt has been made to

distinguish them.

(iii) "IR collection": reference table

For convenience we list the documents with their

descriptions, referring to the table of index terms, .
by number (the symbols appearing in this table are

used in the later diagrammatic representations of

graphs):
Doc.no. Author(s) Term nos
1 Bookstein 26,3%1,52,53
2 Burkhard, Keller 5,19,22,28,38
3 Pager 10,11,30,35,39,41
4 Salasin 29,31
5 Shneiderman 12,24,31,45
6 Huang 12,14,19,25,31,32,50,55
7 Foster 3,4,31
8 Cardenas 1,12,13,16,20,21,48,49,51
9 Casey 7,16,17,31,42,47,55
10 Lum 26,27,31,34,43,46
11 Feldman, Low 26,31,46,47,54
12 Sibley, Taylor 14,15,17,23
13 Bays 18,26,44,46
14 Bays 6’8’26’31’4’0
15 Brent 2,9,22,26,36,37,46,47,54

(iv) A collection-induced clustering of "IR collection"

We use the method given by Jardine & van Rijsbergen(1971)
to generate a hierarchy of clusters of documents. The
authors are regarded as index terms fdr this purpose.

The principles of the method are explained in Chapter 2,

section 2.3.

"TR collection”:

Similarity between documents is strongest inside the
inner-most ring, i.e. documents 11 and 15 are the

"closest", and becomes weaker as we move outwards. The
advantage of this type of clustering is that it forms the
basis for an arrangement, in storage, of document references
which can be used efficiently if one is content to limit
the search to one, or a very small nuniber (van Rijsbergen,
1974) of clusters. Van Rijsbergen claims that this is
reasonable for collections in which the "Cluster Hypothesis"
holds, Simply stated, this hypothesis is that documents
which are relevant to the same query tend to have similar
descriptions. This is a statistical phenomenon, which is
more pronounced in some collections than in others

(van Rijsbergen & Sparck Jones,1973). The design of the
program Thomas makes use of such general properties; but

it also takes account of the inevitable deviations, and

we consider that this is an important feature of it. W¥e
shall discuss this last point again in the next section,
and the example near the end of the chapter (section 4)
illustrates it.

(v) M"IR collection": part of the association graph

Figure 5 is part of the network in the neighbourhood of
the seven documents, numbered 1,2,10,11,13,14 and 15,
Documents 1,10,11,13,14 and 15 have been chosen because
they are close to one another in the clustering given'
above; it can be seen from figure 5 that each of them is
within a path length of 2 lines from all the others.
Document number 2, on the other hand, is separated from
the others in the hierarchical clustering. It's minimum

"jistances" from the other document nodes in the

Burkhard ° Keller

Fizgure 5. In this representation of part of the
network, the dark sguares stand for
document nodes.

(sub)network shown are

2,1) : 3 lines,
2,10; : 3 lines,
2,11 : % lines,
2,13) 4 lines,
2,14; : 4 lines, and
2,15 : 2 lines.
Document 2 is related to the others in a way that is not

apparent in the description-induced clustering, but which
can be found by a suitable search in the network. This
is a very simple example of the sort of situation which

Thomas can handle,

2,2 Retrieval by association

Retrieval by program Thomas is associative. The user
indicates which labels interest him, and further labels
(particularly references) are selected for his inspection
from among those reachable by paths of assoclation from
the interesting ones. There are distinctions to be drawn
between methods of the type proposed here, and the uses of
association reviewed in Chapter 2, section 2.3. On the
one hand, it has been suggested (Bush,1945) that
associative links between items should be recorded in a
machine to form “"trails". As noted in Chapter 2, several
computer-based systems have been inspired by the
hypothetical "memex", as Bush called it. Treu(1970)
describes such a system in detail: trails are given names
for easy recall, and a recorded item may be placed in
several trails. Retrieval is guided by the user, who tells
the machine where to start and which trail to follow. He
is shown item after item, can backtrack, and may select
alternative trails. Similar facilities have been incorp-

Arated into a few text editors (Engelbart et al 1973,

van Dam & Rice 1970), so that the "on-line writer" may
hop about his text, not constrained to think of it as

sequential. The search is directed entirely by the user,

and that is probably quite reasonable because, in these '
systems, he, or a close colleague, was the one to set up

the trails. In a bibliographic network, the choice of

trails available to him would be bewildering. What our

program does is roughly equivalent to following many

short trails in parallel, and, basing its decision on

whatever hints the user has supplied, picking one of them

to show him. The program has ways of blocking trails

which the user does not like, and can retrieve material
on many different trails.,

Other uses of association in retrieval are based on
statistical properties of the assignment of index terms

to documents (Stevens et al,1965). A brief account of

this area has been given in Chapter 2. Associations ‘
between items are calculated, using a statistic which
measures their tendency to co-occur. Retrieval strategies

which use links formed in this way generally use only

strong associations: although the occasional wezk link

leads to important references, more often a great deal of
irrelevant material would be retrieved. In the inter-
active search, the situation is different. A user can
increase the importance of a tenuous association if he
wishes. Statistically derivable associations of the types
used by Jardine & van Rijsbergen(1971) to cluster documents,
or by Sparck Jones(1971) to produce classes of keywords are

obtainable from the network structure used by Thomas. We

do not, however, work them out and record them explicitly

in the network: it is more useful to insert what we
referred to as "semantic" links in section 2.3 of Chapter
2. The network used for trials of Thomas was obtained
from a file of bibliographic records, which supplied
document, author and subject nodes, &and subject~document
and author-document links. Subject-subject links were
derived from a conventional thesaurus (ignoring the
hierarchical direction of the links). Details can be

found in section 2 of Chapter 7.

2.3 Model of context

The principle component of the program's model of
the user's interest is called the "context graph". A
simplified description of it would be that it contains
nodes from the complete network (corresponding to items of
various types - documents, authors, subjects) known to be
of interest to the searcher, and a selection of nodes
associated with those. Where two nodes in the context
graph are joined by a line in the network, that line is
inherited by the context graph. Nodes known not to be of
interest are excluded. The second essential part of the
model is thus a list of all the nodes which are known not
to be of interest.

The goal of the program is to make the "context
graph" a fruitful representation of the context of the
user's enguiry. In other words, it should include the
references which will satisfy him, and should have a
structure which facilitates the selection of those
references. The two components of the model that we have

ot amed ea far — the context zraph and the set of

unwanted nodes - can be regarded, at any stage in the
dialogue, as the current interpretation of the user's
area of interest. liany of the program's heuristics

require information about the history of the dialogue,

and various sets of nodes and numerical values are

considered to te parts of the model and maintained for
this purpose. We shall introduce them as we need them
in this chapter. Chapter 4, section 2 contains a more

formal description of the model.

3. Creation and maintenance of the model

It would be as well to explain our use of the word
"heuristic", in view of its common association with
artificial intelligence studies and problem solving
programs. Ve do not claim that Thomas solves problems or

is in any way intelligent: it is the human user who must

exercise his intelligence. Workers in machine intelligence .
describe a wide variety of programs as heuristic. Precise
definitions of the term are hard to come by. Eroadly
speaking, it is applied to procedures which are based on
the programmer's knowledge and common sense, but which are
not guaranteed to complete, successfully, their assigned
tasks (see, for example, Simon 1965, Minsky 1968, Science
Research Council 1973). Often a program will contain more
than one heuristic procedure for the same task - if the
first fails, the next is tried, and so on. There are two
main reasons for using heuristics: firstly, it‘may be that
no deterministic algorithm is known for the required task;

secondly, all known, complete solutions may be far too ‘

expensive.,

The one solution to the reference retrieval problem
which is sure to work is to present the whole collection

to every enguirer, regardless of the query, and let him

select the relevant documents., This is quite clearly a
ridiculous approach, but we should remember that any
more practical system, i.e. one which performs a prelim-
inary selection or sorting, must employ heuristic proc-
edures, because we do not know how a man makes relevance
judgements. A feature of heuristic solutions is that it
is usually not possible to characterize them as right or
wrong; we can only make comparisons and state that one
method performs better than another in certain respects.
Some of the heuristics used by Thomas, to influence the
state of its model and to respond to the searcher, have
undergone several modifications and could, no doubt, be
further improved. Ve beleive, however, that they perform

sufficiently well to illustrate a viable approach fo

handling bibliographic data for information retrieval.

3.1 Using the model

Assuming that the program has formed a context
graph like the one shown in figure 6, how should a
reference be selected from it for consideration by the
user? Document nodes (from "IR collection") are repres-—
ented by black squares. The document nodes vary in
their involvement in the context graph. Some, such as
6, 9, 14, are on the periphery: most of their neighbours
in the complete network are not in the context graph. It
) seems sensible to use a measure of the involvement in
®

choosing a reference. The other factor which we should

|on

Burkhard
—0

OKeller

Figure 6. A context graph

consider is the degree of correspondence between the model

and the user's interest. To gezuge this, the program must ‘
observe the reactions of the user to what has already been
shown to him. If the recent performance* of the program

has been poor, according to the user, some special correct-
ive action should be taken; but first we deal with the

case where the program isbperforming reasonably well.

When we are prepared to accept that the context graph
is a good representation of the field of enquiry, the
program usually chooses the reference with the highest
involvement in the model. Involvement of a node is
measured by counting the number of nodes adjacent to it in
the context graph, and dividing by the number of such

nodes in the full network. Here are the values for each

¥ see Chapter 4, section 3.2.1

document node in the graph of figure 6:

Reference Involvement
number measure
2 1.0
1 o4
11 286
13 o2
14 167
10 +143
9 *125
6 111
The user would be shown reference 2 - "Some approaches 1o

best-match file searching" by Durkhard & Xeller - unless
he had already seen it earlier in the dialogue. To be
precise, one should say that the program picks the most
highly involved node which has not already been displayed,
if such a node exists. This choice is intended to achieve
the short-term goal of giving the searcher a relevant
reference. If the reference selected proves to be of no
interest, there are, at least, good prospects of being
able to reduce the size of the context graph, because
several nodes on display are in the context graph and nmag
be eliminated as a result of the user's negative response.
A searcher who is collecting references during 2a
dialogue with a computer is unlikely to want a large
nuiber of them. This provides us with a motivation for
trying to keep the context graph small. We take what
opportunity we can to delete nodes, and place limitations
on the incorporation of new nodes. At various times, the
context graph is inadequate as a source of relevant
references, and more nodes must be added if the dialogue

is to continue. The user may take the initiative by

spontaneously supplying a new subject term or author's
name, for instance, but we should not rely on his abiilty
to do that. The program will encourage growth of the
context graph in the vicinity of nodes which are known
to be of interest. References are not usually displayed
more than once in a dialogue; but if the program's
performance is unsatisfactory, or if the context graph
contains no further document nodes, a reference in which
the user has previously shown interest will be chosen and
displayed again. In this case, the user is reminded that
he has already seen the reference and is asked to
reconsider it. We know that a searcher's criteria for
judging the relevance of documents and the usefulness of
subject terms are affected by the course of a search, so
his response to the second occurrence of the reference
may bring about a significant change in the context graph.
If no reference is available for review, he will be shown
a subject or name which he has entered or previously
selected, together with all associated subjects or names.
These actions on the part of the program seem to te the
natural way to promote "course correcticn”, and their
effectiveness will now depend upon the use made cf the
man's responses to the displays. Ve discuss this in
sections 3.2 and 3.3.

Returning to figure 6 for an example, let us suppose
that the searcher has, at an earlier stage, approved
refcrence 2, but that the dialogue is not proceeding so

well now. The program displays reference 2 again.

Please reconsider this document:

Some approaches to best-match file searching.;
Burkhard et a1, CACH 16, 1973.

1. W.A.Burkhard, 2. R.lM.Keller, 3. best match, 4. file
organization, 5. file searching, 6. heu:s.stics,

7. matching

Whereas up to this point, the search may have been
concentrated on the aspects represented by '"best match",
"heuristics" and "matching" (term nos 5, 28 and 38 in
figure 6), the user may now consider it more profitable
to look into "file organization" (term number 19). The
effect of indicating this to the program is that several
new subject nodes (such as "data structure", "file organ-
ization model", "files", "random access") and associated
document nodes will be brought into the context graph,
which will become much denser in the region of subject
node 19.
We have mentioned two kinds of inadequacy in the
model of the user's interest:
(i) The context graph contains no document nodes that
the user has not seen,

(ii) There is an ill-defined lack of correspondence
between the model and the query, as revealed oy
poor performgnce in the dialogue. The context
graph contains too many nodes which are not of
interest.

There is a third state of the model which we regard as
unsatisfactory:

(iii) The context graph is not connected; that is, it

contains pairs of points which are not reachable

85

from each other by any path within ithe context
graph.

It is assumed that the user is not ettempting to conduct
two or more totally unconnected searches at the same time. .
What is usually referred to as a "multi-aspect search"
arises when the enquirer wishes to establish, or find, a
link between ideas, or when he cannot express the concept
that he has in mind in a single phrase, recognizable by
the retrieval system. If our program can find a set of
nodes in the network which form a bridge between otherwise
unconnected parts of the context graph, these could lead
to the retrieval of important references. Ve shall come
back to this topic in section 3.3, and in Chapter 4,
section %.2.5, where a method for attemwpting to establish
bridges is discussed. Here, we consider the selection of
a docunent node for display, in the situation where the
context graph is not connected. | .

A document node with a high involvement in the model
would be "central" to just one of the connected components
of the context graph, and we would expect it to be releve~
to one aspect of the query, though not necessarily to be
very useful in solving the searcher's underiying problem.
At the other extreme, a document node having very low
involvement is likely to be non-relevant. In Thomas, we
opt, rather arbitrarily perhaps, for the reference witih
involvement closest to the average for all the unseen
references in the context graph. The user may recognize
a term which reduces, or even closes the gap between

components.

4s an example, consider again figure 6, and suppose

that subject node 52 ("string") and document node 11 have
been rejected. The new context graph is shown in figure 7.
In addition, we assume that references 1 and 2 have been
displayed already. The two aspects of the acdel might be

represented by the title of document 2 and index term 26;

{on

Burkhard

Keller

2

component a component b

Figure T

namely, "Some approaches to best-metch file searching" and
"hashing". The references which are candidates for the

next display, with their involvemen®t measures, are:

" Reference Involvemenf
number measure
13 o2

14 167
10 +143
9 +125
6 +111
average 149

c..’,-
(o]
ct

The reference with involvement closest he average is

number 10, in component a. Two of its associated subject

8}

nodes (34 and 43) are also adjacent to subject nodes in

component b, Term 34 ("key-to-address transformation") is .

linked to term 22 ("file searching"), and term 43 ("random
access") is linked to term 19 ("file organization"). If
neither of the terms 34 or 43 were acceptable to the user,
these routes between the components would be blocked and

attempts would be made to find another.

3.1.1 Document similarity

When a user judges a reference to be relevant, there
are two obvious, sensible approaches to selecting the next
reference, Firstly, we might say that the model is a
good representation of the area of interest, and make
another selection based on involvement, as described

above. Secondly, we might assume that van Rijstergen's

Cluster Hypothesis holds, and find the document most
similar, in terms of associated subject nodes, to the on=
just displayed, regardless of the context graph. The
second method may select a reference which is not in thse

model. The program Thomas is capable of either procedure,

or a mixture of the two.

The similarity measure finally used for the second
method is the latest of a sequence of trial functions.
It takes account of the searcher's expressed interests
and, in a crude way, the usefulness (specificity) of
index terms. The measure is given formally in Chapter 4,

section 3.%.2. It is based on the extent +to which

documents share associated subject terms. Greater weight .

0o

is given to subjects which have been entered by the user,
or selected by him from displays. Terms which he has
rejected, but are nevertheless associated with the

relevant document, are disregarded. Initially, no account
was taken of the frequency of use of the terms in describ-.
ing the collection (the term postings). A small number

of very highly posted terms nade nonsense of the similarity
measure, however, and they are ignored by the final version
of the similarity function unless explicitly mentioned by

the user. The test collection for this project was derived

from ledlars data, originally prepared at the USA Nationzl
Library of liedicine. The indexers for that system consider

a small number of common medical words, called check tags,

for application to every document. A complete list of the
check tags occurring in the test collection is given in
‘ Chapter 7, section 2. It includes, among others, HUNMAN,
MAIE, ¥PERALE, CHILD and ANINMAL EXPERINENTS.
Should we, then, use the normal procedure for picking
a document node from the context graph, when the user has
approved the last reference displayed; or should we use
the similarity function? The main disadvantage of a
similarity function of this type, for our purposes, is thaw
it takes nc account of the associations between terms.
Information about the nature of associations is not
recorded in the data base, but in the context of a partic-
ular search, a user may treat two terms as exact equival-
ents. The similarity measure ignores this possibility.
On the other hand, similarity between documents will often

. be registered on the basis of terms to which the user is

indifferent. If these terms are the only contributors to

the measure, we should not expect the "similar" documenv
to be relevant, unless the value were particulerly high.
This suggests that we should only choose the document
most similar to the one last displayed if the similarity
measure exceeds a certain threshold. Otherwise, we pick
a document node from the context graph. The formal
definition of the procedure is given in section 3.3%.2 of
Chapter 4.

If the similarity threshold is zero, the similarity
function will always be used after a judgement ci
npelevant" by the user; 1if it is (effectively) infinite,
the similarity function will never be used. Experiments,
like those described in Chapter 7, sections 4 and 5, in
which the threshold was varied from one extreme to the
other, indicate that the overall performance of the
system varies only slightly with threshold value; neither
extrene gave the best performance obtained. (The differ-
ences in performance are not statistically gignificant).

To first try the similarity function, find that no

document is similar enough to the one previously displayct,

and then use the node involvement measure to choose a
document, is ra&her an expensive procedure. ¥e could
remove the application of a similarity measure altogether
without significantly degrading the retrieval effective-

ness of the program.

3.2 Displays and messages

-

We have aimed for a very simple form of dialogue.
The user's statements to the program are of one basic

form, which is designed to be the vehicle for his response

to a displayed reference. In other circumstances, when no
reference has been shown to him, a degenerate form of tne
statement is appropriate. The syntax of the user's
statement has received little attention, and is very
simple.

A message from the user is analyzed into three types
of information, any or all of which may be absent. If he
has been shown a reference, he may wish to say whether he
is interested in it. He may alsc wish to single out
certain aspects of the document description as teing of
particular interest, or definitely not of interest.
Finally, he may have thought of a new term, author or titie

which may lead to further useful references. The display

format of selected references is geared to these reguire-

ments. The label on the document node comes first, consist:

ing of its title and information ﬁeeded by the user to find
the full document. This is followed by the lahels of all
the personal name and subject nodes associated with the
document. They are numbered in the display so that the
user may casily refer to them. Let us illustrate this
with an example from "IR collection”. Reference 1 would

be aisplayed like this:

On Harrison's subsiring testing technique.; Eookstein,
G,L‘.CI}‘.: 1 ':7, 1973.)

1. L.Bookstein, 2., hashing, 3. information storage and
retrieval, 4. string, 5. substring

Some responses that the user may make to this are as

follows:

(1)

(ii)

(iii)

(iv)

(v)

(viii)

Yes, Harrison

No

No, 4

‘string matching',

'patterns'

Coinraes

.
I-

He is interested; we shalil assume
that all the numbered items are

of interest.

He is interested in the reference,
and particularly in "hashing". Ve
make no assumptions about the
other numbered items.

He jis interested in the document,
and presumably all thc :umbered
items; and a new name is intro-
duced, suggested to him by the
title.

The reference is not relevant;
none of the numbered items are of
interest.

He is not interested

ence, but "string® looks promising:
the other items are assumed to te
of no interest.
The reference is relevant; part-
icularly intercsted in author
Dookstein; "hashing” is of no
interest.
He is making no comment about the
reference, but is interested in
"string" and "substring".

He makes no comment about the

reference or the numbered

items, but introduces two new .

92

terms.

(ix) [null message} The user makes no comment; he is
indecisive and presumably wishes
to see what Qill come up next.

The program's interpretation of the user's message 1is
given precisely in Chapter 4, section 3.1. It should be
pointed out here that assumptions in the "comments"
column concerning numbered items which the user does not
mention are simplifications, and are in fact modified by
information which he has given earlier in the dizlogue.

If, instead of displaying a reference, the program
displays a group of subject terms, the responses "yes"
and "no" are inappropriate, but otherwise the same
statement form can te used. There are occasions when
nothing has been displayed: (i) at the beginning of the
dialogue, (ii) when 211 heuristics for selecting nodes
for display have failed, and the program is forced to ask
the user to take the initiative. The user must then
supply one or more new names or terms; relevance judge-
ments have no meaning.

4 point to notice about the displays is that nodes
which have previously been rejected by the user arc not
bvarred from appearing among the numbered items. The
reason for this is our uncertainty of the status of these
nodes. A user may say that the term "hashing" represents
an aspect of a document which does not interest him.
Nevertheless, there may be, in the collection, a useful
document which touches upon the topic of hashing,
incidentally so far as this user is concerned. Just as we

cannot be certain that if a document is indexed by a

particular term then it is relevant, sc, couslly, we
cannot be certain that the presence of any particular

term implies that a document is not relevent. In fact, it

is not at a2all unusual for a searcher to discover that a .
term, hitherto dismissed, is a useful hook for fishing

out relevant references.

3.3 liodifying the model

Throughout this discussion, it should be remembered
that the "deductions" that we can make from the user's
messages are never very strong. We must be prepared for
the user to change his mind. If growth of the context
graph is inhibited in some region, it should not be too
difficult to break through if the user appears to contra-
dict his earlier statements. The assumptions made about
the user's interests, as given above, are usea to compile
three sets of nodes (in the main network). Firstly, there ‘
may be explicit, textual requests in his statement, and
the nodes with corresponding labels are found (éetails
of this process are given in Chapter 5, sections 1.1 and
1.2). The second set contains all the noces, represented
in the last display, in which he is assumecd to De interest-
ed, and the third set all those nodes in which, it is
presured, he is not interested. Not every item in the
previous display is necessarily contained in one of these
cets: there may be some, concerning which no assumption
should be rade. The sample responses listed in the section
above illustrate cases of this type. #e shall refer to the

sets as "regquested", "selected" and "rejected" nodes resp-

ectively. ‘ .

QA

The rejected nodes are used to determine where the
context graph shall be "pruned", and where future growth
shall be inhibited. Even nodes previously requested or

‘ selected may be removed from the context foaph: the user
nust state, explicitly, that he is no longer interested
in them. The removal of a node from the context graph
brings about the removal of all lines incident with it.
Thus, the context graph may become unconnected. TFigure
8 is a particular context graph derived from the "IR
collection". The document node most "involved" is
number 10, so it is displayed with all its neighbours

in the complete network:

General performance analysis of key-to-addéress
transformation methods using an abstract file

concept.; Ium, CACH, 16, 1973.

1. V.Y.Lum, 2. heshing, 3. hashing analysis,

4. information storage and retrieval, 5. key-to-address
transformation, 6. random access, 7. scatter storage

ac

There follows a table of correspondences between dispisy

identification numbers and subject node numbers:

display no. subject node no.

26
27
31
34
43
46

~ A\ PN N

It can be seen that some of the items in the display
(1, 4 and 7) are not in the context graph. Let us suppose
that, in response to the display, the user typeo:

not 2,4
It is assumed that he is not interested in subject nodes
26 and 31; no assumption can be made about the document
node (10) or any other associated node. Subject‘node 26
is removed from the context graph, which becomes
unconnected (figure 9). The other rejected subject node

(31) is not in the context graph, but the program will

remember that it has been rejected and will not allow it
to join the context graph at any later stage, unless the
user subsequently requests or selects it, i.e. changes
his mind.

145 44

-
Wl

400

Nodes celected from the display bty the user will be
added to the context graph, if they are not already
contained in it. If their use had previously been inhibited,
it would no longer be so. As with nodes -orresponding to

. the user's textual requests, selected nodes are given
special status for use in future manipulations of the
context graph, choices of nodes for display, and interpret-
ations of the user's responses. In addition to the actual
nodes selected, which are subject and author nodes, the
program incorporates in the context graph any document node

- which is associated with a selected node and which is not

already in the model. Now, this rule needs qualificatiocn.

It was found that the "check tags" (see section 3.1.1)

once more caused trouble. If a check tag is selected, and

all its associated document nodes brought into the contex
graph, the model becomes very large and much of its bulk

is irrelevant. lisny documents are linked to several checi

tags, and could have a high involvement measure within the
context graph purely on the basis of the check tags. The
brogran, therefore, only incorporates in the context gr:

document nodes associated with selected nodes which are

3

not check tags. We should make it clear that check tag
ncdes may occur in the context graph and be taken into
consideration when calculating the involvement of document
nodes. They are not, however, used to bring new documents
into the model.
The action taken with requested nodes is similar.

The nodes themselves are included in the context graph,
and so are all non-inhibited nodes, whatever their type,

which are associated with those among them that zre not

97

check tags. I1If, for example, the reguest is for

"searching", the nodes incorporated in the context graph

j ¥

n

®

(from "IR collection") would be document »-des 9, 11
15, and subject nodes "file searching"(22), "heuristics"
(28), "matching"(38) and "searching"(47). A result of

the method of handling requested check tags is that if

the user's initial regquest is for one of these wvery highly
posted terms, then the program responds in very wmuch the
came way as a man would - it will not attempt tn refer to
the literature until & more specific request has been
made. Suppose, for instance, that "information storage
and retrieval" is a check tag: it is the most highly
posted term in "IR collection". If the user types just
that term, the context graph created is simply the single

node:

31

Since there are no document nodes to choose from, Thomas
will try to stimulate the user to give more topics of

interest, with the désplay:

Consicder these subjects:

1. information storage and retrieval, 2. information
system, 3. guery answering

S

When the searcher's statement has been interpreted
and used to influence the model, the context graph is

checked for connectedness. e héve already argued the

case for itrying to maintain a connected context graph
(section 3.1). ZEefore selecting a reference for display,
the prograem attempts to Join up the connected components
of the context graph, if there are more thun one cf them,
by incorporating new nodes fromn the network data base.
The method used by Thomas is described in section 3.2.5
of Chapter 4. Eefore any attempt is made to find paths
between components (en expensive process), the context
graph is examined with the object of discarding very
small components of no particular interest., Thoze are
defined to be components of less than three nodes, none
of which have been requested or selected by the user.
Such components are usually separated from the main body
of the context graph when rejected nodes are deleted. In
figure 9, two small components have been formed in just
this way. If subject 44 ("reallocation") has been request-
. ed or selected by the user, but 40 ("open hashing") has
not, the context graph would be reduced to that shown in
figure 10. Reference nunber 10 has been displayed, and

subject nodes 26 and 31 are inhibited Irom joining the

context graph.

44

—‘.’ Figure 10.

99

The next step is to find a short path between the two
components. The path length 1is restricted to two lineg in
our program; firstly to 1imit the amount of computation
needed, and secondly to ensure a high 1lik: . hood of creat-
ing a useful bridge. The procedure employed starts by
finding, for each component, the set of nodes adjacent to
the non-check tags in the component, excluding inhibited
nodes, and nodes already in the component. For the two
components in figure 10, the sets are:

{Bays, 18, 46, 50}
and {iwm, Bremt, 9, 19, 22, 31, 36, 37, 46, 47, 54} .

The numbers are all subject node numbers. These sets are
intersected, and an element chosen from the meet, giving
preference to document nodes. This element forms the
bridge between the two components: it is associated with
at least one node in each. Note that when there are more
than two components to join together, it is not necessary
to find a bridge tetween each pair. In our example the
bridge must be subject node 46. This is added to the
context graph in the .same way as selected nodes are, i.e

accompanied by associated document nodes:

44

100

in

=

The document node most involved in the context srap
figure 11 (after 10, which has already been displayed) is

no. 13, so the next display will be:

The reallocation of hash-coded tables.: Eays, CACH, 16,
1973.

1. C.Bays, 2. dynamic storage, 3. hashing, 4. realloc-
ation, 5., scatter storage

4. A search (example)

We conclude this account with an example, using "IR
collection". Any search in such a small collection is
bound to appear artificial, or contrived. ©On the other
hand, one can follow the processes easily. We add a little
more information to the specification of the data base:
the two most frequently posted terms ("hashinzg" and
"information storage and retrieval") are designated check

tags.

The search is for documents which may have = bearing

1

on technigues for inexact wmatching of data., Let us sajy

Dt

that the user will judge documents 1 and 2 to be relevant,

m

<

A glance at the collection-induced dlustering given in
section 2.1 will show that these two documents are quite
widely separated, and that a retrieval technique based o
that clustering would not be satisfactory for this search.
In fact, the two document descriptions have no subject
terms or authors in common. The search which féllows lacks
realism largely because so many terms are associated with

only one document.

i
|
?
|

User:

"inexact string matching!'

Thomas:

Do you mean string?

User:

Thomas:

The program has not been able to find a better
phrase, and the user accepts 'string' as an
aspect of his enquiry.

Yes

Initial context graph is the star surrounding
subject node 52 ('string'). Iiote that the
aspects "inexact" and "matching" are not yet

known by the program as being of interest.

17

The most highly "involvea" document node is
chosen for display. (It is luck that in this

case it is a relevant one),

On Harrison's substring testing technique.;
Bookstein, CACHM, 16, 1973,

1. A.Bookstein, 2. hashing, 3. information
storage and retrieval, 4. string, 5. substring

User:

Thomas:

Yes

£11 numbered items in the display are added %o
the context graph. No new document nodes are
added, because subjects 26 and 31 (2 and 3 in the
display) are check tags, and the other items are ‘

only linked to document 1.

User:

Thomas:

Bookstein

1
53 L=

——0 26

31

38

The program looks for a document (in the whole
collection) similar to no.1 - and fails.

There is no other document in the context graph,
so the program suggests subjects adjacent to 52

('string'):

Consider these subjects:

1. string, 2. data structure, 3. matching,
4, substring

2,3,4 He is interested in all

of them.
Subject nodes 17, 38 and 53 (2, 3, 4 in the diso” wy)
are added to the context graph with their associa™.’

document nodes:

Bookstein

User:

Thomas:

Involvement nmeasures of undisplayed document
nodes are:

doc.9 «25

doc.12 *167

doc.?2 143

Document 9 represents the data structure aspect

of the topic.

Design of tree structures for efficient querying.;
Casey, CACH, 16, 1973.

1. R.G.Casey, 2. clustering, 3. data management,
4, data structure, 5. information storage and
retrieval, 6. query answering, 7. searching,

8. tree

7,8 He is non-committal abousx
the reference; 'searching'
and 'tree' could lead to
references.

Subject nodes 47 and 55 (7 and 8 in the display)

are added to the context graph with associated

document nodes:

Bookxstein

User:

Thomas:

Involvenent measures of undisplaycd docunent

nodes are:

doc.11 429
doc.6 2222
doc.15 2

doc.12 167
doec.2 143

Wow we follow up the hashing aspect of document

no. 1, with document no. 11:

Comment on Brent's scatter storage algorithm.;
Feldman, et al, CACi, 16, 1973.

1, JJA.FeTdman, 2. J.R.Low, 3. hashing,

4, information storage and retrieval, 5. scatter
storage, 6. searching, 7. symbol table

(Note that, although 'hashing' and 'information
storage and retrieval' have contributed to the
selection of this reference, as check tags they
played no part in bringing it into the model)

No

Document node 11 and subject nodes 2¢& and 31 are
removed from the context graprh. Use of the
following nodes will be inhibited: doc.11, names

Feldman and Iow, subjects 26,31,46,54.

Bookstein

Involvement measures:

doc.12 «167

doc.?2 *143

doc.6 111

doc.15 1
Hote how the hashing aspect has cubsided. e
return to data structuring with document no. 12:
A data definition and mapping language.; Sibley,
et al, CACH, 16, 1973.
T, E.H.Sibley, 2. R.W.Taylor, 3. data base
management, 4. data definition language, 5. data

structure, 6. file translation

o
w
0]
=

Thomas:

No The only topic of
interest is 'data
structure', and he hes
already indicated that.
Document node 12 is removed from the context
graph. Use of the following nodes will be
inhibited: doc.12, nzices Sibley and Taylor,

subjects 14,15,23.

Bookstein

Involvement measures:

doc.? 1473
dOC.6 '111
doc.15 +1

Some approaches to best-match file searching.;
Burkhard, et al, CACk, 16, 1973.

1. W.4.Burkhard, 2. R.il.Keller, 3. best match,
4., file organization, 5. file sear-hing,

6. heuristices, 7. matching

User: Yes, not 4 This is the second

relevant document.
Thomas: All of the items in the display, except that
numbered 4 (subject node 13), are added to the
context graph, with associated document nocdes.

Subject node 19 is inhitited from further use.

1
5% qu_/_:;f}_ﬂ’—-MOBookstein

Burkhard o

Keller ©

We shall leave the dialogue at this point, and give a
summary of the state of the model by listing the subjects
in the context graph:

53 substring
52 string
17 data structure
55 tree
5 best match
38 matching
47 searching
23 heuristics
22 Tfile searching

and the sutjects whose use is inhibited:
14 data base management

15 data definition language
19 file organization

23 file translation

26 hashing

31 information storage and retrieval
46 scatter storage

54 symbol table

-5, Surmary

YWe have given, in this chapter, a description of a
program, called Thomas, with which a man can conduct a
dialogue, serving to assemble a set of references relevant
to his problem in hand. The philosophy behind the design
of the program has been discussed: the concepts of (i) =
dynamic model of the user's interest, (ii) browsing among
document surrogates rather than through an indexing
language thesaurus, and (iii) thereby doing aweay with
coherent query formulation. The program represents
another approach to the integration of man and mnachine in
one system.

In the next chapter, the rather informal description
given above is complemented by a more precise definition

of the important functions of the program.

ggggter 4

FUNCTICNAL DiESCRIPTION OfF THOILAS

In this chapter, we give a detailed descripticn of
the reference retrieval progran, without giving much
attention to techniques or considerations of implement-
ation. The program has undergone Oone major upheaval and
several minor ones to reach its present state, but very
little will be said about its history. Similarly there are
many ways in which one could tinker with the program, none
of which will be discussed here.

Broadly speaking, there are three components to the
system: (i) the "data base", OT bibliographic file, which
is its stored knowledge of the literature, and is, for the
present experiment, static; (ii) the model of the searcher's
interest, which exists only for the duration of a search
and develops as the dialogue Progresses; (iii) the program,
which uses the data base and the searcher's input to create
and maintain the model, and uses that to select helpful

references.

1. The "data base"

mhe bibliographic data which the program handles shoula
be regarded as being attached to the nodes of an undirected

graph. Let us call this the supergraph, because W€ shall

frequently want to talk about parts of 1t (subgraphs and
subsets of its nodes); it is a labelled graph.

Formally, the supergraph, S, is a triple (N,L,A), in
which:

N = {n1,n2, .o np}, a set of p points,

L = {11,12, PR 10}, a set of p labels, one for
each point in N (i.e. there 1s a function, f,
mapping N onto Lj; f:N-+L),
A = {{n,m} : n,me N and {n,m} is prescribed and n-;fm}, .

. ot of unordored pairs ol diotinet podnto
in N (not necessarily all such pairs) - the
lines of the graph.

We shall be particularly interested in the sets, Si

(1< 1<p), of points adjacent to each point, n,, in W:

Siz{m:{ni,m}EA}, 1{i<p.

1.1 Labels
The labels, 11, 12, etc., are bibliographic. Some
stand for documents, and contain the type of information

which usually occurs in a citation, some consist of the .

names of authors, and others stand for subjects or topics.
In the data base under consideration 211 labels are derived
ffom the bibliographic description of a collection of
documents in the field of medicine and the indexing voecat -~
ulary associated with that (i.edical Subject Headings fronm
L.EDLARS and synonyms from the lledusa system).

A label is structured data, or, in traditional term-
inology, a record. There are three types of ldbel,
distinguished by a type indication; they are as follows:

Type 1 (author label): contains a name (usually a

surname) and initials.

Type 2 (document label): contains the title (a

phrase), a reference to the document's .

location in, e.g., a journal (a character

string), and the "citation nuwnber" cf the
record in the I'EDLARS file from which the label
was derived (an integer).

Type 3 (subject label): contains a termn or phrase.
With the exception of the citation number, all the cosponents
of the various labels are character strings of arbitrary
length.

As bibliographic records go, our "labels" are exceed-
ingly simple. Library cataloguing methods typically
distinguish 50 "fields", from which an individual record
riay have a selection of some 20. The supreme exanple of
complexity in record design in this area is surely the
1IARC (Egchine Readable gataloguing) record developed by the
Library of Congress and the British National Bibliography
(Gorman & Linford,1971). Fut that record structure was
intended for an indefiritely large number of zpplications,
and the label we are discussing is not. There are no more
types of label nor subdivisions of data within labels than
are required by the program.

Some examples of labels:

(i) author labels:
(name:"Hewetson", initials:"J¥"),
(name:"Schulte~Holthausen", initials:"H").
(ii) document labels:

(title:"Distinct projections to the red nucleus from
the dentate and interposed nuclei in the monkey",
reference:"Flumnerfelt et 21,Brain Res,50,408-14,

28 Feb 73",

citation number:144189),

(title:"<Systemic venous Insufiiciency. £ new and
rare syndrome)®,

reference:"Groen et gl,Phlebologie,25,399—406,
Oct-Dec 72",

citation nunber:143603). .
The angle-brackets in the second example indicate
that the title is a translation from a language other
than English.

(iii) subject labels:
"hemagglutination inhibition tests",
"rabbits",

"brain injuries, acute".

The way in which the collection of labels present in the

experimental supergraph were chosen and obtained is described

in section 2 of Chapter 7.

The mapping f:i—+1L mentioned above can be regarded ’ j
as the "accessing function". The points n, are "addrecses™ ‘
|

which the function f uses to access the labels 1i'

1.2 Lines in the supergraph

Ls the definition of A, above, implies, any distincﬁ
pair of points may be associsted. There is no reference to
the label set, L, and it should be noted, in particular
that there is no restriction on the combinations of types
of points that are linked (the typé of a point is the type
of the label attached to it). In the experiment, certain
combinations happen to be absent, e.g. author-subject,
but this should be regarded as a quirk in the data

conveniently available for constructing the supergraph. ‘ 1

Unlike a point, a line hes no label attached to it.

Figure 12 is a pictorial image of some of the neighbourhood
of a document node in the supergraph used for the
experiments. Points ond lines have their .vious
representations. It should be remarked that a relatively
sparse part of the supergraph was chosen for this figure,
and even then ruthless pruning was necessary to produce a
readily assimilable figure. 12 distinct points adjacent to
those in the figure have been omitted (inciuding all with

author labels).

2. The model

The supergraph described above is the program's entire
"ynowledge" of the literature which a user may pPeETruse. A
model of an enquirer's interest develored by the program
nust be in terms of that "knowledge": something which 1is
derivabrle from it, and which can Le used to determine what,
in the data base, should be shown to the user. In addition,
it must be such as can be modified to reflect information
gained from the user's responses. e shall now list thr
coaponents of the model; further details on how they are
meintained will be given later when the programn's operatiocn
is described. The definitions which follow are in termss oI
the supergraph S = (N,L,A) - see section 1, atove.

(i) context graph. This is an unlabelled subgraph of oo

It is the maximal subgraph induced by a subset of
the points in S. Formally, the context graph is a

.7

pair of sets Gy = (NC,AC), where Ny €N and

AC = {{n,m}: {n,m}e&A and n4H1€NC}. In other words,

ST S8 D4

(i) document labels (title parts only):

2

DO: "<Design of an evaluation gquestionnaire for ped-
jatric nursing students)>"

D1: "Toward defining the end product of medical
education"

D2: "Reliability and validity of subjective evaluation
of baccalaureate program nursing students"

D3: "Introduction of concepts of measurement and
statistics to sophomore nursing students"

T4: "Ouality-of-care asseseqent: choesing a method for
peer review"

D5; "RBvaluation of the American board of pediatrics
oral examination by cendidates after completing it"

(ii) subject labels:

51:"Bducation measurement"” §7:"Psychology"

g2:"Faculty, nursing" s8:"Judgement”
53:"Students, nursing" S9:"Problem solving"
S4:"Curriculum" S10:"TLducation, medical"
85:"Evaluation studies" $11:"Education, nursing,
paccalaureate"
S6:i"achievewent” 512:"Education, medicel,
undergraduate"

Figure 12. The neighbourhood of a document node (DO) in ‘
the supergraph. (See text).

(i)

(11i)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

4

the context 5raphvcontains some suboet of the points
in the supergraph, together with all the lines

which connect those points in the supergraph. A
change to the context graph can be o, zcified =imply
by giving the set of points to be edded to, or
removed from it:; the lines to be added or removed
can be deduced.

unity. A truth value indicating whether the context
graph is connected, or not.

—_ T

explicit reguests. This is a set NEL,n 0]

b4

points

either matching the user's expression of his interecst
(see cection 3.2.4) or selected by him from displays.

inhibit list. A set HN;c N of points explicitly or

I

implicitly (by heuristics given below) rejected by
the ucer. “hen points are teing ~dded to the context®
graph, those belonging to NI ere inhitited.

last selected. & set of points NLCZN selected by

the user (sometimes implicitly) from the last
display.

good documents. This is a set of points with

document labels, DGCZN, which have been displayca
to the user and elicited explicit aperoval from him.

accepted documents. 4 sget of document points,

D, €N, which have been displayed, and about which
e user has been non-committal.

reviewed nodes. There are occasions when the program

chooses to display a node for the second time for
the user's reconsideration. The set, NR, of
re-displayed nodes 1is maintained by the program.

performance. A number reflecting the history of the

user's reactions to the program's cheices of vwhat
to show him.

At the beginning of a search, 211 the sets in the model

are made eumpty. The following relationships between the .

sets are then maintained:

NNl = @

Ny Ng (and hence N N Np = ?)
r 8 _

L\LHNI = ¢

DGf\NI = ¢

1 Y —

D, NY; = ¢

DN Dy =9

In other words, none of the points in the inhibit list ave
also in the context graph, all explicit requests ere in the
context graph, and the inhibit 1list, last selected, good

documents and accepted documents are rmatually disjoint sets
of points. ‘

3. Program function

The reader is reminded that this chapter is not
concerned with implementation details, but rather to giv-
a reasonably comprehensive andcrstandine of the program's
design. Decisions made during the design were made on the
tasis of such factors as the results and experience of
others as reported in the 1iterature, feasibility of
effective implementation, and common Sense (which still

=)

jo

[0}
(¢3)

s to have a significant role to play in this subject).
Some of the features which govern the effectiveness of the

system have been perameterized for convenient adjustment

in experiments. The program Was designed from the top,

downwards, i.e. Dy progressive refinement, and this

description will follow the program struciure through the
top few levels.

There is very little to say about the top-most level

4y

of the program: it opens the disk files containing the data
tase and calls upon the topic search procedure as nany
times as the user requires. We move straight on to the

topic search procedure (an Algol-like notation is used for

the description of algorithms):

procedure TOPIC_SEARCH;
begin SET_UP isODEL;
repeat LiPAOVE 1.CDroL
until USER_SATISFIED

end.

At the beginning of each search, all the sets in the model
are made empty by SBET_UP_KODEL. The program is saying, in
effect, "I know nothing about this user's interest". The
structure of, and terminology used in the above procedure
indicate the nature of the goals which the program tries

to achieve ~ to improve its model, and thus, eventually, to

ot

get the user to express satvisfaction. 0Oa= mighﬁrsaj thsa
it is incidental to the main goal of IKPROVE EODEL that it
shows the user references to the literature. The user's
reactions to those references are instrumental in improving
the model. “I.PROVZ FODEL" is not always a very truthful
latel for tne process it stands for, for a variety of
reasons. If, for example, a user has seen all that the
data bsse has on his interest, then either the model cannct

be improved or, if it can, there is no purpose in doing so.

The sooner the user realises this and expresses

nsatisfaction"”, the better. In this case, alot depends on

the user's confidence in the system, but there is a feature

which prompts him (without compulsion) tc =top the search.
Here, then, is the high-level definition of

IMPROVE HMODEL:

procedure IL.PROVE_MODEL;

begin message m;

m:=GET USER_IESSAGE;
INFLUENCE STATE_OF MODEL(m);
RESPOND_TC_USER(m)

end.

We describe the three processes invoked by IMPROVE MODEL in

the next three sections (3.1, 3.2 and 3.3).

3.1 The user's statement: GET USER MESSAGE

The function-procedure GET_USER NESSAGE is cf type
message. Chapter 6 (sections 2.1, 2.2) explains the use

such type names for data structures in the development ci

the program. The value returned by the procecdurs is

81

representation of the user's statement, interpreted as a

H
4]

-sponse tc whati the program last displayed. (The proc-

M

dure is responsible for reading the statement). We must
anticipate the sectvion on RESPOND_T0_USER, and say what

the coxponents of a display are. Normally the program will
display a reference using the label of a document node,
followed by a numbered list of all the nodes adjacent to

it. For example:

“isleading tests for glycosuria.; Felduan 2t al,
ILsncet,1,1246,2 Jun 73

J..Felduwan, 2, F.L.Lebovitz, 3. false negative
a)

1.
reactions, 4. glycosuria, 5. human, 6. metheds

Sometimes the reference part of the display is absent; the
display may be a collection of related subjects. Occasion-
ally, there is neither reference nor numbered 1list (e.g. at
the start of a dialogue).
The user's statement may be an instruction to stop
the search, or it may give any of the following information:
(1) & relevance judgement on the reference siown (YES or
NO),

(ii) An indication of what aspects he likes (or dislikes),
using the numbers in the display,

(iii) One or more phrases or names related to his interest.
A1l parts if the statement are optional; in fact the user
may make a null statement.

A message structure, m, produced by GET USER _[iESSAGE
has four parts:

(i) reaction(m). This takes one of four values, which
we shall denote STOP, YES, NO and NONE. If the
value iz STOP, the other three parts of m do not
appiy, otherwise i£ corresponds to the user's
relevance judgement (NONE means that he did not give
onej.,

(i1) selectﬂlist(m). A set of points which the user has
explicitly or implicitly (see below) selected from
the previous display.

(iii) reject_ list(m). A set of points which the user has
explicitly or implicitly rejected, from the previous

display.

(iv) request list(m). A list of items derived from the
textual requests in the user's statement, siructured

for searching and matching with node labels in the

supergraph, This is the only part of a message .
which has any meaning at the very beginning of a
topic search.
The values of select list(m) and reject_list(m) are derived
from the last display, the user's statement and certain
aspects of the model. The model is also modified. The
actual algorithm is given below. We use the fcilowing
symbols:

N is the set of points whose labels occur in the

d
nuibered list in the last display,

J = reaction(m),

CcN is the set of points explicitly chosen by the

d
user,

RCN; 1is the set of points explicitly rejected by the
user,
NE is the set of "explicit requests® in the model,
NL is the set "last selected" in the model.
@, v and - denote the empty set, the set union
operator, and the asymmetric set difference

operator, respectively.

The al

Npi= Ny U Cs
C=0 and R=@ and J=YES then C:= N
e

s

<. d;
reject_list(m):= if R#¥ then R

else if J=NO then Ng - (NEtJNL) else P:

{

select_list(m):= if C#@ then C UNL
elgse if J=YES then Nd - R else NL;

It can be seen that certain assumptions are made about ths
user's intention. If he has given an unqualified YES (R
and C both empty), it is assumed that he likes all the
items displayed. It ic assumed that he is still interested
in the items which he chose last time (note that N, is set
at the end, ready for the next application of the algorithm).
If his statement was an ungualified NO, the algorithm
assumes that he would reject all the ifems displayed except
those that he has chosen or explicitly requested earlier in
the dialogue.

Another task performed during the interpretation of
the user's statement is the categorization of the document
node displayed according to the reaction part of the
message. In the following algorithm,

J = reaction(m), having one of the values YES, NO or

NONE,

d 1is the point whose document label has been

displayed,
NC is the set of points in the "context graph",
NI is the "inhibit 1list",
DG is the set of "good documents",
DA is the set of "accepted documents":

case J of

begin
NO: begin Np:= NpU {a};
Nyi= No- {d};
DG:-. DG— {d};
D,:= D,~ {d}

end;
JONE: if d¢D; then D,:= D, U {d};

.

/cont.

YES: begin Dg: DGL){d};
D,:= D,- {d}

end;

end
gL ' ".

3.2 IKFLUENCE STATE OF MODEL

The interpreted and structured statement is now used

to modify the model as follows:
[Boolean stop_requested;]

procedure INFLUSNCE STATE_OF_HODEL(m);

message m;

if reaction(m)=STOP then stop_requested:= true

else begin

COKPUTE_SCORE(reaction(m));

PRUNE_CONTEXT(reject_list(m));
ADD_TO_CONTEXT(select_list(m));
FIND_NODES(request_}ist(m));
UNIFI_CONTEXT_GRAPH

end.

We describe each of the five procedures invoked in turn.

3.201 Monitoring performance: COLPUTE SCORE

COWPUTE_SCORE is responsible for updating the numerical
variable "performance" in the model to take account of the
user's reaction to the last display. The value of
performance is used by RESPOND_TO_USER, under certain .

circumstances, to determine what should be displayed next,

which in turn influences the future states of the model.
Hence, the method of calculating "performance" influences
the program's effectiveness. We want a measure of the
program's success which "remembers" past performance, but
gives greater weight to the recent past. A simple formula
is used, which computes the (n+1)th performance, Poyq?
from the nth value, P, and the success rating of the last
interaction with the user, XJ:

Ppyq = Mpy + Xy

M is a constant, the "memory factor", and should have a
value in the range 0L M« 1. The value of XJ depends upon
the reaction, J, passed to CONPUTE_SCCRE. One set of

values which has been used is

M=%, Xyo = =1, Xyoyg = O» Xygs = +1» Pg = 0o

3.2.2 Kemoving points from the context graph:

PRUNE CONTEXT

The procedure PRUNE CONTEXT deals with the points
which the user is assumed not to like in the last displayv,
i.e. reject_list(m) in message m. As usual,

NC is the set of points in the "context graph",

N is the "inhibit list", and

—t

NE is the set of "explicit requests”.

procedure PRUNE_CONTEXT(rejects);
point set rejects;
begin chz Ny= rejects;

NI:= NIU rejects;

NE:= NE— rejects

end.

Notes: (i) Removal of points from the context graph
implies removal of 1ines incident with them.

(ii) It is possible to remove points from "explicit

requests". Thus a user can change his mind

about what subjects he is interested in.

3,243 Adding points to the context graph:

ADD TO CONTEXT

The procedure given below adds points to the context
graph. It also brings into the context graph document

points adjacent, in the supergraph, to the new points.

procedure ADD_TO_CONTEXT(chosen);
point set chosen;
begin NI:= NI- chosen;

NC:= NCU chosen;

N

N

oi= NgU LINKED DOCUMENTS(chosen)

end.

To define the set that LINKED_DOCUMENTS produces, Wwe firat
recall some notation from section {1 of this chapter. The
supergraph, S = (N,L,A), where N is a set of peints, L the
set of their labels and A is a set of lines. The set of

points adjacent to a point nié N 1is

S; = {m: {ni,m} EA}.

*
ILet C = chosen - NCh’ where NCh is the set of "check tags™"
C is a subset of N, say {nk Dy s e Ny }. The set
1 2 q
+* . -
Check tags are subject points which are ad jacent to .

relatively many document points. They correspond to
terms with high postings in MeSH. See section 3.1.1,
Apanter %. and section 2, Chapter 7.

returned by LINKED DOCUKMENTS consists of all the members

[stk. - HI

. i
1¢1i<q

of the set

whose labels are of type "document".

3.2.4 Incorporating textual requests: FIND NODES

The task of matching a word, phrase or naine suggested
by the user with a node label in the supergraph is fairly
complicated in this program. It is more than simple string
matching. A description of the techniques used will be
found in Chapter 5. Here, we concentrate on the effect
upon the model of such initiative by the user. In the
expression of FIND NODES that follows, we use the usual

notation for components of the model, namely N_, for the

E
"explicit requests" set, NI for the "inhibit 1list" and_NC
for the set of points in the "context graph". The process
denoted by LOCATE NODES produces the set of points matching
the requests. This set may be empty, or it may contain
more than one match for some of the requests. The function
STARS occurring in FIND_ NODES, bélow, is very similar to
LINKED DOCUMENTS (see section 3.2.3%), but there is noA

restriction as to the type of points that are included in

the result.

procedure FIND NODES(requests);

query list requests;

begin point set P;

P:= LOCATE NODES(requests);

NE:= NEUP;

NI:= NI- P;

=
]

(WgV P) U STARS(P)

end.

Not only are the located points included in the context
graph, but also all the non-inhibited, non—hcheck tag"

points adjacent to them in the supergraph.

3,2.5 ZEstablishing coherence: UNIFY CONTEXT GRAPH

Wwhen the context graph has been modified, points
added and removed, UNIFY CONTEXT GRAPH is executed to find
out if the context graph is connected (i.e. in one piece),
and if not to atteﬁpt to join the separate components by
adding a few appropriate points from the supergraph. 1f,
when it is done, the context graph is connected, the

Boolean variable Yunity" in the model will be true, other- ‘

wise it will be false. In the procedure, GC is the context

graph and lKl denotes the number of elements in the set K,

procedure UNIFY CONTEXT GRAPH;

begin graph set K;

R:= CONNECTED_COMPONENTS(Gy);
if |R|{1 then unity:=true
glse
begin DISCARD USELESS_COMPONENTS(R);
unity:= if |R|>1 then TRY_JOIN(R) else true
end

end.

The procedure CONNEZCTED COLPONENTS finds all the maximal

connected subgraphs of its argument, G It does this by

o
picking any point, p, in GC and locating all the points,
also in GC’ reachable from p. Those points together with

p form the first component. If there are any points in GC
which were not visited in the search, one of them is chosen
and the process is repeated to produce the next component;
and so on, until all the points in GC have been used. The
result in general is a set of graphs with mutually disjoint
sets of points. If this set has more than one member, we
should like to find paths in the supergraph which join

them together. However, implementation must be considered
at this point. We could use a technique very like that
used to determine the connected components of the context
graph. Think of the points in a component as a wavefront.
Now advance the wavefront by moving along each line which
connects a known point to an unvisited one in the super-
graph. To find a path between two components, advance the
two "wavefronts" alternately until they meet at some point.
Backward links must be recorded everywhere throughout the
process, so that the path can be determined from the
meeting point. (Quillian,1968himplemented this method in
his semantic memory). The process is rather expensive,

and there is a user waiting for a response. Unlike the
context graph, which is stored in fast storage (virtual
memory in our implementation), the supergraph sprawls
across magnetic disk, aﬁd logically adjacent nodes will
often be widely separated in storage.

The procedure given above first tries to reduce the

problem by invoking DISCARD_USELESS_COMPONENTS. Some

critical points (cutpoints) may have been removed from ihe
context graph, isolating small components. If a small

component has no points which are members of NE (explicit

requests) or NL (1last selected), it is deleted from the
context graph, and from the set R. We can adjust the
meaning of "small component": it might mean components with
less than 3 points, for example. These deletions may have
reduced the context graph to a single connected component,
but if that is not the case a gquick attempt is made to join
them by TRY JOIN. If it does not succeed, it returns the
value false and "unity" (in the model) remains false,
therefore.

Going back to the wavefront analogy, each component/
wavefront is advanced one step (from all points in the
component except "check tags" to non-inhibited points in

the supergraph). The new "wavefronts" are intersected in

pairs and single points are chosen from the non-empty
intersections, preference being given to document points.
These points are added to the context graph using
ADD TO_CONTEXT (see section 3.2.3). TRY JOIN never
advances the "wavefronts" more than one step, so the back-
ward chaining referred to above is not needed,

This completesbthe description of the process named

INFLUENCE_STATE OF_MODEL.

5e3 RESPOND TO USER

Now that the user's statement has been used to modify
the model, a suitable response is determined by the program

from the model. The program aims to give the user .

pertinent references. In order to do this it must collect

suitable information from the user. Sometimes it is better
to make a provocative response than to give the "best"
reference from a dubious model.

In this procedure, NC denotes the set of points in the
context graph:

[Boolean’stop_requestedJ
procedure RESPOND_TO_USER(m);

message m;
begin point 4;

if not stop_requested then
begin if NC=¢ then STIMULATE USER
else
if reaction(m)=YES then
begin if last display contained a reference, @
then DISPLAY SIMILAR(d)
else PICK A_DOCUMENT

end

else
if performance is low then REVIE¥_COURSE
else PICK A DOCUKENT

end

end.

In sections 3.3.1 - 3.3.3 we discuss PICK_A_DOCUMENT,
DISPLAY SIMILAR and REVIEW_COURSE. STIMULATE USER 1is a
simple procedure which tries to reintroduce references or

topics in which the user has previously shown interest.

3e3.1 Using the context: PICK A DOCUMENT

Phis procedure for determining what to show the user

is actually invoked more often than the definition of

RESPOND_TO_USER would suggest, because under certain '
circumstances, DISPLAY SIMILAR also calls upon it. It is
the procedure which assumes that the context graph is a
reasonable representation of the area of the user's interest,
and therefore tries to make a sensible choice from the
document nodes contained in it.

In the definition of the procedure, NC is the set of
points in the context graph GC’ and unity is the truth

valued part of the model which indicates whether GC is

connected.

procedure PICK_A DOCUNENT;

begin point set D;

D:= UNSEEN_DOCUMENTS(N,);

if D=@ then SUGGEST_SUBJECTS

else DISPLAY_ DOCUMENT(if unity then HOST_INVOLVED(D)
else AVERAGE_INVOLVED(D))

end,

UNSEEN_DOCUMENTS(NC)‘produces those members of the set

Ny = (DGL)DA) which have document type labels. (DG and D,
are the sets "good documents" and "accepted documents",
respectively. Documents which have been seen and rejected
will be represented in the "inhibit list", NI' We can
forget them because NiI NC = @), SUGGEST_SUBJECTS

I
displays a collection of subjects related to one of the .

user's explicit requests (see section 3.3.3 in this

chapter). The form of display produced by DISFLAY
DOCUMENT has alrcady been described (section 3.1). We come
to the concept of involvement in the context graph, in
order to elaborate 03T _INVOLVED and AVERAGE_INVOLVED.

The connect coefficient of a point, p, in the context grarth,

GC’ is defined to be:

degree of p in GC

degree of p in the supergraph

The degree of a point in a graph is the nuwber of lines in
the graph which are incident with the point. The values
taken by connect coefficients range from zero, for an
isolated point, to 1 for a point all of whose immediate
neighbours in the supergraph are also in the context graph.
We use the connect coefficient to measure the involvement
of points in the model. MOST IWVOLVZD finds the member of
its argument which has the highest connect coefficient,
AVERAGE IKVOLVED finds the point with connect coefficient
closest to the average of the coefficients of all the
members of its argument. It is used when the last attennut
to join up the components of the contexti graph failed, & i
can be regarded as the next heuristic in the effort to
form a connected context graph. By giving the user some-
thing near the periphery (but not soc near that he rejects
it out of hand), we hope for guidance on how to extend the

context graph: TRY JOIN might succeed next time.

3.3.2 DISPLAY SIWILAR

The user has approved of the last reference that was
displayed. Now the program will try to find a document

node "like" it, regardless of the context graph; i.e. it

will be prepared to look anywhere in the zupergraph.

Similarity measures between documents indexed by keywords

have received much attention in the literature, and a

discussion of the topic in relation to our program will be
found in Chapter 3, section 3.1.1. Similarity between
documents is usually taken to mean similarity between their
sets of index terms. Typically, if two documents have
keyword sets X and Y respectively, the extent of their
similarity to each other would be given by

|xny|

Normalizing factor

The normalizing factor is a number which takes into account

the sizes of X and Y, e.g. [X| + [Y].
An equivalent measure in our system would be based on
the sets of points adjacent, in the supergraph, to the two
points whose similarity is to be measured. In fact, the ‘
measure used also takes into account the user's éxpressed
interest and, in a primitive way, the usefulness of the
subject terms as distinguishers between documents.,
We now define the similarity measure between two
points d1 and d2 in the supergraph 8 = {(N,L,4j.
Firstly, d1€N and d'ZEN'

Now let I1 be the set of points adjacent to d and I, te

1’ 2

the set adjacent to d2, i.e.

1 {n: {n,d{}e.A}
12 {n: {n,dz}é A}

Let E = I1r)NE, where NEis the "explicit requests" set in

I

il

the model, ‘
et T =1

- (NILIN hL)E), where NI is the "inhibit list"

1 C

in the model, and NCh is the set of "check tags" (which
are regarded as not very useful for this purpose).
. The similarity function is

«|EnL,] +plrnI,l

sim(d1,d2) =

1|

where o« and p are adjustable constants, which determine the
relative importance given to explicit requests. The
numerator is actually symmetrical with respect to d1 and d2;
it is just expressed in a form that corresponds guite
closely to the way in which the progran works it out. As a
whole, however, the function is not symmetrical because the
denominator (normalizing factor) is not.
To define the action of DISPLAY SIMILAR, we shall use
the same notation as used above. The meaning of UNSEEN _
‘ . DOCUKENTS is as given in section 3.3.1 above. 7 is another

ad justable constant.

procedure DISPLAY_SIMILAR(d1);

point d1;
begin point d,di; point set Dj

D:¥ UNSEENnDOCUMENTS(I1);

if D#P then DISPLAY_DOCUMENT(any de D)

else

begin find die‘UNSEEN_pOCUMENTS(N) for which sim(d1,di)
is maximum;
if sim(d1,di);T then DISPLAY_DOCUMENT(di)
else PICK_A_DOCUKENT

end

end.,

The procedure first looks for documents directly related
to the parameter, d1. If it finds any it picks one for

display, otherwise it finds the document most similar to 4,

and displays that, unless it is not similar enough, in
which case a document is chosen from the context graph.
¥, the "similarity threshold", is used to determine whether

the most similar document is similar enough.

3,%,% REVIEW COURSE

We shall now deal with the action taken by the program .
when its performance fzlls too low. The overall strategy
is as follows:
(i) Look for a reference which the user has already seen
and not rejected, and display it again, asking him to
reconsider it.

(ii) If the search for a suitable document point fails,

show the user one of his explicit requests together
with its adjacent subject nodes.

(iii) If no such point can be found, ask the user to take
the initiative and think of a new term or name.

in the procedures that follow,

D. is the set of "good documents",

G
DA is the set of "accepted documents",
NR is the set of "reviewed nodes", and
NE is the set of "explicit requests®, all in the model.

procedure REVIEW_COURSE;

begin point set D;

ADWIT_FAILURE;

D:= DG - NR;

if D#¢ then RE-DISPLAY (LEAST INVOLVED(D))

else

begin D:= DA - HNpj
if D#¢ then RE-DISPIAY (MOST_INVOLVED(D))
else SUGGEST_ SUBJECTS

end

end.

ADJIT _FAILURE confesses failure to the user; it will,
however, point out that he may have seen enough if he has
approved of a few of the references shown him. The set NR
is used to ensure that nothing is reviewed more than once.
RE-DISPLAY and DISPLAY SUBJECTS (called by SUGGEST_SUEJECTS,
below) each add their argument to NR. If there are "good
documents" to review, we assume that sometime during the
dialogue, the context graph has been allowed to "grow" in
the wrong direction. Therefore, we should give the user
maximum opportunity to indicate new directions: hence the
use of LEAST_INVOLVED when DG - NR is not empty.

procedure SUGGEST_SUBJECTS;

begin point set E;

B:= NE - NR;
if E#@ then DISPLAY SUBJECTS (LEAST_INVOLVED(E))

else tell the user to give a new term or name

DISPLAY SUBJECTS produces a numbered list of subjects for
the user to inspect. The points chosen for the display are

the argument of DISPLAY_SUBJECTS'(if it is a subject point)

and all the subject points adjacent to it. A sample
display (the argument of DISPLAY SUBJECTS has the label

"antibodies"):

1. antibodies, 2.anti-antibodies, 3. autoantibodies, ‘
4. binding sites, antibody, 5. immune serums,
6. insulin antibodies, 7. immunoglobulins,
8. isoantitodies, 9. plant agglutinins
The user can respond to this with the type of statement
outlined in section 3.1, which will be read and inter-
preted by GET_USER_MESSAGE. He may even give a general
judgement (YES or NO) which will be used by the program in

the usual way, except where the last reference displayed

would normally be processed.

3.4 Other features of the program

In a full-scale operational system the interface with

the user would have to be very much more sophisticated

than in our ﬁrototype. We have, however, made three small
concessions to human engineering - the "slate", provision
of help, and automatic printing of hard copy.
Conceptually, the slate is a separate display of
limited capacity, independent of the one used for the main
dialogue. PFor the present, rather than link two real
screens, the independence is simulated using one screen,
and the user can switch to the slate, manipulate it and
switch back to the fifst "screen", at any time., Items
(references, names, subjects) that crop up in the main
dialogue can be recorded onbthe slate purely for the user's
convenience, and no inferences are made by the program

about his area of interest.

Help can be obtained from the program by typing a .

question mark (?). A display appropriate to the area of

dialogue that is being conducted will be shown. The user
presses a button when he is ready to go on.
At the end of each topic search, the contents of the
. slate, and the document labels of all the points in "good
documents" and "accepted documents" are sent to the line

printer.

The above features are for the user's benefit. There
are two more capabilities which are present for experimental
purposes - conversation logging and a model-snapshot routine.
All dialogues with the program are copied to the printer
for later inspection. At any stage in a search a request
can be made to take a snapshot of the model. A numerical
representation of the current state of the model is quickly
copied to a file, and the dialogue can continue. There

will be an indication in the log at the point where a

. snapshot has been taken.
4, Summary

We have given, in this chapter, an abstréct and fairly
detailed description of the bibliographic retrieval systarn.
The important aspects of the program have been described,
but large and complex pieces of program have beenvglossed
over - partiéularly matters of file organization and
searching - because they are not central to the topic of
this thesis. Also, we have said very little about
implementation of the processes described - either about
algorithms or about programming methodology. There have
only been scant hints of justification for the way the

’ program is. All these matters are dealt with in other

chapters (3, 5 and 6). What we have given is a "reference

manual" from which some properties of the program can be
deduced. The set- and graph-theoretic notations and
terminologies are those of Halmos{1960) and Farary(1969),

respectively.

Chapter 5
DATA RECOGNITION AND FILE ORGANIZATION

In most information sysfems, the enquirer must take
the initiative at least once and indicate his area of
interest., In our system, he can do this as little or as
often as he wishes, and the effect that his actions have
is described in Chapter 4. We start now by concentrating
on the way in which textual information (titles, personal
names, subject terms or phrases) typed by the user are
transformed into sets of points in the "supergraph" for
use in maintaining the program's "model" (see Chapter 4,
section 3.2.4).

A statement made by the user at the terminal may
contain several separate pieces of text: they are dealt
with, one after the other, by the program, which constructs
the union of the sets of points whose "labels" (Chapter 4,
section 1.1) match them. We shall limit our consideration
here to the means of matching just one textual request.
Even so, the result may not be simply a single point; thuic
may be severallor, of course, none at all.

. Two features are required of a text (or string)
matching mechanism in the circumstances of an on-line
search., Firstly, it should be helpful; that is it should
accommodate inaccuracies and variants to some extent, so
that it does not turn away a user who cannot supply, for
example, a complete name or a title in exactly the right
form. Secondly, it should work speedily, and this naturally
places limits on how helpful we can make the program in

this respect. There are two reasons, however, why we need

not use all the sophistication of the modern computational
linguist in this problem., ‘the first is the so called "law

of diminishing returns": we can get gquite good algorithms

quite easily, but however large and complex programs become,
there is always yet another special case to deal with. The
second reason stems from the nature of the problems involved
in dealing with the more distant variants (synonyms, for
instance): we are not tackling problems in information
retrieval by vocabulary control or manipulation, but by a
new form of dialogue and representation of the searcher's
interest. However, the problem of inexact string matching
is an important aspect of systems design for non-delegated
searches, 80 we have given it more than passing attention.
Tthe details of the techniques used are given in this
chapter. The file structure supporting these techniques

and the supergraph will also be discussed. ‘ {

1. Matching user's requests in the data base l

Text input from the user's terminal is considered by
the program to be a "stab in the dark", in the sense tho~
the enquirer is not expected to know the exact form of the
names and phrases stored in the system, or to use a
thesaurus. Common reasons for mismatch between what he
types and what is stored are inaccurate spelling, partic-

ularly of names, defective memory of long titles, variant

word order or grammatical form in subject terms.
With the exception of a very few systems which
perform complex linguistic analysis of queries (e.g.
LEADBERIART - Hillman,1973), on-line reference retrieval ‘

systems tend to use exact string‘matching. The help given

to a user who is not sure of the "vocabulary" depends very

much on the file organization already chos:n to facilitate

some other aspect of system design. For example, the

Retrospec 1 system (see Goodliffe & Hayle: “Y'(4), which uses
the "Computers and Control" part of the INSPEC (Information
Services in Physics, Electrotechnology, Computers and
Control) data base, accepts combinations of chéracter
strings (written between quotes) such as
'STRI iG' AND 'LATCHING', |

and scans sections of the file (as requested by the user)
for records which contain the specified combination in the
title or index term fields. The onus is entirely upon the
user to formulate a query which will not miss variants,
such as 'BEST-NATCH SUBSTRING SEARCHING'. Of course, more
complicated matching is possible (in fact, a simple term
weighting scheme is implemented in Retrospec I), but with
large files the sequential search method imposes its own
limitations in the on-line situation. y

A file organization which is particularly effective
for one type of access is often inhospitable to others. =
is, for example, difficult to do inexact matching in a
large ordered index, or a list-based structure. Pre-
processing index entries (e.g. stripping word affixes) and
identically preprocessing queries can be effective.
Alternatively, predictable variant spellings, and even
synonyms, can be included in the vocabulary with references
to the "correct" terms (e.g. Medlars - Barraclough,1972;
and the European Nuclear Documentation Service vocabulary
is reported -~ Vernimb & Steven,1973 - to contain some

60,000 previously detected erroneous spellings). If the

entry vocabulary is contained in an cxdered index (desigred,

the user the ability to scan alphabetical neighbours. In

the Ledusa system (see Chapter 2, section ?.4.1), for

example, the command

LIST DIAB&ET
will cause all terms beginning with the characters 'DIABET'
to be displayed:

DIABETES BRONZE

DIASETES FRAGILE

*

DIARETIC ACIDOSIS

DIABETIC RETINOPATHY
(It is a facility which is rarely used in practice).

Rickman & Walden(1973) have descrited an interesting (and

efficient) file structure for on-line thesaurus searching,

but even there no attempt is made to make inexact matches.

Variations on these theimes are numerous and we shall
not cover them exhaustively here. The one further class
of techniques which we should mention is that of correcting
misspellings by measuring the similarity of an object wor~
with each mgpber of a vocabulary and picking the most
gimilar (Alberga 1967, Blair 1960, lorgan 1970). The prims
motivation for this work has been to produce operating
systems and compilers which are reasonably insensitive to
spelling errors (Wagner,1974). These techniques are,
however, unsuitable for very large vocabularies, and
although Szanser(1973%) has tackled the size problem, it is
doubtful that this approach would be very productive in

the bibliographic search environment in view of the nature

of the more troublesome inaccuracies.

147

1.1 Partitioning the bibliographic labels

Now we come to the technique used for text matching in
the present syste;. ks records ("latels") are added to the
data base ("supergraph®), they are organize: into disjoint
partitions according to certain lexical features. This
organization is overlayed upon the supergraph, but is
independent of it - two members of a partition may or may
not be neighbours in the supergraph. One way of visualizing
the whole structure is depicted in figure 13. The
partitions have names, or codes, denoted in the figure by
P1, P2, «+«+ 3 Which are derived from labels by the compress-
ion algorithms described in the next few pages. These
algorithms are designed to produce a single code for many
of the variants of a piece of text. The so0lid, square
nodes, in the figure, act as the "centres" of partitions.
Each circular (supergraph) node is attached, by a broken

line, to exactly one square node; the partition named Pi is

the set of points adjacent to the point labelled Pi' When

a new point's label is compressed, the partition bearing
that name is sought. I1If it is found, the new point is
added to it (by drawing a new broken line, in the pictorial
analogy), otherwise a new partition is crrated (in the
“picture, a new square joined to the new circle).

Incoming textual requests are processed by the same
algorithms as handled the labels before them, and a part-
ition is thus identified and searched for & best match.
There is a resemblance between this method and conventional
scatter storage cf records in multiple entry buckets

' (Buchholz,1963). However, whereas most "randomizing"

functions will place otherwise unrelated records in the

Key (i) author labels: Aj

(ii) document labels: Dy
(iii) subject labels: S

(iv) partition names: Py
Notes (i) The partition named Pi is the set of points
adjacent to the point labelled P, (i.e.
joined to it by broken lines).
(ii) If the solid, square nodes and the broken

lines (incident with them, without exception)

are deleted the supergraph remains.

Figure 13. Partitions overlayed on the supergraph.

same bucket, we require one which collects together latels
which look similar. Another point of difference is that
our partitions are not fixed capacity "stores", but
arbitrarily sized scts of records. Once a point has been
located in response to a textual request, the partitions
can be forgotten - the square nodes and the broken lines
in figure 13 can be ignored - for they are not used in
subsequent supergraph manipulations,

In connection with on-line searching of a library
catalogue, Kilgour and his associates have experimented
with simple truncation of title words with a view to
partitioning the catalogue (Kilgour 1970, ZILong 1972).
Leading non-significant words are removed and subsequent
words truncated to lengths specified in a vector. For
example, a truncation function tased on the vector
(3,1,1,1) creates keys (or partition names) comprising
three letters from the first word and the first letter of
each of the next three words. The partitions are small
(size is roughly hyperbolically distributed; typically 99%
of partitions have less than 10 members in a collection o
100,000 titles), and spelling mistakes have little effect
on searching. On the other hand, word order errors cause
havok, and in general there is not much orthographic
similarity within the partitions.

It was decided to treat proper names differently from
phrases (titles and subject terms) in the present program,
because the types of error people make are different in the
two classes of data. Whichever of the two algorithms is
used, the result is a four-character code, and this,

together with an indication of the type of the original

data (name or phrase), is the name of the partition to
which the label should belong, or which should be searched

for a good match in the case of a query.

1.1.1 Proper name compression

The most famous name compression algorithm is SOUNDEX
(¥right,1960). Its aim is to compress names into short
codes so that those with similar sounds have identical
codes. More recently, an algorithm which outperforms it
was devised by Dolby(1970), and it is the one that we use
here, with minor modification. XNugent(1968) has produced
a review of several methods, but not all will generate
partitions useful for our purpose. Dolby applied his

method to the names in a telephone directory and then

compared the equivalence classes obtained with those given,
manually, by the compilers of the directory, in the form of
see also cross references. The method correctly provided ‘
80% of the man-assigned classes and improperly split only
5¢%%, The same experiment using SOUNDEX resulted in
corresponding proportions of 63-8% and 3%0%. As Dolby pointus
out, these figures are not a direct gauge of performance
with erToneous names, bﬁt he beleives that they provide a
good indication, and this is substantiated by the observ-
ations of Tagliacozzo et al(1970). Seventy-seven errors
collected during a survey were analyzed in some detail and
the letters invelved in the errors listed. The full

context of the errors are not given in the paper, but one

can deduce that 52 (67.5%) of the errors would definitely

not have affected the code produced by Dolby's algorithm. .

Of the remaining 25, some would very likely also have been

inconsequentiai.
Forenawes and initials are not used and the order of
execution of certain steps of the algorithm, which follows,
. is important.
(i) Leading licg, nc, kac or Mag is replaced by Lk.
(ii) The second letter in each occurrence of dt, 1d, nd,
nt, rc, rd, rt, sc, sk, st is removed. This is done

working from the right hand end of the name,

recursively.

Note: the sound of the deleted letter is usually

indistinct in these contexts.

(iii) The following replacements are performed throughout
the name:
x by ks, ce by se, ci by si, cy by sy, ch by sh

when preceded by a consonant, any other ¢ by k,

z by s, wr by r, dg by g, qu by k, ¢ by k, £ by &,

‘ ph by £f.
(iv) If a consonant, excluding 1, n, r, occurs after the
it is removed.
(v) One letter is removed from every doubled consonaiiie.
(vi) pf at the end of the name is repilaced by ps-
pf at the beginning is replaced by f.
(vii) gh at the end of the name is replaced by f if
preceded by a vowel, or by g otherwise;
gh anywhere else is deleted.
(viii) The first two vowel strings are replaced by a vowel
string marker (a single character, represented by the
' _ letter a, which has become free by virtue of this

step); subsequent vowel strings are removed. For

this purpose, a vowel is one of the leiters a, e, 1,
o, u, y and (in all but the first position) w and h.
(ix) The four-character code is obtained: if the name now
has less than 4 characters it is padded with hlanks
on the right; otherwise, the name is truncated to
6 characters and, as long as there are more than 4
characters, vowel string markers are removed, start-
ing with the right-most one. Finally, the name is
truncated to 4 characters if necessary.

The following letters cannot occur in the compressions
of names: x, ¢, 2, 3, %, &, i, 0, u, y. In addition, w and
h can only occur in the first character position, and the
blank may not occur there. So one can have at most
16 X15 X 15 X15 = 54,000 partitions of proper names, which
is adequate for collections of order 100,000 documents.

For larger collections the code might be increased in length
by simply modifying step (ix), above. TFive characters could
generate 810,000 partitions, for instance. Table 1 shows
some examples of partitions and erroneous names which woul:

identify them.

Table 1. Partitions of proper names.

partition matching names’ code
Nilsson B.S. - Nelson NLSN
Nilson K. Nillson
Imuller k. Iiahler IFALR
Muller W. Mueller
ffuller H,. Mallory
Mollard P.
iMiller S.A.
Stieglitz P. Siegleitz SGLD
Sziegoleit W.

/cont.

Kuhn R.A. Cohn KAaNL
Kahn K. Kant
Cohen J.G.
Cohen D.
Cohen G.

Table 1. (concluded)

1.1.2 Phrase compression

Ayres et al(1968) found that, in the special research
library environment, titles are given remarkably accurately
in requests and that most errors either occur after the
first few words or consist of word inversion or the omission
of commonplace words such as 'report' or ‘'outline'. We
treat subject requests and titles identically and, where
appropriate, a partition may contain both document and
subject labels. This means that what was meant by the user
simply as a subject descriptor may best match the title of
a document; and that is beneficial to the operation of thec
system., Ayres' results do not necessarily apply to subjer®
phrases, which tend to be invented rather than recalled Ly
searchers, However, techniques tased on his observations
work reasonably well for subjects mainly because the phraces
are generally short. We één reduce the effect of errors
or variations in.phrases quite simply by removing non-
-significant words and suffixes, leaving a sequence of
presunably meaningful stems. The reliability of the stems
decreases as we go along the sequence, so we only use the
first two. Word order variation is coped with by applying
a symmetric function to the two stems (if there are as

many as two, of course). In describing the phrase

(3]
o

compression aigorithm, we shall make use of two =xaspl
from the medical test collection:

E1: Urbanization and mental health: a reformulation

E2: Apropos of the article: "Systemi: venous .

insufficiency. A new and rare syndrome"

The first step is to select two "significént" words
from the phrase, scanning from the left. A dictionary of
common words is used for this task. The stop list published
in the Science Citation Index was modified to suit the
subject matter of the collection. 657 words airnear in the
dictionary and are of two types: words which are always
discarded from the phrase (145 of these), and words w
are only used if there are insufficient significant words
(i.e. words not in the dictionary). Table 2 shows some of
the dictionary. The words selected from our examples are:

E1: Urbanization, mental

E2: Systemic, venous

Table 2. Sample from the dictionary of common words

These words about, against, and, test, Total i
but, concerning, easy, few,

are always given, have, instead, look, !(dictiorary
make, next, other, samse,

ignored several, that, the, when, 145
with
(also 211 one-character words
words)

These words addendum, affect, apropos, Total in
assumptions, body, cell,

are only used characteristic, clinical, dictionary
conference, definition,

when device, erratum, evaluation, 512
gram, implication,

significant important, introduction, words
measure, medical, optimal,

words are organ, proceedings, guality,
standard, theoretical,

scarce volume '

e

Each selected word is then stripped of its suffixes.
Resnikoff & Dolby (1965 & 1966) have produced two very useful
analyses of znglish affixes and their lists, slightly
modified to suit the subject matter, are used. The licts
for long and short words (measured in this program by
counting vowel strings) are not identical and are given in
Table 3. The largest suffix that can be identified is
removed, and the process is repeated on the remainder of
the word until it has no identifiable suffix. ILet us apply
this to the examples:

Urbanization — Urbaniz — Urban — Urb
mental — ment

Systemic~+»5ystém

venous — Veno

E1: Urb, ment

‘ - E2: System, veno

The "stems" are then abbreviated to four characters,

in such a way as to preserve discrimination between
different word fragments as much as possible. Bourne &
Ford(1961) give several techniques and one has been chc: =~
which, in their experiment, retained discrimination for
98:2% of their vocabulary of 2082 words, Starting with the
second letter, every alternate letter is dropped until cnly
three letters remain. If there are still more than three
letters when the end of the word is reached, the process
is repeated. All the dropped letters are "added" together,
modulo 27, to produce the fourth character of the abbrev-
iation.

. | E1: Urbo, mnte

E2: Ssed, wvnoe

Short-word suffixes (to be removed from 2-vowel-string

words)

-a ~ure -al -0 -let
-ic -ite -el -ar -e1
-ed -ue -ful ~ier -ant
-land ~-ive -uin -ler -itent
-ward ~-e -man -er -ent
-ard -ling -an -or -ot
-ee -ing -en ~is ~OW
-age ~zh -in ~less -ey
-ie ~ish -eon -ness -1y
~ile ~-lock -ion ~us -y
~ine -ock -on ~-at -iz

Long-word suffixes (to be removed from words with more

than 2 vowel-strings)

-ia —-ine -i -ation ~-at
-oma -ure -ical -ion -et
-a ~-ise -eal -on -it
-ic ~0se ~ial -0 -ant
-ed ~ate -al -ar -ient
-o0id ~-ite -el -ular -ment
—-ance -ette -0l —-eer —-ent
—-ence -yte -ful -er -est
-ide -ue ~ism -or -ist
-ee -ive —ium ~-is -ly
-age -ize -um -es8s —-ary
-ie - —-ian ~-eous -ery
-able -ing -an -ious -Ty
-ible -0g -gen -ous -y
~-ile -ish -in -us -iz

the letter s is removed from any complete word from which

no suffix can be removed.

Table 3, Suffix lists for phrase compression.

Finally, regarding the letters in the codes as digits in
the base 27 number system, add the two codes, modulo 274
to obtain one four-character code. This is a symmetric
operation, as required.

E1: HEVE

E2: OFTI

The number of different phrase partitions which can
be named is 274 = 53%1,441. In conclusion, this method of
phrase~compression maintains discrimination between the
expected information-bearing parts, namely the stems of
significant words, and equates phrases which differ only
in the less memorable parts - non-significant words and
suffixes. ZExamples of partitions obtained are given in

Table 4.

Table 4. Partitions of phrases.

partition matching phrases code

Urbanization and mental | Effect of urbanization | HEVE
health: a reformulation | on mental health

(document)

attitude of health attitudes to health IUYN
personnel ' personnel

attitude to health healthy attitudes

Does hemorrhagic shock hemorrhagic shock WS L
damage the lung?
(document)

shock, hemorrhagic.

alkaloids alkaline ALK
alkalinity ,
alkeran %

1.2 The matching process

To summarize the contents of the preceding paragraphs,
the texts of the labels in the system are cbmpressed to
form codes which generate a partitioning of the corresp-
onding points in the supergraph. The matching process
consists of similarly compressing user's text to identify>
a partition, and then finding a satisfactory point within

it. The questions that arise are: which compression

[SR PPN _—
Ve genio

i
¥

procedure should be used? what should be done if
fails?

If a user has enclosed the string in quotation marks,
it is assumed to be a phrase, otherwise ihe initial .
assumption is that it is a name and the program isolates
the surname and forms a string of initials if suitable dat=s
is present. The appropriate compression is performed and a
search made for a partition with the derived identification.

If there is no such partition, a sequence of automatic
re-tries are made:

(i) If the string was assumed to be a proper name, then
it is re-interpreted as a phrase; the user may have
forgotten the quotes.

(i1) If two words were used to form a phrase compression
code, they are tried singly, the first in the phrase,

] and then the second if necessary.

(iii) Pailing the automatic tries, the program invites .
the user to replace that part of his statement. If
he wishes he can simply have that part ignored.

The main disadvantage of the method is that a one-v.: 3
query cannot match a two-word label: for example, ‘carotid!
will not retrieve the partition containing ‘carotid
arteries'. In the reverse situation, this may happen:
'membrane antigens' retrieves no partitions, however
'membrane' does, and the search stops there.\ It might be
better to look for ‘'antigens' so that both aspects of the
topic are represented. As the program stands, the user
would be consulted about the acceptability of ‘'membrane’,

and can explicitly introduce ‘antigens' if he feels the

need,

When a partition is found, the labels are accessed

and ranked according to similarity with the request {the
measufe of similarity is very simple and we shall not go
into it here). If there is one outstanding match, the
corresponding point is selected without troubling the user,
and the matching process is complete. If the choice is
not obvious, the user.is asked to make the decision: he
can accept as many of the displayed labels as he likes,
including none at all., In the latter case the program
behaves just as though no partition had been found and
goes on to the next "automatic re—tryﬁ.
Examples:
(i) User's text: artificial respiration
System action: No quotes, so tries to find name
A.Respiration. No partition found,
S0 re-interprets text as a phrase and
finds a partition confaining
respiration, artificial.
Match is good enough, so the corresp-
onding point is selected.
(ii) User's text: Millen
System action: Partition found containing the names
D.loulin
J.iilin
R.Milin.
No outstanding match, so user is
shown all three and asked to choose.
User: ©Not happy with any of them, rejects all.
System action: Tries 'millen' as phrase without

success and invites user to try a

substitute.
User's new text: MMiller
System action: Partition found containing the names

fuf.MHlleI‘ .

W.duller

H.Muller
P.Nollard
S.A.Miller
No match is good enough (system must be
careful with names), so the user is
shown the list, headed by the best
match, S.A.Miller.
User: Chooses S.A.liller.
Note on response time: operating upon a disk file containing
some 2,500 labels, the program's responses in the above

exchanges are usually instantaneous (on a 360/67 time- ‘

sharing a fairly heavy university workload).

Formally, the result of the matching processes descrived
is a set of points in the supergraph (see Chapter 4, sectin:
1). We must now describe the file structures which supps
thé imuch simpler function f:N—+L, i.e. mapping points cnto
labels; the lines, A, of the supergraph; and the searching

for partitions, given their codes.

2. File organization

It may seem inelegant to talk in terms of files when
we are considering the representation in storage of a
labelled graph. However, we shall continue to use this

terminology simply to serve as a reminder that whatever the .

design philosophy of a small-scale experimental system, the

designer is under some obligation to deronstrate the
feasibility of his methods in an operational environment;
and in reference retrieval that involves large quantities
‘ of data. We have, therefore, chosen to wr .2 a progran
which processes a graph structure stored on magnetic disk
(i.e. in a file), rather than in main memory, even though
the test data occupies a mere 360,000 bytes. In fact, the

program runs under the supervision of the kichigan Terninal

System (MIS) and all file processing is achieved using the
standard data management services provided by that operating
system (i.75,1973).

Corresponding to each point in the supergraph there

is a node record on the disk. What we have, until now,

referred to as a point is the address of a node record in
the file. A set of points is an aggregate of addresses.
The arrangement of such aggregates in storage varies,

‘ depending upon patterns of access to members; consecutive
storage, linked lists and hash tables are all used. To
return to the node record, it consists of two functional
components:

(i) the label -~ see Chapter 4, section 1.1,

(ii) the set of points adjacent to it in the supergraph.
The second component carries the information specifying
the set of lines in the supergraph. It is & redundant
representation because each line is represented twice:
once at each end. In the jargoh of data structuring, the
nodes are doubly linked. However, as is remarked in
Chapter 6, section 2.1, the representation makes for

. efficient processing in this program. The parts of a

node record are contiguous in storage, and there is a

large variation in the size of the records.

Access to the node records is, so far as the file
management software is concerned, "randem". In the course
of the present experiment, the file has re - :ined static .
since the final stage in its creation. Nevertheless, the
design pays attention to the need, in "real life", for
frequent updating. Ve must allow for addition and deletion
of both points and lines, and also for amendment to labels
which may bring about changes in the lengths of records.

For simplicity of programming, one would like to
handle the supergraph in one level of randomly addressable
memory. This can be achieved by building a very large,
paged, virtual menmory (one should think in terms of 100
million bytes for a useful field-oriented document collect-
ion). Virtual storage access methods exist for processing
files on direct access devices such as disks (e.g. Murphy
1972, Organick 1972). Unfortunately, one cannot afford to .
forget that there is a paging mechanism, particuiarly wher
the virtual memory is so large. Firstly, one should take
into account accessing patterns, and secondly, if data
structures in the memory refer to each other, as ours do,
one should take care in the design of record updating-
schemes which shift the position of the record in siorage.
Bobrow & Murphy(1967b) discuss these problems in connection
with their implementation of EBN-LISP. In their case, it
was important to implement the CONS (1ist constructor)
function carefully. Since, in LISP, lists are nearly always
accessed linearly, CONS should extend existing lists within
the same page whenever possible. This policy influences

garbage collection (the periodic amalgamation of free space '

needed in dynamic storage allocation programs). List cells
should not be moved from one page to another because that
would ruin the effect of all the careful COISiructing.
After collection, then, free storage is still distributed
throughout the pages rather than being completely amalgam-
ated. Many of the factors influencing the design of 1list
processing systems for virtual memory are relevant to our
file design, although it has been difficult during the ‘
program's evolution to anticipate the access seguences in
graph processes, so that page swaps can be minimized., Ve
should certainly need to tidy up the storage quite frequent-
ly if the variable-length records were being modified, and
the reorganizations should preferably be truly local in
their influence.

Node records are variable-length regions within large
fixed-length blocks (4096 bytes). They have addresses
which are invariant under storage reorganization within
the block. The composition of a record address is as
follows:

(block number:integer 0..216

._1;

record number:integer 0..255;

record type:integer 0..255)
"Block number" identifies the block within the file (i.e.
the page) containing the record. "“Record number" is a
number allocated serially when the record is added to the
block, "Record type" is the type of the label in the
addressed node record (see Chapter 4, section 1.1): there
are many occasions when it is sufficient to know a record's

type without needing its contents, and this small field

can save a disk access. A record address is packed into

a single couputer word (32 bits). If a record's position

within the block is changed, its address remains the same

and it is therefore not necessary to access all the other
records with pointers to it.

Figure 14 shows the organization of a Dblock and
illustrates the addressing mechanism. Access within the

block is through a two-level index, itself in the block.

block number record number record
PR N type
record
address :

i J
(4 bits) (4 bits)

fixed index (16 entries)

?

entry 1

determines f

block in A 2nd-level index, entry J

needed (16 entries)
record

Figure 14. The record addressing technique,

At retrieval time, the work required to go through the
index is insignificant in comparison to that involved in
finding the block. Blocks are initialized with a fixed

index full of null pointers, and no 2nd-level indexes.

When the first record is stiored, a 2nd-level index is
created whose first element points to the record. The
first entry in the fixed index is set to point to the
newly allocated index. As more records arc added tc the
block, new entries are added to the 2nd-level index until
it is full; then another 2nd-level index is created and &
corresponding entry made invthe fixed index; &and so on.
buring execution of the program, the blocks of the file
are paged into a set of buffers in main memory using the
"least recently used" algorithm for displacing pages.

The format of the addresses gives an upper 1limit on

the file capacity of 216

blocks, each with 256 records,
i.e. 16,777,216 records. For reasons given in section 2.2,
below, not all of these are node records, but at least
half can be, and that would be adequate for a large
bibliographic data base. Of course the present block size
imposes a limitation on the number of records per block,
namely 120 of the smallest possible records; however, the
block size could be increased.

It should be emphasized at this point that short ¢
have been iaken in implementing the system, particularly

in the area of file handling, in order vo speed the

programming task. It is beleived, however, that the
essential principles for a viable design for a very lazgc
file are present. One such short cut is that the record
lengthiis arbitrarily limited by what will fit into a
block, since no provision has been made for overflow from
one block to another.

The almost exclusive reason for the existence of very

large records in this file organization is that a few

nodes will te the centres of large stars in the graph,

5

Y

involving up to 10” nodes. They correspond to ihe heavily

posted terms in a co-ordinate indexing system {where they

also cause problems). At the file organization level, one .
answer is to fragment the record and chain the segnents
together (Carville et al,1971 consider this type of
technique). Increasing the block size mitigates the

problem. At the higher, application level, the solution

may be to prohibit such records, just as indexers might

begin to use a set of more specific terms if i~ wore found
that one had‘become overused.

With the exception of the organization of the partificns
of labels, where access patterns were easily predictable,
little attention has been given to the problem of distrit-~
ution of node records among the blocks with a view to

minimizing the number of page faults (file accesses) during

a search. Techniques exist to form clusters of references

with the main aim of reducing the number of records wrict
should be examined in a search (Jardine & van Rijsbergen
1971, Crouch 1973, Rettemeyer 1972). One might order
dccument node records in the file such that members of the
same cluster occupied neighbouring pages, or ULlocks of the
file. To a large extent, it would be possible to put
subject and name node records in the same region of the
file, because the cluster definitions are all founded on
similarity of descriptor sets associated with the documents.
However, these clusters are collection-induced, and our
point of view is that user-induced clusters are not the

same, though they are clearly similar. The one access '

pattern which has emerged is that of obtaining the records

for points adjacent to one recently accessed.

trying to minimize the sum:

jz: an - By

{n,m}e.A

where, as in Chapter 4, section 1, n and m are points in

the supergraph and A is the set of all lines. Bx is the

block number in the node address corresponding to the point
X. A method for obtaining an arrangement of records which
approximates the optimum might follow the general pattern
suggested by Jardine & van Rijsbergen(1971) for clustering
large collections. One first minimizes the sum over a small,.
carefully selected subset of the nodes, and then stores
successive node records in blocks whose position 1is
optimum so far as the new nodes are concerned., If one had
to add the record for a point adjacent to some set, S5, of
points already filed, one might determine tﬂe block, B, in

which to store the new record by minimizing

Z'B—Bi

iesS

Any algorithm based on this will, of course, be complicated
by having to cater for the possibility that the ideal block,
B, is full. —

It is usually assumed that when access to a file is
"random", a large block size is wasteful of buffer size and
quantity of data transferred. The speculations in the
immediately preceding paragraphs seem to indicate that, on
fhe contrary, for a system of this type, there is a great

deal to be said for large blocks..

2.1 File processing within LTS

MTS (the kichigan Terminal System) is a time-sharing
operating system designed to run on IEN 360 and 370 .
computers (K7$,1973)., It enables the computer to be used
simultaneously by many people operating a variety of
keyboard terminals. Users may create files for their
personal use, and editing facilities are provided. liost
commonly, a user will have a few small files on public
disk volumes containing programs under development,
frequently used data, and so on. The disk units used on
the Hewcastle University machine are IBi 2314's (121, form
A26-3599), which consist of a number of drives (up to 8)
upon which disk volumes can be mounted, interchangably.

A disk volume has a maximum capacity of about 29 million

bytes. The read/write mechanism is of the movable-head
variety. The tracks have a capacity of 7294 bytes, though .
the full capacity is rarely used, because some space 1is

taken by inter-record gaps. There is a track overflow
mechanism, so that records (i.e. physical, as opposed to
logical records) need not be constrained to lie within =

single track.

TS supports two distinct file types - line files and

sequential files (KTS,1973). A line file is an indexed

sequential file in which the keys must be numerical. The
lines, or records, can be of variable length, which may not
exceed 255 bytes. Access, both for reading and writing,

may be either sequential (i.e. in line number order) or

random, by specifying the line number. With the facilities
évailable for handling them in MTS, line files are .

extremely versatile and very convenient to use on-line for

tasks such as program development. This organization is

not so suitable, however, for storing large blocks of data

and implementing a paging algorithm for them. The sequent-
ial file organization provides a better busis. Seguential
files stored on a direct access device, such as a disk, are
processed using a set of pointers, which indicate the
position of the next record to be read, where the next
record should be written and where the end of the file is.
Normally, one would go through the file consecutively end
the pointers would be updated automatically. 2Zut a very
limited form of direct access is possible: at any time,
the values of the pointers can be saved, and then used to
replace the current ones at a later stage. (One is warned
not to calculate the pointer values, so that programs
remain valid when modifications are made to TS file
software).

The test filepis a standard TS sequential file, on =
disk volume, whose records are all 4096 bytes long (that
is our block- or page-size). There are 80 blocks, number:zd
0O - 79, and the relationship between block numbers and {: e
pointers is set up in a table at the beginning of each run,
by scanning the whole file segquentially noting the read
pointer value before each read operation. This implement-
ation has been perfectly adequate for experimental purposes,
tut in a full-scale system a specially designed (but
relatively simple) data management package would be

desirable.

2.2 Partition organization

It will be recalled that a partition is a set of points

whose composition is determined by the code obtained by
compressing their labels., The compression of incoming

labels induces a true partitioning of the points; in other
words, the partitions are mutually disjoint and cover the ‘
whole set of points.

The representation of a partition iﬂ storage is simply
an array of node record addresses contained in a partition
record (see figure 13 in section 1.1 again; there is a
correspondence between partition records and the square
nodeé). Partition records are stored in the fiie that we
have just described, along with the node records; and are
addressed in exactly the same way. As far as possible, it
is arranged that a partition record and the node records to
which it points are all in the same block (here is a case
when we have known the accessing pattern all along). It

now remains to describe the method of finding the partition

record address, given the partition's type (name or phrasé}
and code.

A hash table is used and, since it is potentially very
large, it is held in a disk file and searched from there.
In fact, another kTS sequential file is used, also with
4096 byte records which are paged into main memory. There
is a large literature on hashing, otherwise known as scatter
storage or key-to-address transformation (Xnuth 1973,
pp506~549 and Norris 1068 are good accounts). The technigue
has been used in file organization for some time (Buchholz
1963, Lum 1971), and in bibliographic work it is not
uncommon (kurray 1970, Higgins 1971, Bookstein 1972)., We

shall not include a general discussion of the topic here,

but merely describe the way in which hashing has been used

for seeking partitions.

The search key consists of a type indicator (there are
two possible types, which are represented by 0 and 1) and
four characters from the set {.ggggg and letters A - Z},
which are represented by the numbers 0 - 26. The key is
passed to the hashing function as a 21-bit binary number,
K: 1 bit for the type and four 5-bit numbers for the code.
The hashing function is as follows:

(i) The 21-bit key is squared to give S,
i.e. S4—K2
(ii) Bits O - 19 are combined with bits 20 - 39 to give

a 20-bit virtual hash address, V,

i.e. S 20
V e«<S TaA wod 2
{ ? [220}} (mo)

(£ denotes the exclusive or operation on the binary

‘ . representations of its two operands)
(iii) The least significant n bits of V form the real

hash address, R,

i.e. R+V (mod 2™), ng20
R is used to address a table of 2% entries. The value o-
n can change during the life of a growing file.

L non-empty entry in the hash table contains a virtual
hash address and a partition record address, but notv a copy
of the key. The table is searched for V, starting at entry
R and using a linear scan with increment 1 in cases cf
collision of real hash addresses. The reason for using
this, the sinmplest overflow technique, even with its
clustering problem, is to avoid as much as possible the
éostly crossing of page boundaries in the table. Collisions

of virtual hash addresses are not detected, because the keys

are not recorded in the table (for reasons of storage
economy). The result of the latter type of collision is

that partitions are merged. There is no real loss of

information here since the total contents o©f a partition ‘l
are not indiscriminately selected by the program. iorris
(1968) explains the concept of virtual hash coding: so

long as n is significantly less than 20, the table is
equivalent to a much larger, very lightly loaded table
referenced directly by V, in which collisions should occur
relatively rarely. The reason for using the virtual hashing
idea was the ease with which a table can be doubled in size
without +the need to re-hash the whole file or change the
hashing function (Fays,1973 goes into the problem of extend-
ing hash tables by re-hashing). ‘hen the real table is
loaded beyond acceptable levels (say, more than % full),

the file containing the table is doubled in size and n is

increased by one (thus absorbing a further bit from the
stored virtual hash address into the real address). The
existing entries are redistributed (keys are not needed for
this), and values of R for new entries are found using .=
new value of 2%,

The size chosen for the virtual hash table (220 =
1,048,576 entries) limits the size of the real hash table,
Ultimately, as the number of partitions grows, n will reach
20 and the virtual table will coincide with the real one.
In this case there will be no collisions in the real table;
partitions will simply be merged. The compression

algorithms described earlier in this chapter can produce

54,000 name codes and 531,441 phrase codes; so the key

space has 585,441 elements. We can get an approximate idea

of the extent of partition merging by assuming that the
hashing function assigns the keys to table entries
according to a Poisson distribution, which is reasonable
if the function is a good "randomizer". The probability

that any entry has been assigned k keys is

k

PUGA) = e A
k!

’

where Az Kp, the product of the total nu.ber of keys
assigned, K, and the (uniform) probability, p, that any
particular key will be assigned to any particular entry.
If the table size is N, then p = 1/N, so A = KE/JI. The
probability that a typical entry is empty (k=0) is
P(O;K/H). Now, since K is large (585,441) we can invoke
the Law of Large Numbers and say that the expected number

of unoccupied entries is

N X P(0;K/N) = Ne X/¥
and that the expected number of occupied entries is,
therefore,

N(1 - o K/Ny,
When N = 1,048,576 and X = 585,441, this formula works
out to be close to 449,000. (This does not imply that the

final table size - 220

- is twice as large as it need te,
because the actual number of occupied entries might lie
between 524,288 (219) and 585,441). One can, thus, expect
the partitioning scheme to work for files having order 1O6
node records, and that represents a very large field-
oriented document collection.

We conclude with a few statistics concerning partitions

formed in the test file. Further details and an account of

the test file will be found in Chapter 7, section 2.

(i) Number of node records:

Document type 225

Name type 537
subject type 1905
2667 total

(ii) Number of partitions:
containing 1 node 2375
containing 2 nodes 1%
containing 3 nodes 14
containing 4 nodes 4
containing 5 nodes 2
2506 total

iiote 1. Three partitions (all with two nodes) were
formed "erroneously" by the phrase compression '

algorithm, in that dissimilar phrases generated the

»*
same code:

(Blood volume receptors and ... >
pulmonary diffusing capacity

{morphine

marihuana

{chimpanzees

cephalosporinase

=T

ote 2. Four pairs of partitions (all with one node)

b—

vere merged as a result of collisions in the virtual

The same effect, of course, can cause occasional erron-~
eous matching during a search. One medical user typed
' DEFORMATION' during a trial run, and was asked by the
program if he meant 'MEDIAN RHONLBOID GLOSSITIS'.
Before the present author could explain what had
happened, the user exclaimed that he could see why the

program had chosen that term: median rhomboid glossitis
. L 1 Pttt o~ +he tonoce!l

hash table. One would expect 3:01 merges among 2506
partitions,

(iii) Hash function performance:

. Table sige 4096 (212)
No. of entries 2506
Load factor, « «612 (= 2506/4096)

No. of collisions
(in real table) 734
Distribution of search length, by linear probing,

over all partitions:

no. of no. of keys no. of no. of keysg
probes probes !

1 1772 12 8

2 350 13 2

3 168 14 1

4 82 15 1

5 42 16 2

6 27 17 1

7 15 18 1

o 8 10 19 0

9 13 20 0

10 7 21 i

11 3 over 21 0

All partitions can be located once in a total of
4210 probes; average 1:68 probes per search. In
2506 searches, page boundaries in the table were
crossed 8 times. Knuth(1973, p521) and iorris(i19683)
give equivalent formulae for the theoretical average

search length for successful searches, using linear

1 1
——G +),
2 1 -

where « is the load factor, <612 in our case. The

Probe open hashing:

. value yielded by the formula is 1-79.

3. Summary

We have described the file organization and access
methods which support the interactive reference retrieval
program., The object of implementing an experimental system ‘
in this way has been to ensure that the type of retrieval
dialogue proposed will not break down for want of
techniques for handling involved structures in bulk storage,
which are viable in the on-line situation. No attempt has
been made to review file organization techniques - a topic
which has received a great deal of attention in recent years.
Dodd(1969) has written one of the better tutorial reviews,
while Senko et al(1973) have recently contributed an out-
standing three-part article on the subject. Lefkovitz(1969)
has written a well known text which gives a broad wview of
file design for interactive programs.

The two important features of the file organizetion are

these:

(1) It is possible to reach a pertinent point in the
structure without being able to reproduce, exactly,
the vocabulary of the system. This is done by le: . =z1
partitioning. It is not claimed that the algorithms
are optimal; though they are based on the empirical
results of others. Further experimentation could well
lead to great improvements in performance, but one is
in danger of meeting some of the fundamental problems
of information retrieval, namely those involved in
obtaining matches between mental concepts through the
use of symbols (in our case index terms). We are

concerned at the moment, with only one part of the

system and tackling those problems here would

constitute recursion in the system as a whole.

(i1) The data base is regarded as a paged memory in which
records (or data structures) within nages are the
addressable units, as opposed to the word, byte, or
any other rigid storage cell. In this way storage
management for dynamic data can be efficient.

An important problem that we have not been able to
tackle adequately is that of arranging records to suit the
access patterns. Some suggestions have been made on an
approach to a solution, and significant performance
improvements can probably be made, particularly for present
day high capacity magnetic storage media. Reference
retrieval systems are built for communities of users, and
one should therefore design a data base which can be
accessed efficiently by several users simultaneously. The
construction of a paged, virtual memory as outlined in (ii)
above, but also capable of being shared, is a2 topic that

merits further study.

Chapter 6
ILHPLELRENTATION

1. Programming languages

In this work, we have concentrated on an engineering
approach to reference retrieval, as opposed to a theoretica:x
one. Ideas for the design of an interactive, mechanical
aid to bibliographic searching have been incorporated in an
actual program. ZEven in its illustrative, prototype form,
the program is substantial. It has also undergene extensive
modification in its brief evolution. The previous system
designing experience of the present author, and of many
others, shows plainly that it is only too easy to under-
estimate the size of a'system implementation task. Some
attention was therefore given, at the outset, to the
methodology of program design, and we shall discuss this
aspect of the problem in this chapter. ‘

It is traditional among documentation programmers to
bemoan the fact that there are no really suitable
programming languages, or that the machinery was not
designed with their purposes in mind. Two discussions sf
this topic are given by Salton(1966) and Dolby(1971). If,
however, we regard programming not as the implementation
of existing solutions, but as one means of discocvering
solutions, it is not at all surprising that no satisfactory
special purpose language has emerged. We shall not dwell
long on this question here,

The well-known programming languages are frequently
classified according to the types of application for which ‘

they were designed., Fortran, Algol 60 and the early

o

algorithms: the emphasis was placed upon concise means of

autocodes were intended to be used to specify numerical

writing arithmetic expressions and iterative processes.

. For symbol manipulation, such as is needed in processing

text, COKIT(Yngve,1963) and SNOBOL(Farber et al,1964)
facilitate character string (sequence) handling, and IPL
(Newell,1961) and LISP(licCarthy et al,1962) provide 1list
and tree-structure devices. COBOL is the most commonly
used of all languages and is designed for commercial and
administrative data processing, where the entities of
interest are records and files. These are merely a few of
the languages available; many others have been developed
for more specific application areas: languages used for
writing problem solving programs have recently been
surveyed by Bobrow & Raphsel(1974), for instance.

‘ For experimental information retrieval work, we can
benefit from facilities and means of expression present in
all three of the broad categories of language mentioned
above. IBM's PL/I sets out to combine them all, and it is
expensive to use. On the other hand, it is inadvisable :

write various parts of a program in different languages
bec;use (i) there are practical difficulties in combining
translated code and communicating data, and (ii) program
maintenance and documentation are much too complicated. A
third approach is to use a low-level language, which avoids
the problem by favouring no particular application; but
rather the machinery being used. Finally, new facilities
can be grafted onto existing, more general purpose

languages; for example, list processing onto Fortran -

SLIP (Weizenbaum,1963%) - string processing onto Algol

(Johnson,1974), graph manipulation onto PL/I (Santos &
Furtado,1972). In view of the wide range of programming

language features which are potentially valuable in this

application area, the choice of one particular language, .

augmented or not, is felt to impose undesirable constraints
on the solution of problems. |

liore promising than any of these conventional
programming methods are those founded on the concept of
abstract data structures, as discussed by Hoare(1972) and
by Earley(1971). A program is written in terms of objects
which correspond to, i.e. are abstractions of, entities in
the problem. Implementation of such a programmed solution
is achieved by finding another concrete form for the data
structures, this time oriented towards the machine, instezd
of the problem., Broadly speaking, this is the technigue
used in the present project. Ianguages which embody this
philosophy include Algol 68 (Woodward & Bond,1974) with its .
mode and operator declarations, and Simula 67 (Dahl & Hoare,
1972) which permits a very flexible procedural definitior
of new objects using the "class™ construction. These
languages possess a more powerful generality than PL/I, in
that the programmer regards a data strucfure as an abstract-
ion of some aspect of his problem which has its own
appropriate operators, rather than as a record or aggregate
of fields, which is an implementation-bound way of thinking.

The implementation language chosen for the program
described in this thesis is a low-level language for the
1B System/360 computers, which has an Algol-like structure:
it is called PL360 (Wirth,1968; University of Newcastle .

upon Tyne,1972). The major benefit obtained from being

able to write statements corresponding to machine

instructions is that the range of design concepts which one
can contemplate is very broad. In addition, PL360 is a
convenient language to use intéractively on a heavily loaded
university machine because it has a fast one-pass compiler.
The disadvantages of low-level programning which are frequ-
ently cited - obscurity in the program, and inefficient use
of programmer time - are largely overcome by the methods
which we describe in the next few paragraphs. licCracken &
Garbassi(1970) write:

"¥With COBOL, or any similar high-level language, ...
changes are relatively simple to make ... With
machine-language programs there are actual examples
of cases in which adding one more digit to a
deduction has required weeks of reprogramming.“ - p81,

This comment is either a gross exaggeration or an unwitting
observation of bad Programming praétice. (It is ironic
that this claim should occur in an introductory text on
COBOL, a language which certainly does not encourage good

programming habits, even if it does have useful facilities

for commercial data processing).

2. The structure of the program

The explicit aim of the method of programming given
here is to make the bridge between problem and machine as
clear as possible. The method also makes that bridge
shorter. e benefit in three main ways:

(i) Program development is fast, at both the writing
and the testing stages, because the risk of errors
is low (by normal programming standards). It is
important to have a low errbr-rate when implementing

heuristics, where unsatisfactory output can be

attributed either to coding errors or to poor

heuristics, thus adding to the complexity of testing.

No precise measurements of programm:. performance ‘

were made in this project, and there 1is no clear

distinction between design and coding phases, but

rough estimates can be made. "he programs are written,

first, in what we might refer to as a design notation,

which is the basis for the PL360 coding. If we

consider all tasks performed from (and including) the

writing of the design notation to the acceptance of

the PL360 coding as ‘"correct", this particuler

programming job was done at a rate of about 100 PL360

statements per 8-hour working day. Only one incon-

sequential, and easily corrected, error was discovered

in the complete final version of the program during

some 300 dialogues with Thomas. ‘
(ii) When our ideas on the problem change it is possible

to identify, quickly, those parts of the program

which will be affected.

(iii) Documentation of the program is aided by the methcu.
'he design notation provides a precise and well
organized description of what the PL360 procedures
do, and thére is a close notational correspondence
between the two. In fact, the description of the
program Thomas given in Chapter 4 follows the design
notation, and its writing was aided considerably by
having that specification to hand.

The structure of the program is, on the whole,

hierarchical; we have used the "j:op—down“ approach advocated’

bv Dijkstra(1972). There are many interesting discussions

on the topic in the literature (Wirth,1971; Henderson &
Snowdon,1972; for instance), and Snowdon(1974) has put
forward an interactive program development tool which
encourages the conscious use of the principles involved in
clearly structured programming. We shall not therefore
eaubark on a lengthy discussion here, but show how the

principles have been applied in building Thomas.

2.1 The "top-down" approach in use

We should like to write programs that have a structure

which makes them readily understandable. The most desiratle

attributes that an algorithm (i.e. a procedural program)

should have to achieve this aim are as follows:
(i) It should be seen to be of the form
"First do A, then do B, then do C, ... ",
‘ (ii) It should be short,

(iii) The data objects that it handles should resemble, in
the notaticon, the "problem" entities of which they
are abstractions.

A programmer can be confident that such an algorithm do

what hé intends it to do. The first attribute can be

achieved, very nearly, with the Algol program control .

devices: procedure calls, for, while and repeat statements

(for making loops into "do X"), and if and case statements
*

(for alternative paths) . To achieve the second attribute,

the programmer should build his system out of short (e.g.

less than a written page) procedures - modular programming,.

The third attribute of a clearly written procedure can te

A good source of information on Algol 60 is Dijkstra
(1962). It includes a copy of the "Report on the

algorithmic language Algol 60". For later suggestions,
ivmAalnAine +he roce atatemendt cee Wirth & Taarel(1966)

achieved by inventing data types as needed, together with
appropriate operators and programming constructs. It leads

to obscurity if we use an integer type of variable to

denote, for example, a file address consisting of three ‘
numbers which we have decided to store, packed, in one
computer word.

These considerations, added to the fact that the
implementation language, PL360, is Algol-like in its
structure, led to the choice of Algol 60 as the basis of
the design notation. Because this notation was intended
to be open-ended, there has never teen any intention to
automate the generation of programs from it. So, the
technique amounts to writing programs in an extending
Algol, and translating them by hand into PL360.

Let us follow part of the development of program

Thomas. Some of these procedures are described in Chapter .

4, starting in section 3, and the reader may wish,
occasionally, to refer back to the accounts given there.

We shall start with the requirement to write a program that
creates and maintains a model of its user's interest, to
help him search for references on a particular topic. To

start with, we simply state the regquirement a little more

formally, as a process:

procedure TOPIC SEARCH;
begin SsT_UZP_I:ODEL;
repeat Li{PROVE_NODEL
until USER_SATISFIED

end .

|

Firstly, an initial model will be created by a process

named SET_UP 1.CDEL. The model will be modified in stages,

as the dialogue proceeds, until the user has seen as much

as he wants. 1MPROVE II0DEL is a process which results in

a change in the model, and USER_SATISFIED is a Boolean-
-valued function which determines whether the user has
commanded the dialogue to stop. All the symbols in
upper-case letters are names of separate processes, The
procedure TOPIC_SEAKCH acts as a manager which has delegated
the various jobs and which coordinates the activities of

its subordinates. IMost of the processes introduced would,
at some stage, be defined in the Algol design notation in
terms of further processes. EFEach Algol procedure is finally
translated into PL360 using conventions which evolved early
in the project. Some processes named in tne Algol proced-
ures are close enough to the capabilities of the machine
not to need an Algol definition themselves. In these casec:,
we can either write a procedure directly in PL360, or put
the appropriate code in-line when translating the calling
procedure. There follows an outline of the PL360 versio:

of TOPIC_SEARCH. Because the reader is assumed nct to te
femilier with PL360 nor with the conventions referred to
above, this will be the only example given &nd, even so, 1%
will be simplified. Procedure nzmes are abbreviated to

eight letters in the PL360 translations:

global procedure TOPICSEA(R14);

~

begin
external procedure SETUPOD(R14); null;

external procedure IMPROVEM(R14); null;

external procedure USERSATI(R14); null;

L5 lines of declarations and coding for storage

management, including a declaration for the

local flag: stop i

SETUPLOD;

RESET(stop); R2::@sfop;

while —stop do

begin IMPROVEM; USERSATI; end;

an instruction concerned with storage m~ agement

end.

|

USERSATI is a translation of the Boolean function USER_
CATISFIED and, by convention, will put its resulting value
in the flag addressed by register R2, namely stop. The

PL360 while statement is then equivalent to tne Algol .

repeat.

The elaboration of initialization processes like
SET_UP_i.ODEL should normally be deferred until more is
known about the central processes. ¥%e therefore move ¢ *o
I.PROVE KMODEL. 1In the mechanism we are designing, the
model is to be édjusted according to the user's input,
which will normally be his response to the program's last
cdisplay. The repeat statement in TOPIC_SEARCH takes care
of the iterative aspect of the dialogue. The tasks of
giving and receiving messages, and of changing the model
are delegated to IMPROVE NODEL. Let us first define the

process gquite vaguely:

begin

read a mescage Trom the uger;
use it to influence the state of the model;
make a response to it

end

The intention is to invoke three more procedures to
perform the constituent processes in this definition.
Those procedures will be regarded as the definitions of
the meanings of the Phrases, and they will be - itten
independently. There is, however, a link between them
which must be represented in the more formal definition -
namely the message, occurring as the pronoun "jit® in the
second and third phrases. e must introduce an abstraction
of a message: a data type, one instance of which will be
made available to the procedures to formaligze the link.
The message that the user types will be a simple sequence
of characters, but we Judge that it will probably be best
to structure it in some way on receipt. We therefore
invent a name for the data type, message, and prostpone
defirning its properties until we know more about the wey
we wish to use it., We can write the Algol definition of

IMPROVE_KODEL now,

procedure IMPROVE_MODEL;

begin message m;

M:= GoI_USER_MESSAGE;
INFLUENCE_STATH OF iODEL(m);
RESPOND_TO_USER(m)

end.

A note about the implementation of the mocsl: becaus

(4]

it forms the basis of the system, the model iz regarded as

global to every procedure. Naturally we know guite alot

about the structure of the model, but we co not yet need to
make it explicit in the programming.

GET_USER I.ESSAGE, which is a function of type nmessage,
must process the input in a way that is not yet decided,
so we defer its definition. Here is an informal definition

of INFLUENCE STATE OF MODEL:

begin

update the performance figure in the model, according

to the user's reaction;

prune rejected points from the context graph in the
model;

add selected points to the context graph;

find and add explicitly requested points;

make sure the context_graph is connecte?

end

Lach process, except the last, uses some informaticr wh

o

it is zssumed can be derived from the user's mecssage.

invent a set of functions which require a nes

%

0
)

Te 5
i =4
e

|

argument and yield just the types of values most suitable

for feeding to the procedures that we shall invoke to

zerform the required processes. They are called selectox
functions. The selector functions called by the procedure
which follows are called reaction, reject _list, select list

and request_list. We still do not have to decide precisely

in what structure the data they return should be. For each .

data type that we invent, we keep a record of its selectors

and make a note of their types when they =zre known.

procedure INFLUENCE STATE OF /ODEL(m);
' message m;

begin
COMPUTE_SCORE(reaction(m));
PRUNE_CONTEXT(reject_list(m));
ADD_TO_CONTEXT(select_list(m));
FIND NODES(request_list(m));
UNIFY CONWTEXT GRAPH

end,

The programming continues in this way, and we shall
show a little more below. However, we pause at this point
to remark on an omission in the definition of I4FLUSNCE

. STATE OF 1.ODEL, which did not, in fact, come %o light
until the Boolean function USER SATISFIED (see the definit-
ion of TOPIC_SEARCH, above) was elaborated. The problem
then was to decide how the program should determine that
the user had seen enough. The dialogue would have been
clumsy if, before accepting a substantive message from the
user, the program had to ask him if he wished ic gtam,
liuch better that he could say "stop" in place of the normal
message. We required, therefore, a means of recognizing
the stop message by GET_USER_hESSAGE, and of passing the
request on so that INFLUEWNCE STATE OF_MODEL and RESPOND_TO_
USER should not execute in the normal way, and so that
USER_SATISFIED should return the result true. The method

. chosen was to record in message a special value for
reaction, denoted by STOP, and modify INFLUENCE_STATE OF_

FOUAL to the form given in section 3,2 of Chapter 4.
we return to work down the hierarchy of processes a
1ittle further, to illustrate the handling of the model
and of graph at this high level of descri. .ion. A math- ‘
ematical description of what we mean Dy the supergraph end
the model are given in Chapter 4 sections 1, 1.1, 1.2 and.
2: it is, very largely, in terms of sets of points. Ve

define FIND NODES:

procedure FIND—NODES(requests);

guery list requests;

begzin global point set explicit_requests, inhibit_liet,

context graph;
point set addresses;

addresses:= LOCATE_NODES(requests);

explicit_requests:= explicit_requesis t} addresses;

inhibit list:= inhibit_list - addresses;
context_graph:= context_graph U addrecsses
U STARS(addressesg)

end.

T“here are several remarks to make abocut ihis wrocedure:

(i) The parameter, requests, is the value returned by
the selector function request_list acting on a

message. We have given this type of data a name,

guery list, but have still not needed to decide on

the details of its structure, except what is implied
by the use of the word list; i.e. that the guery's

are organized in a sequence, SO that the order in

which the user provided the texts is maintained.

(ii) We have invented another data type, point, and nuve
specified that the aggregates of point‘e montioned
should display the properties of set.

. (iii) For manipulation of sets, the operators U {(union)
and ~ (asymmetric set difference) have been
introduced. In the PL360 translation, one would
expect these to be implemented by procedures, but we
shall only become concerned with thait when a concrete
representation for sets is chosen.

(iv) Because the Algol procedures are defined . ccpondently,
it is necessary to state that the model components
explicit_requests, inhibit_list and context graph
are the same variables as those accessed by other
procedures. The symbol global is used for this
purpose.

‘ (v) The procedures LOCATE_NODES and STARS are point set
valued functions.

We now define STARS, a procedure which computes a set

of points adjacent in the supergraph to the points in its

argument set.

roint set procedure STARS(centres):

point set cenires;

S e,

begin global point set inhibit list, context_graph,

check tags;
point set result;
point p,q;
result:= empty;
for each p in centres - check_tags do

for each q in LINKED_TO(p) do

if q ¢ inhibit_list U context_graph

result:= result LJ{Q$

STARS:= result
end.
The construct for each ... permits us tc specify that a

process should be performed for each member of a set,
without straying into implementation questions concerned
with the order of the elements in storage. The operator
é- means "is not a member", and the brackets { 5 turn their
contents into a set.

To access neighbouring points in the supergraph we

use the procedure LINKED TO:

point set procedure LINKED TO(p);

point p;

LINKED 10:= node_links(NCDE_4T(p)).

The procedure NODE AT is responsible for finding the dat:u
object containing information relating to a point in th:
superzraph(the label - see Chapter 4, seciion 1.1 = and *hue

set of adjucent points). Objects of this iy

e oy ey
A T S A)

bt

to in cother parts of the program as node's. IHare, we nsed
the set of points adjacent to the node, and decide thut
they should be available through a selector function callel
node links. %e have not, at this stage, explicitly
considered implementation of the supergraph (although, of
course, that question is certainly in the back of one's

rﬁind). It may be noted, however, that we already have a .

hint of some of the details of file organization given in

Chapter 5, section 2. The point's are beginning to look
like file addresses, and to make the selector node_ links
(and thus the procedure LINKED T0) work fast, the data
structure retrieved from the file by WCODE_AT should
contain the addresses of all adjacent nodes.

e shall leave the program development at this point.
Regarding the treatment of sets in the "Algol" definitions,
it should be pointed out that more elegant notations can be
used if non-procedural programming is adopted (e.g. Elcock
et al,1971).

Top-down ppogramming is not an infallible method for
effortless problem-solving. It is often necessary to know
how the machine will do a task before writing the high-level
procedures, in order to obtain a satisfactory breakdown of
the design. Bottom-up programming starts near the computer
and works up towards a solution to the problea. It is
often necessary, even when the approach claimed is top-douv,
and is sometimes explicit but more often implicit. Sub-
conscious bottom-up programming probably permeates every
stage in a feat of top-down programming; it is the progr
mer's use of his experience. Conscious, though not
necessarily explicit, bottom-up programming occurs when we
decide, for example, whether a search is best dcne by hash-
ing or binary search, or when we choose one Algol definit-
ion rather than another tecause it can be rendered easily
into PL36C. There is, however, a basic difference between
the two approaches. In constructing a system, we do not
know the solutions to all our problems in advance, and it
is natural to start by working from the top. The proced-

ures we write will then be those actually needed in the

system.

2.2 Data structures

Cnce again, we must avoid a general discussion and '
refer to Hoare(1972) for a comprehensive treatment of the
subject of data structuring. What we require for the top-
-down programming method we are using is the ability to
invent any data structure, and not necessarily all at
once. In the procedure, IMPROVE FODEL, in the previous
section, it is acknowledged that we need a structure of a
type called message, but no further details are given -
rightly so, btecause they would only obscure the meaning of
the process. In INFLUENCE_STATZ OF 1iOD¥L, certain aspects
of the message type are introduced: reaction, reject_list,
select_1ist and request_list. The attributes of each of

these come to light at various stages in the development,

as does the need for yet more components of the data
structure representing a processed user input string.

In general, if we wish to introduce a concept as a
structured aggregate of information, then we just inven= a
name for it (made into a basic symbol by underlining it)
and use it as a data typ; in a declaration of one or more
instances of that concept. When we wish to get at some of
the information which we understand to be part of the
concept, we invent a selector function, which selects
iata of a particular type and in a particular semantic
role from the total abstract object. As programming
proceeds, details of the original concept are filled in,

and thus a collection of selector functions is built up.

At any point the entity is understood in terms of the A‘

collection of selectors invented for it. When a collection
of Algol procedures is translated, the new data structures
are implemented simply ty arranging for all the selectors
to work easily - this usually means no more than setting
out corresponding fields (or pointers) one after the other
in a storage map.

Examples:

(1) node N; lMfany instances of this data type
reside in the data base, and collect-
ively define the supergraph.

selector functions:
node kind(N) takes one of the values HNAlEL, DOC,
SUBJECT
If node_kind(N) = NAKE,
node_name(N) 1is a string, representing a
surname, and
node_initials(N) 1is a string, the initials of
the forenames.
If node_kind(XN) = DOCC,
node phrase(N) is a string, the title of a
docunent,
node_ref(N) is a string, the location in a
journal.
If node_kind(N) = SUBJECT,
node_ phrase(lN) 1is a string representing a
subject term.
node_links(N) is a point set containing all the
adjacent points (addresses).
In Hoare's terminology, this example is a discrimin-

ated union of Cartesian prdducts - we have Jjoined

into one data structure three composite structures
("products" of more elementary types). The selector

function node_kind simply serves to discriminate .

between them.

(ii) string tree T; This structure is used to

identify suffixes on words.
selector functions:
left member(T) is a string,

left subtree(T) 1is a string tree,

right_subtree(T) 1is a string tree.

A pictorial representation of a string tree is as

follows:

left member(T)

left_subtree(T) right_subtree(T)

It should be emphasized that this definition of a
tree arose purely from the introduction of the
selector functions in the program; it was not

decided upon in advance.

2.3 Implementation of data structures
Hoare(1972) discusses in detail the considerations .

which influence the implementation of abstract data

structures., 1In a large system of procedures, we also hzve
to decide whether to establish system standards for the
various concrete data structures, or whether represent-
ations can vary according to local needs. Because data is
passed from procedure to procedure in parameters and
function values, standardization is the predominant policy
in this project; there are exceptions. When storing
structures with pointers (containingrvariable length strings,
for instance) on the disk, the representation must be re-
locatable, so the pointers are stored as offsets from the
start of the region (or "record"). At other times the links
are absolute addresses for simpler access and, more import-
ant, so that we can incorporate certain existing structures
into others simply by making reference to them, wherever
they happen to be, instead of moving them in storage.

On the coding of data structures,Awe shall not go into
the details, which are generally very straightforward, but
merely remark that most structures have two components - =
fixed part containing fixed length data and pointers, and
a variable part containing such things as linked list
structures and sequences of characters.

The representation of sets deserves menticn, however,
Sets differ from other abstract data objects in that there
are no selector functions; all processes are specified, in
"Algol", by means of set operators (U, N, -, €, and so
on) and the for each ... construct. Underlying these
operations are four basic ones: (i) determining whether an
element is a member of a set, which is a search operation,
(ii) scanning a set, i.e. considering every member, (iii)

adding an element to a set, and (iv) taking an element

away from a set. For sets that are frequently searched; a
hash table representation is efficient. In this program,
we have a limited number of global sets (in the model),
which must remain accessible throughout execution of the
program. If a point belongs to any of these, there will
be an entry for it in a globally accessible hash table,
indicating by means of a short bit vector which sets it
belongs to., Elements can be added and removed very easily,
but the scanning process is very inefficient. If the
program requires to scan a set, a linked list structure is
used to represent the set, sometimes in addition to the
hash table representation in the case of global sets.
These structures are kept in a large globally accessible
storage area, with the exception of sets declared locally
within the Algol procedures. The "node_links" portions of
the node structures in the data base are put into the same
area when called for. While they remain in that area they
can be accessed through the same hash table that holds

information for searching the global sets.

2.4 Use of storage

We have chosen an Algol program structure, so storage
must be organized in a stack (except for that used for
global variables). The stack must accommodate lists and
any other volatile linked or variable length structures we
care to invent, According to the conventions developed
for this project, the stack is maintained in contiguous
storage locations in virtual memory. A PL360 procedure is
told where it may start to store local data, and before

returning control must destroy its local variables by

adjusting the top of the stack downwards again. The
details of the technique are different from, but compatible
with normal IBM 360 subroutine linkage conventions to the

. extent that MTS library routines can be called without
trouble.

The problem arises when the result produced by a
procedure (corresponding to an Algol function procedure) or
a new value assigned to a parameter is of unpredictable
size. Conventions, making use of a second stack, allow the
main stack to be handled in such a way that, while the
fixed part of a resulting data structure is provided by the
calling procedure, the called procedure is responsible for
ensuring that, on return, the variable part of the structure

is stored within the stack as known by the calling procedure.

Se Management and documentation of the programming

With 228 procedure and selector function names in the
Algol definition of the program, it is inevitable that an
appreciable amount of time had to be spent on managing and
documenting them. The system has been constructed in
several sections, typically defined by 15 - 20 Algol
procedures. &hese are translated into a set of PL360
global procedures, and tested. Usually, there are calls on
procedures which have not yet been defined and simple
temporary substitutes must be written for these. Also a
main program must be written to run the test.

A difficulty which arises when testing pieces of a
file processing system is that large, complex, test data
structures are sometimes needed. Construction of these by

hand can be so laborious and error-prone as to be impract-

icable. To construct the data automatically often veguires

the definition of another part of the system, which in turn

requires extra programs to independently check the dava and

validate the structural representation. Tc¢ make matiers
worse, it is often not possible to define the data structy =
to be produced by the building sub-system before the
processing sub-system has been written and its requirements
are fully known. We must resort to a complicated ad hoc
testing of the two sub-systems in parallel, in which quite
alot of extra programming is necessary.

Program testing has been done on-line, and debugging
has assumed a much less prominent place in the development
of this system than is traditional in programming. lost
errors cause PL360 compiler diagnostics and are simple
slips in translation or typing. One subtle logical error

in the Algol definition was due to the awkward ordering

relation among English suffixes while they ars still
attached to the words. The first method of identifying a
word's maximal suffix which was tried comprised reversins
the letters in the word and searching a sorted reverse-
-suffix dictionary using the binary search technique. It
cannot be done that way because the length of the sdffix,
if any, is not known until it has been identified. A tree
searching method was used instead. When testing is
"complete", the object modules are added to a program

library, and the final version of the PL360 source in

printed form and on punched cards is filed away.
An analysis of the means of implementation of all
the procedures and functions called in the Algol-defined .

paft of the program follows:

(i) Selector functions for a variety of data
structures are implemented:

a) by simple reference to a field in =

storage map 44
b) by minor manipulation 9
(sub-total) E;
(ii) Cther functions/procedures are implemented:

a) by translation of Algol procedure into

corresponding PL360 procedure 125
b) by small in-line code sequence

(i.e. 1 - 5 instructions) 27
¢) by definition directly in PL360 23
(sub-total) T;g
(total) Egg

In addition there are 53 PL360 procedures which have no
Algol equivalent. These perform tasks such as storage
management and set operators, and, like the Algol defini*t-
ions, they are short and hierarchically organigzed.

The program documentation consists of the ilgol
procedures themselves, lists of all invented data types
and their selectors, descriptions of the representations
of data in the machine, and an index to procedures, record-
ing how they are defined, which other procedures they call,
which other procedures call them and, in the case of
selectors, which data type they operate upon. This
information has hteen found adequate for development. For
éxample, if it is required to change the implementation of

a data structure, one first makes a list of all its

selector functions. Looking them up in the index will
yield a 1list of all the procedures which call them, and

these will determine which PL360 procedures need be

changed. .

Questions of managing design and implementation

decisions in a flexible way are considered by Parnas(1972).
His answer is the concept of "information hiding", and his
conclusion is

"that it is almost always incorrect to begin the
decomposition of a system into modules on the basis of
a flowchart. We propose instead that one hegins with
a2 list of difficult design decisions or design
decisions which are likely to change. Each’ module 1is
then designed to hide such a decision from the others.
Since, in most cases, design decisions transcend time
of execution, modules will not correspond to steps in
the processing." - p1058.

Clearly, Parnas' systems will be well-structured, but not
hierarchically, from the top, down. His methods seem, at

first sight, to be rather different from those described

here. However, inherent in the system presently under ‘
consideration, there is a sort of dynamic modﬁlarization,

which can have Parnas' desirable information hiding

property when needed. Ve handle design decisions and

document the system in such a way that modules (in rarnas'
sense) can be temporarily assembled out of procedures, for
specific purposes. Any retrieval criterion can te applied

tc the program documentation, in principle.

4. Swumary

In this chapter we have given an account of the
methodology of the implementation of the illustrative
reference retrieval program, Thomas. The method described ‘

is not proposed as the only sensible one, even for experi-

ments, because a great deal depends on the programmer's

past experience and what might be referred to as his taste
in programming styles. HNevertheless the method has very
useful properties for our purposes. The design and
programming aspects of the job are not clearly separated,
programming is quite fast and debugging is very fast,
documentation is facilitated, and, as a result of all

these, changes of mind on the designer's part are relativelv

painless. The technique is one interpretation of the top-
-down programming method (Dijkstra,1972); and wo have, in
this chapter, illustrated its use by quoting from, and

commenting upon part of the actual development of Thomas.

Chapter 7
PERFORMANCE OF THE PROGRAM

1. General remarks .

A great deal of the literature on reference retrieval
is concerned with methods of evaluating systems: the basic
measurable units and the performance statistics derivable
from them. Firstly, we should distinguish retrieval
performance and notions like efficiency and cost. We are
concerned in this chapter with the former. Mozt workers
in this field associate retrieval performance with a
system's ability to pick documents which are relevant to
the queries put to it. Consequently, most performance
measures are based on the 2X 2 contingency table showing
how the system's relevance decisions compare with the user's.

If, in a collection of N references, there are C relevant .

to a particular query, and the system retrieves L refer-
ences, of which R are among the relevant ones, the system's

performance in response to that query can be shown as

follows:
Not
Retrieved Retrieved Totzls
Relevant R C - R C
Not
relevant L - R N-L~-~C+ R N~-C
Totals L N -1 N

Note that in any realistic collection, the value of C is
not known; it is, in fact, the size of the set A that was .

introduced into the discussion in Chapter 2, section 1.1.

"Laboratory experiments" in reference retrieval
(prominent current examples are the work of Sparck Jones
and of Salton; important earlier work was done by Cleverdon)
make use of a small document collection, a set of queries,
preformulated or formulated by the system from natural
language questions, and, for each query, the set of
"relevant'" documents. In other words, in these experiments,
C is known, and the table can be compiled, completely, for
each query. By adjusting some parameter of the system
under test, the values of R and L are varied a»t, in order
to assess the relative merits of different values of the
parameter, the contingency tables obtained are summarized.
A normalization technique must be combined with the averag-
ing process so that systems, or variations in search
strategy, can be compared. We can combine the figures
obtained for a set of searches (by addition) =znd then
normalize, presenting ratios (named "micro evaluation" by
Rocchio,1971). Alternatively, and this reflects the view-
point of the individual user, we can work out some ratios
from each table first, and then average them ("macro
evaluation®). The most commonly used ratics are called
recall and precision. ‘In terms of a single contingency

table, these are defined:

recall = _}}- ’ precision = R .
C L

Combining the ratios over several contingency tables can

be done in two ways:

micro recall = ———

i
2 R,
T 1
micro precision = -,
> L.
— i
i
or: i
macro recall ZE:__—
- C
i

R,

macro precision =

-]

[

In spite of the fact that recall and precision have
been vigorously attacked as an unsuitable pair of measures

(Fairthorne 1964, Robertson 1969, for example) they cont-

inue to be the most widespread criteria for retrieval ‘
system worth, probably because they correspond to the
supposed aim of reference retrieval - to find as many as
possible of the relevant documents, and to avoid picking
up irrelevant ones in the process. They are even the most
freguently used basis for evaluating fulliy operational
systems, where C is unknown, and thus true recall is
unobtainable. 1In these cases, methods have been devised
for estimating recall, or using a similar ratio which, in
comparative evaluations, provides an indication of recall
(Lancaster,1969; McCarn & Stein,1967). The criticisms have
been founded on the mathematical interdependency of the

ratios and the validity of the averaging processes (which ‘

inevitably lose information).

Another type of criticism, for example that by
Cooper(1973), is that measures depending upon (perhaps
dubious) collection dichotomies afe not necessarily
related to system utility. The alternative i1g¢ some form
of subjective evaluation - the user attaches a value to
the service he has received. In Cooper's proposal, the
user states what price he would pay for a relevant reference,
and how much he would pay to avéid seeing a non-relevant
one. In a recent paper on this topic, Cleverdon(1974) has
argued the need for the evaluation of the utility of
information systems, while at the same time recognizing the
power of recall, precision and other such measures in the
laboratory. Cooper is criticized for confusing value with
performance: it 1is conceivable that a system which performs
very well, may be unusable, and therefore of little value,
btecause people cannot easily express their information
need in the required form. The distinction which Cleverdon
draws is problematic, now that the enquirer can conduct his
own search on-line. The user now plays a major role within

the system itself. Is it still sensible to attenpt an

evaluation of the mechanical part of the system in
isolation?

The diversity of views concerning methods of evaluating
a reference retrieval technigue is probably attributable to
differences of opinion on the nature of the retrieval
problem, and what qualities enquirers look for in a system.
It seems sensible to seek measures which will enable us to
state how well our program performs the tasks which we
désigned it to tackle. Rather than prolong the discussion

of evaluation in general, therefore, we shall turn to the

attributes that should be tested in the retrieval method
proposed in this thesis.

No matter how a library user approaches the literature,
whether straight to the books, or through the nost advanced
retrieval system, he views a small part of the totality of
literature. There is no doubt that some users, on some
occasions, would like their view to be accurately and
efficiently restricted to one small area. ‘Yhis requirecment
falls at one end of the search/browse spectrum, and our
program, Thomas, may not be valued very highly %y such
users. MMost searches, however, have aﬁ element of browsing
in them (Herner,1970), and the user's view should include
a certain amount that is peripheral to the strictly
relevant. Imprecision in retrieval is not without wvalue.

It may increase the user's awareness of potentially
interesting work or information sources, and can help him
state or decide what really is pertinent to his own work.

On the other hand, high recall is also not necessarily
required by users. Cleverdon(1974) suggests that, "for
many subjects, a recall ratio of 25% or less of the relevont
documents will give a complete 100% recall of information."
- p174, These points should be borne in mind when using
recall and precision to describe the performance of an
interactive retrieval system.

A najor deficiency of the evaluation in this chapter
is that it has not been possible to conduct extensive trials
with real users. The scale of such experiments is beyond

the resources of this project.

2 The test collection

The collection of references used to test the retrieva>
methods described in this thesis is a subsct of the refer-
ences added to the lledusa current awareness file (sece
Chapter 2, section 2.4.1) in September 1973. OCut of about
19,000 references we have chosen 225, Firstly, searches
conducted by nedical scientists and biochemists, on the
Medusa system, were selected if they had resulted in any
retrievals from the September section of the file. By
search, we mean the complete query formulation process,
which may contain several "SEARCH" commands. All references
so retrieved by Medusa, whether relevant or not, were
selected. The important point about this method of select-
ion is that we have queries and corresponding relevance
Judgements made by practitioners with genuine information
needs. In addition, if the Boolean search sirategies
formulated with ledusa's aid were to be put to the subset,
the output would be precisely the same. The figures sc far:

1. Number of searches,

(i) retrieving no relevant references: 14
(ii) retrieving 1 or more relevant ref.: 32
Total 46
2. Number of different references: 225
3. Total no. of relevant references: 91

A network of records (the "supergraph") was built up
from these 225 references., All the authors and index terms
associated with the references were extracted from the
Medusa files and linked to the document records. In the

MEDLARS records used by Medusa, some terms are accompanied

by qualifiers (see displays in Chapter 2, section 2.4.1);

the qualifiers have been dropped for Thomas' data base.
The distinction between "print" and "non-print" terms 1is
also ignored.

Using the MeSH (liedical Subject Headings) category
structure, many links were inserted between index terms.
Phere are several categories, each is a hierarchy of terms,
and many terms occur in more than one place in this arrange-
ment. Tecause there are a large number of terms missing
from our test file, the tree structures were disconnected
in places. Simple conventions were adopted for linxing

them up. The following picture illustrates the rules:

Key

missing terms: o

missing links: /f/
/

inserted links: //

Terms were not linked if the shortest path between them
had more than éwo lines.

Several thousand synonyms have teen added to Medusa's
dictionary. Those attached to terms already selected for
the supergraph were included, excep? where the phrase
compression algorithm {Chapter 5, section 1.1.2) would have
caused the synonym to be recognized correctly. Nany of the
synonyms in ledusa are word permutations of the correct
term, and our program can deal with these without the need

to store them separately.

Here are some further figures describing the test file:

Number of references: 225
Number of authors: 537
Number of MeSH terms: 1357
Number of synonyms: 551

The distribution of the MeSH term postings follows (a
posting is equivalent to a line joining a subject node to

a document node in the supergraph):

Terms No. of postings !
HUKAN 150
MALE 87
FELALE 84
ANILAL EXPERINENTS 7
ADULT 51
I.IDDLE AGE 44
LETHCDS 40
1'1i:E FACTORS 36
ENGLISH ABSTRACT 30
CHILD 30
RATS 27
AGED 27
ADOLESCENCE 27
CHILD, PRESCHOOL 20
MICROSCOPY, FLUORESCENCE 16

No. of terms

4 15
3 14
6 13
5 12
3 11

6 10 -
8 9
15 8
7 7
19 6
35 5
46 4
83 3
238 2
864 1

Average no. of postings per reference: 15

Average no., of postings per term: 2-48

With the exception of MICROSCOPY, FLUORESCENCE, the named

terms in the above table are all check tags. (is we have
already said in section 3.1.1 of Chapter 3, check tags are
terms which the indexer must consider posting to each

document). The remaining check tags in the test file are

AGE FACTORS INFANT

CASE REPORT INFANT, NEWBORN
CATS IN VITRO

CATTLE MICE
CONMPARATIVE STUDY PROGNOSIS

DOGS RABBITS

GUINEA PIGS REVIEW

There are a few more in NeSH which happen not to occur in
the test file.

We should now satisfy ourselves that there is a
substantial amount of overlap between the subject areas
represented by the queries, If this were not so, our
method of assembling the test collection would lead to
performance figures distorted in favour of program Thomas.
We need to know that there is a choice for the program to
make, in order to see how discriminating it really is.

Firstly, the supergraph represented in the test datc
base ig a single connecfed graph; i.e. every point contalnsd
in it is reachable from every other point. If we eliminate
the check tags, and restrict our consideration to paths of

the form:

D S D S eees —D,

where the D's are document nodes and the S's are subject or
name nodes, then we find that no document node is more than
8 lines distant from every other document node in the super-
graph. It is therefore possible to conduct a dialogue in

which a pair of the most widely separated references are

displayed within a few exchanges with the program.

The overlap of topics covered in the test diaiogues
with Thomas (which are described in the following sections)
is shown here in the form of a hierarchicai clustering of
searches. The searches are those conducted with “homas,
using the "standard rules" described in section 3, below,
and corresponding to the 32 productive Medusa searches.
For this purpose,.a search is defined by the set of refer-
ences displayed, and the similarity of two searches is
measured in terms of the overlap of their defining sets.
The technique for producing a hierarchy of clusters is
that described by Jardine & van Rijsbergen(1971). Ve
calculate the similarity measure for every pair of
searches, A and B:

|anB|
S = —,
AB |A U B]|
For any value of ©, 0< ©<1, we can draw a graph in
which the nodes correspond to searches, and a line joins

every pair of nodes, A and B, for which S,.> ©. The

AB
clusters at level © are defined to be the connected
components of the graph obtained for that value of 8. e
et © = 0 initially, and draw the graph; then we increase
the value of 6. - At various values, lines disappear from
the graph. If, as a result, a cluster is split into two
or more smaller clusters, the value of O is called a
"splitting level"., We present the clustering obtained in

figure 15: it can be seen that the searches overlap each

other to a considerable extent.

_ .Itmv. n
8
G ¥ a
. L 2 A N
_" _y] | ! — N
GLge — - - - = lml — | m ® A
B S
€er— — — & 77 8z 9t & &
9z ¢ L] g H~
I R e S E SR 5~
9gg* — — — — - — |- - o
&N =S4
n —
O Qo
cc - @
| Q ~
g = |- - == —a i1
62 02 oL 58
P il _ 2
8L L1 o
- - . = ¢z
SeaETIET! 9_ _ | L2 | e e .
f | _ _ ! — —|— - ¢Lo- 0
660 = = Lz LLSL | zLls L m
HEEEEE k
0 0 [

3 The trials

The design of the trials for our program was guided
by the desire to simulate the behaviour of real users.
Salton(1972), in his comparison of SiART snd LEDLARS, is
prepared to accept the validity of relevance judgenments
made by subject specialists other than those who posed the
original queries. He reports a 69% overlap in relevant
sets as judged by users and an independent assessor. The
problems of obtaining relevance judgements have been
studied by Cuadra et al(1967). However, in tesiing a
system designed for interactive use by the scientist him-
self, it seems necessary to use his own decisions. The
example search given below shows that it is not at all
obvious how the user demarcates the output of a retrieval
system. Medusa users return relevance judgements to the
project team, and those applying to our subset of the
collection were available for use in the trial dialogues.
All references retrieved by Medusa in response to a search
are marked, by the user, in one of four ways:

A : relevant, useful, already known

B : looks relevant, not known, intend to read

* ¢+ not relevant but interesting in snother connection

(serendipity)

- : not useful
For our present purposes, we regard A and B as meaning
"relevant" - the user would respond yes if the reference
were displayed by Thomas. The marks * and - are both taken
to mean "not relevant" - the response to Thomas is no.
This may be a little harsh on our program because, in

reality, a user may wish to be nén-committal about a refer-

ence, and in that case, a negative response may e mislead-
ing. #1lso, in many cases, the decision as to whether a
reference should be marked * or B is difficult to make:

one would expect a strong connection between a user's
various professional interests. All the analyses given
here are derived from dialogues based upon the 32 Medusa
searches which yielded relevant references.

The first thing that was necessary, in preparation for
the trials, was a summary of each ledusa search, giving an
outline of the formulation, including lists of terms
selected by the user, and a list of all the references
retrieved from the September 1973 section of the file,
together with the relevance judgements. 1In addition, the
number of postings in the test collection was noted for
each term chosen by the searcher during the Medusa session
(that is, for those terms present in the test file). An
example will show the form of the summaries prepared (refer

to Chapter 2, section 2.4.1, for a sample ledusa sessionj:

Name of search: MWA2 "Adrenal medulla®

Formulation:

entered by user: ADRENAL MEDULLA (m1)
SECRETION (m2)
INHERVATION (q2)
STORAGE (not in dictionary)
CATECHOLAMINES (m3)

thesaurus search from m3,

user chose: DOPA (m4)

DOPAMINE (m5)

EPINEPHRINE (mé6)

HOREPINEPHRINE (m10)
entered by user: LORPHIKANS (m12)
thesaurus search from mi2,

user chose: CODEINE (m13)

DIACETYLMORPHINE (m14)

KORPHINE (m17)
entered by user: NICOTINE (m21)

ATROPINE (m22)
search prescription:

r6 = m1 and (m4 or m5 or mé6 or mi0 or mi3 or ml4
or m17 or m21 or m22)
expected return - small

Retrieved references (titles only): Relevance

1. Catecholamine storage in liver metastases of
a malignant carotid body tumour. A bio- B
chemical and morphological study.

2. Isolated chromaffin granules maintenance of B
ATP content during incubation at 31 degrees C.

3, Urinary epinephrine and norepinephrine responses ¥
to chair restraint in the monkey.

4, Tetrahydroisoquinoline alkaloids: uptake,
storage, and secretion by the adrenal medulla B
and by adrenergic nerves.

5. Catecholamine response of chickens to exogenous B
insulin and tolbutamide. -

6. Uptake of calcium in chromaffin granules of *
bovine adrenal medulla stimulatead in vitro.

T. An analysis of pulse frequency as an adrenergic *
excitant in pulsatile circulatory support.

Terms in test file, with postings:

ADRENAL MEDULLA 7
CATECHOLAMINES 5
DOPA 1
DOPANINE 3
EPINEPHRINE 8
NORsPINEPHRINE 11
DIACETYLLORPHINE 1
MORPHINE 2
ATROPINE 1

The search specification, r6, was arrived =2t in several
stages, interleaved with thesaurus searching z2nd the entry
of new terms.

Now we are ready to conduct a searci: with program
Thomas. In the absencs of the user, we must have a set of
rules to follow during the course of the dialogue:

Rule 1. Start the dialogue by typing the first term
entered by the user. If it is not found, try the
next, and so on.,

Rule 2. 1In response to references displayed, arswer YES
for those marked A or B by the user, NO otherwise.
Follow this general relevance judgement by a
detailed one, if appropriate: terms listed with
the reference which were entered or chosen by the
user (and are therefore in the lNedusa session
summary), should be “recognized" the first time
they occur.

Rule 3, Stopping rule: stop when all A and B references
in the corresponding KMedusa search have been
displayed.

We shall refer to these rules as the standard rules. As

an example we give a dialogue with Thowmas, corresponding
to the liedusa session summarized above.

Ref. no.
in summary

'ADRENAL MEDULIA'

Isolated chromaffin granules maintenance of ATP 2
content during incubation at 31 degrees C.;
faumgartner et al, Bur J Pharmacol,22,102-4,Apr 73,
1. H.Baumgartner, 2, H.Winkler, 3. H.Hortnagl,

4. adenosine triphosphate, 5. adrenal glands,

6. adrenal medulla, 7. animal experiments, 8. carbon
isotopes, 9. catecholamines, 10. cattle,

11. chromaffin system, 12. in vitro, 13. magnesium,
14. norepinephrine, 15. nucleotides, 16. time
factors, 17. tritium

YES, 9, 14 (Remark: the terms
CATECHOLAIINES and
NOREPINEPHRINE have
been "recognized"”

according to rule 2)

Catecholamine storage in liver metastases of a
malignant carotid body tumour. A biochemical and
morphological study.; Hortnagl et al, Virchows
Arch {Zellpathol)>,12,330-7,30 iar 73.

1. H.Hortnagl, 2. H.Hortnagl, 3. A.Fropst, 4. H.
Schwingshackl, 5. G.Weiser, 6. H.VWinkler,

7. adrenal medulla, 8, carotid body tumor,

9. catecholamines, 10. chromogranins,

11. complement fixation tests, 12. cytoplasmic
granules, 13, dopamine beta hydroxylase,

14, female, 15. human, 16. liver neoplasms,

17. membranes, 18. microscopy, 19. microscopy,
electron, 20. middle age, 21. neoplasm metastasis,
22. norepinephrine

YES

Tetrahydroisoquinoline alkaloids: uptake, storage,
and secretion by the adrenal medulla and by
adrenergic nerves.; Cohen, Ann NY Acad Sci,215,
116-9,30 Apr T3.

1« G.Cohen, 2. adrenal medulla, 3. adrenergic false
transmission, 4. alkaloids, 5. animal experiments,
6. dopamine, 7. epinephrine, 8. isoquinolines,

9. neural transmission, 10. norepinephrine,

11. rats, 12. sympathetic nervous system

£n analysis of pulse frequency as an adrenergic
excitant in pulsatile circulatory supporz.;
Harrison et al,Surgery,73,868-74,Jun 73.

1., T.S.Harrison, 2. J.F.Seaton, 3. adrenal medulla,
4. animal experiments, 5. assisted circulation,

6. blood pressure, 7. cardiac output, 8. carotid
sinus, 9. dogs, 10. epinephrine, 11. hydrogen-ion
concentration, 12. norepinephrine, 13. pulse,

14. vascular resistance

HO

{Viral hepatitis and the corresponding anitigen); .4
Houston, led Lab(Stuttgz),26,101-4,lkay 73.

1. R.G.Houston, 2. Australia antigen, 3. complement
fixation tests, 4. hewmagglutination inhibition
tests, 5. hepatitis, homologous serum, ¢ human,

7. methods

NO

Uptake of calcium in chromaffin granules of bovine 6
adrenal medulla stimulated in vitro.; Serck-Hanssen
et al, Biochim Biophys Acta,307,404-14,11 May 73.
7. T.Serck-Hanssen, 2. E.N.Christiansen,

3, acetylcholine, 4. adrenal medulla, 5. animal
experiments, 6. biliological transport, 7. calcium,
8. cattle, 9. chromaffin system, 10. cytoplasmic
granules, 11. EDTA, 12. epinephrine,

13. fluorescence spectrometry, 14. microsomes,

15. norepinephrine, 16. perfusion, 17. proteins,
18. spectrophotometry, atomic

NO

Catecholamine response of chickens to exogenous 5
insulin and tolbutamide.; Pittman et zl, Comp
Biochem Physiol <A},45,141-7,1 lay (3.

1. #.P.Pittman, 2. R.L.Hazelwood, 3. adrenal
medulla, 4., animal experiments, 5. blood sug=zr,

6. cattle, 7. chickens, 8. epinephrine, 9. female,
10. fluorescence spectrometry, 11. hypoglycemia,
12. insulin, 13. norepinephrine, 14, time Tactors,
15. tolbutamide

YES (Remark: we have seen all the
"relevant" references

10w)

For the purposes of analysis, the search stops with the

appearance of reference 5 - "Catecholamine response ...".
We shall assume that there are no relevant references in
that part of the test file which the user did not see in

the Medusa session.

‘"he search can be summarized, for statistical

purposes, by the sequence:
RRR~---R

meaning that we were shown 3 relevant (R) references,
followed by 3 non-relevant ones (-) and finally the fourth
relevant reference. We have assumed that the recall ratio
at the end of the sequence is 1. If we plot precision
against recall at each recall level in the sequence, we get

a graph like this:

1 7 o o
Precision
.5 -
0 t 1 4 —
0 +5 1

Recall

The final precision is 4/7, which happens, in this case,
to be the same as that obtained by [ledusa. Having fixed
certain of the system parameters and the dialogue rules,
32 searches could be run and sequences of R's and -'s
found for each one. Graphs corresponding to the sequences
exhibit a wide variation and, although we have summarized
them below, little weight can be attached to the average
performance graphs. Figure 16 contains a few individual
performance graphs to show the extent of the variation.
The technique we use for producing the average

performance curve from a set such as that in figure 16 is

Precision

\

Recall

Figure 16. Some individual search performances.

one of the possibilities discussed by Keen(1971) in
connection with the SHART system. Firstly, because the
curves do not all extend the seme distance along the recall
axis, we must extrapolate them to the left. We have to
decide what the value of precision is before the first
reference in a dialogue is displayed. Keen discusses five
possibilities and points out that for comparative eval-
uations, it does not much matter which we choose. Ve
follow the usual practice of assuming that precision is 1
when the recall level is 0. Figure 17 shows a curve SO
extended on the left. The next step is to standardize the

curve. This is necessary because the number of points on

Precision

- b

Recall

Figure 17. Performance curve extrapolated to the left
and standardized.

the curve varies (according to how many relevant documentiz
there are for the query). We choose an increment of recall
(say 0+1) and interpolatein all the straight line segments
of the curve at the recall values so determined. The
points on the standardized curve are shown by crosses in
figure 17. Now the curves for a set of searches can be
averaged. The result will look like figure 18.

There are two interesting features in these curves.
The final precision, 7 in figure 18, is the average of the
final precision ratios of the separate searches and is

related, inversely, to the search length in retrieval

Precision

O

L]
\J1
R

Recall

Figure 18. Average performance curve.

dialogues. An average final precision of 1 would umean
that alllthe relevant documents come out before any non-
~-relevant ones appear, for every search; i.e. the search
length is always minimum. The sliope of the left-most
segment of the curve indicates how soon the first relevant
document appears. The smaller « is, in figure 18, the
longer the system takes to retrieve the first relevant
reference. If x = 900, the first reference displayed
would always be relevant. A

The average performance curve obtained from the 32

dialogues corresponding to fruitful Medusa searches, and

conducted according to the standard rules given above in

this section, is shown in figure 19.

Figure 19. Average performance -~ basic trials,
standard rules.

32 searches

Precision

7¢ = 578

Receall

Recall Precision AW

o

1
+G22
+845
+ 780
+740
+703
+ 687
<674
*652
*615
+578

e e 8 & e & ° o =

QOWO~JOVTH NN -

—
.

4. Comparison with ledusa

We cannot produce a compatible average performance
curve for the ledusa searches, because that system does
not impose an ordering on the retrieved references, so that
there are no sensible cutoff points. There are, however,
other ways of expressing the performance of the program,
which offer crude methods of comparison with Medusa, and
are more appropriate to the intentions in the design.

It is claimed of our program that a user can obtain
satisfactory performance at low cost in terms of his
initiative and effort. The rules of the trials are intend-
ed to be usable by an experimenter who is ignorant of
medical and biochemical vocabulary. Very little initiative
is needed. We should like to compare the efforts expended
by the users, and simulated users, in the two sets of
dialogues, and also the effectiveness with which the two
systems select relevant references. Unfortunately, neither
comparison is entirely straightforward.

The nature of a user's effort varies from one part o7
a dialogue to another. Sometimes he must make selection: .
sometimes think of words, on cother occasions assess
relevance; and, of course, there is the physical eficrt of
typing commands or responses. A simple approach has been
taken here to obtain a comparison: we just count "tokens®
typed in each dialogue. Medusa tokens are:

(i) command names, e.g. COMBINE, UP, SEARCH,

(ii) subject terms: multi-word phrases count as one token,
(iii) system-assigned codes, e.g. M9, R6, Q13; count one
| each time the user types one,

(iv) logical connectives: AND, OR, NOT, LINK: each count

as one token.
Thomas tokens are:
(i) subject terms,
(ii1) special words: YES, KO, NOT,
(1iii) numbers, repeated by the user from displays,
(iv) null messages, e.g. no comment about a displayed
reference,
Effort estimates, expressed as counts of tokens, are listed
in Table 5 for the 32 Medusa searches which we are using
(em) and for the corresponding dialogues with Thomas, using
the standard rules (eT).

The other comparison we must consider is retrieval
effectiveness. Unlike interaction with Medusa and most
other reference retrieval systems, a dialogue with Thomas
has no query formulation phase. The user should approach
the relevant references by viewing, and judging, a sequence
of references in the neighbourhood of the nodes in which te
has expressed interest. We should not expect the first
reference displayed to be relevant; in the early stages,
the program will normally have little information to act
upon. The characteristics of interest are:

(i) how quickly the program displays the first relevant
reference, and

(ii) to what extent its output remains pertinent up to the
point when all the relevant references have been
displayed.

The first can be measured by counting the number of
non-relevant references displayed before the first relevant
one. The second by the proportion of relevant documents

among those that follow, up to the last relevant one, i.e.

the precision at recall level 1, ignoring leading non-
—relevant references. In table 5, we list this preclision
value (7t’), the overall precision as defined in the previous
section (71), and the number of leading nou-relevant refer-
ences (\) for each of the 32 Thomas dialogues. If, for
examnple, a dialogue is summarized by the sequence:
- -R-RR~-R

the values which go into the table are:

A= 2,

= 4/8 5

7= 4/6 = -67

For comparison, the table also includes the Medusa precision
figures (ﬁm). The comparison can be made between ﬂ,and7tm,
in which case one makes no allowance for query formulation
(or the establishment of the context) in Thomas, or, regard-
ing the leading non-relevant references as equivalent to
Medusa query formulation, one compares n’ and‘ﬂm. An
appropriate, powerful statistical test for the overall
relationship between the columns, as suggested by the
averages, is the Wilcoxon matched-pairs signed-ranks tesw
(Siegel,1956). This is a non-parametric test (no assump-
tions about the distribution of the data need be made)

which takes account of the pairwise difference btetween two
samples. Application of the test tells us that the differ-
ence between n,andvtM is not statistically significant,

and that 7 > 7{, 1is acceptable at the -01 level of

significance. We can be confident that em> e (in fact,

T
every number in the ey column exceeds the corresponding

one in the e column).

We conclude that, for the test collection and under

Thomas dialogues, Medusa
standard rules gsearches
Search effort | effort
/
no.)4 7(‘ T(, : eT :“).’I ﬂw{
1 1 4 6 18 -4
2 0 *2 14 25 1
3 1 6 75 8 16 6
4 0 1 1 5 13 *5
5 3 57 1 9 13 *5
6 0 5 5 4 28 1
7 0 1 1 11 31 -875
8 0 1 1 4 25 1
9 1 *5 1 2 11 -5
10 1 33 5 13 43 + 25
11 2 6 1 16 73 *375
12 2 5 1 9 A8 4
13 0 8 8 9 46 -8
14 0 - 625 625 16 68 1
15 0 8 8. 8 28 -8
16 0 + 71 -1 7 19 +833
17 1 *33 *375 14 29 + 2
18 0 1 1 5 46 1
19 0 +83 «83 9 20 <357
20 0 1 1 1 13 1
21 2 *33 1 4 33 *33
22 0 27 .27 20 53 *375
23 5 -29 |1 11 48 <18
24 3 +29 <5 12 52 £ 22
25 6 *14 A 15 40 *33
26 0 *36 *36 19 56 *57
27 0 1 1 6 19 1
28 1 *5 67 8 25 *5
29 1 6 *75 6 19 75
30 3 6 86 15 47 5
31 0 67 67 5 24 5
32 7 *13 1 14 55 1
Averages: | 1+25 -58 <77 9.5 33+25 61

Table 5. Thomas -~ Medusa comparison. (See text)
225

standard dialogue rules, program Thomas is abaut as effeci-~
ive in retrieval as Nedusa, but at lower demznd on user
effort and without requiring the user to formulate a query.
If one wishes to regard the first few interactions {(on
average 1+25) as equivalent to query formulation, then
Thomas is more effective than Medusa -~ precision is about
25% better in Thomas. As with most small scale experiments,
we cannot infer that the performance will be egually
satisfactory when Thomas (or a program like it) is operat-
ing on a realistic collection of references. Clearly, an
important factor in a large file is the generally much
higher level of term postings. If a user starts his search
with a very highly posted term, of order 1000 postings, for
example, the initial sequence of non-relevant references
could be rather long. It is difficult fto issue guidance to
the user, such as "try to avoid broad terms", because his
impression of . term specificity will not always be in

accord with statistical specificity, which is what matters.
In our file, for instance, the term CATECHOLALINES is
adjacent to 5 reference nodes; it is more specific,
statistically, than either NOREPINEFHRINE (11 references)
or EPINEPHRINE (8 refegences), both of which are narrower
terms - i.e. lower in the thesaurus hierarchy (#HeSH) and
likely to te thought of by the user as specific, It will
be recalled that the program monitors its performance
(Chapter 4, section 3.2.1) and, if it appears to be doing
badly, will return to a reference that the user has
approved of, or show him subjects related to one that he
has selected (Chapter 4, section 3,3.3). It is at this

point that suggestions could be made to him, based upon

term postings. Some tests have been done to gauge the
variations in performance due to initiating a dialogue

with terms of different specificity, and these are
described in the next section. The samplcs are small, and
once again no guarantee can be given that the resulis would

be reflected in large scale searches.

5. Further experiments

Three sets of trials have been made to determine the
program's perfornance under conditions of minimum effort
by the user, and also to show the effect of the specificity
of the starting point in the dialogue upon the search
length. The dialogue rules are as follows:

Rule 1. Start the dialogue by typing one term: the rule
fgr choosing this term is discussed below.

Rule 2, 1In response té references displayed, answer YES
for those marked A or B by the user, NC other-
wise. Kote that we do not "recognize" any
displayed terms.

Rule 3, Abort search if the program requests the user t-

supply another term. The program does this if

there are no documents.in its model that the
user has not already seen, i.e. it is stuck.

Rule 4., Normal stopping rule: stop when all A and B
references in the corresponding ledusa search
have been displayed.

Now we define a family of three sets of dialogue
rules by varying the criterion for selecting the starting

term (Rule 1). The selection must always be made from

those terms typed in, or selected by the Kedusa searcher.

Using the same example as we used in secticn 3, i.e., the
search entitled MWA2 "Adrenal medulla', the candidate
terms are:

term postings in
test collection

ADREWAL EDULLA 7
CATECHOLAMINES 5
DorA 1
DOPANMINE 3
EPINEPHRINE 8
NOREPINEPHRINE 11
DIACETYLMORPHINE 1
LORPHINE 2
ATROPINE 1

The dialogue trials:

(i) High posting rules. Start with the term with highest

posting - NORZPINZPHRINE in the example. The term
must be associated with at least 9 references in the
entire collection, and it must not be a check tag
(see section 2).

(ii) Kedium posting rules. Use a term with a posting

number in the range 2 to 10, wnich is closest to the
average for terms in the list for the search under
consideration. In the example it would te
CATZCHOLAMINES,

(iii) Low posting rules. Use the term with lowest posting

(must be 1 or 2). 1In the example we would use
ATROPINE (in preference to LOPA and DIACETYLMORPHINE,
because the original user typed it, rather than chose
it from a thesaurus display).
The values obtained for the number of leading non-relevant
references, the overall precision, and the precision from
the first relevant reference are recorded in table 6.

Those resulting from the standard rules are repeated

(™7,), and the values obtained using the high posting

/ P .
rules (xh,T(h,Jih), medium posting rules (xm,'mm,ﬁt;) and
low posting rules (A, 7y, %y) are included. It is not
always possible to apply all three varianis of the rules
to a search, so the number of observations in the experiment

is reduvced. 1In addition, some searches had to be aborted

(Rule 3):
High posting rules - 2 aborted,
Medium posting rules - 4 aborted,
Low posting rules - 11 aborted.

This was mainly due to the absence of relevant documents
described by the chosen terms, and the high figure (11) for
the low posting rules serves to emphasize the disparity
between statistically specific words (i.e. ones that are
used little) and conceptually specific words.

Because the performance of a retrieval system depends
very much ‘upon the query, statistical tests to estimate the
significance of the differences between average performance
figures must be based on the differences between matched
pairs of measures. For this reason, we cannot obtain
samples from table 6 which are large enough to give
statistically significant results. This being said,
however, the table does tend to confirm our expectations
of the program‘svbehaviour. The search length increases
with the number of postings of the term that the user
starts with. Not only is the length of search before
reaching a relevant reference larger for highly posted
terns, but the continuing search appears to be longer
(indicated by the lower precision,7{£). The program's

model of the user's interest starts by being large, and

Standard High posting |Medium posting]Low posting
rules rules rules rules i
Search / / ~ /
o, | ALTC W Ay | [t (A | e |71;n M| T |7
p—— "} . — - ""1
1 1 QLP 05 - - - 1 .L} .5 - e -
2 0 o2 o2 2 29| o4 8 .15 ol O obi ok
3 1 06 075 1 06 075 O 05 05 - - -
L o |1 1 o0 67| .67l O} & olt O] 51 5
- 5 3 057 1 3 ol 057 - - - - -
6 0 .5 -5 3 -29 05 - - - 0 05 -5
7 0 1 1 0 i1 1 - o1 1
8 0 i1 1 -]- - 0 1 1 - - -
9 1 5 1 8 Jd1 11 1 5 1 - -
10 1 #33 5 1 o2 +21 3 - - - -
1 2 .6 1 1 25| .28 0) 75 01 1
12 2 5 1 - - - 0o |1 1 - - -
13 0 .8 .8 - - - 0 .8 .3 -
14 0 625 625 - - 0] L6250 JE25] -
15 0 .8 .8 - - - 0 .0 .8 01 1
16 O 071 n71 - - O n71 071 - - -
17 1 e33 375 0 211 .21 - - - - - -
18 o |1 1 - - - 0| .6 .6 0| .6 | .6
19 0 .83 .83 1 L5 1 eh 0 32 32 - - -
20 o i1 1 - - - - - - o1 g
21 2 .33 |11 2 - - - o e -
22 0 27 27 0 271 «27 - - - -] - -
23 5 29 | 1 L 331 - - - -1 - -
214- 3 029 05 - - - 3 033 -67 - - - K
25 6 | k|1 3| 250 I I I) I
26 0| 36| 36 0| 36| 36| 3 | ok YR -
27 o |1 1 -1 - - o 1 1 o1
28 1 05 067 = - - 3’ 033 067 -1 - -
29 Tel sl -1- -1 161"
30 3 .6 .86 - - bt L{- '55 086 O -75 075
31 0 67 b7 - - - 0 o ol O] «5 | +5
32 7 013 1 - - - 2 -33 1 - - -
vorages|1.25| «58 | «77 |1.81| .38 “oal1.06| .57 | .70 | 0| .75 .75
No. in 32 16 1 2 22
semple 5 3 11
Table 6. Specificity tests data. (See text).

must be reduced: the refinewent continues after the first
relevant reference is displayed. We can also see from the
table that the system's performance is acceptable, even
when the user makes very little effort indeed. Altogether,
63% of the searches conducted under these rules succeeded
in achieving 100% recall (i;e. were not aborted).

Clearly, with a collection of realistic size, a user
who contributes little initiative is likely to encounter
long searches because the terms (in a controlled vocabulary
such as we have used) will frequently be highly posted in
comparison to the norm in this test collection. 1f,
however, the user is able to give more direction to the
search by making more detailed responses to the program's
displays, the search length will then depend upon the
distance in the network from his starting point to a
relevant document node. The test collection generates a
network which is not only connected, but highly convoluted,
i.e. no node is very far from every other node (section 2}.
To prove the same for a large collection is a formidable
task; but it seems very likely to be true. The subject
terms (MeSH) are arranged in several trees, known as
categories. The maximum depth of the trees is four nodes,
so the path from one leaf node to another in the same
category is at most 6 lines long. There are three means
of moving from one>category to another, in very few steps:
(i) many terms belong to more than one category (no steps),
(ii) there are a large number of cross references between
terms in different categories (1 step), (iii) most
documents are associated with terms from different

categories (2 steps). It would be very surprising if any

category of terms were completely cut off from the rest.
Finally, if there is a path between every pair of subject

nodes, then there is a path between any two document nodes,

Chapter 8
COHCLUDING HEiARKS

There are several topics to which further work coulad
be devoted: improvements to the information heuristics andc
data recognition algorithms, studies of file handling for
large, rich networks of records, indexing languages with
more complicated features (involving syntax) and their use
within an on-line program of the Thomas sort, investigation
of problems arising out of file size. e feel %that the
last of these is sufficiently important to warrant a
discussion btefore we conclude. Finally, we reiterate the

main theme of this work.

1. The problem of scale

It is important, in the reference retrieval field,
that the experimenter who chooses, or is constrained, to
use a small collection of documents should bear in mind the
applicability of his designs to realistic, large scale
collections. Can we predict the performance of Thomas, 1
a "production mgdel" based on Thomas, operzting cn & dzta
base concerning a useful field-specific collection of, =a. .
100,000 documents? The problem is not simply one of
implementation; we should like to know whether the heurist-
ics used by Thomas will still be able to help the problem-
-sclving, browsing user. In fact, we belleve that the two
easpects of the difficulty are closely related. Both the
man and the machine will run into trouble if associations
become too numerous in the network.

We shall assume that the supergraph (see Chapter 4)

will consist of data similar to that used in the experiment
discussed in Chapter 7. The document nodes are azssociated
with author nodes and with subject nodes corresponding to
the terms assigned to them from a controlled vocabulary ty
the indexers. Links between subject nodes are derived from
the indexing language thesaurus. Under these circumstances,
the major cause of difficulty will be the highly posted
terms, which will generate very large stars in the super-
graph centred on certain subject nodes and containing
several thousands of document nodes. If such clusters are
brought into the context graph, the program's model would
become unusable. Not only would each choice of a reference
for display be a major task for the central processor, but
the likelihood of the choice being a successful one would
be greatly reduced.

“e must concentrate on the size of the wmndel of the
user's interest. In a full-scale operational system, there
must be features which restrict its size: we cannot allow
the model to grow in proportion to the size of the super
graph. Let us examine the components of the model, as
listed in section 2 of Chapter 4, and see how poinits are
aided to these during a dialogue. We start with the
straightforward sets of points:

(i) "explicit requests", "good documents", "accepted
documents® and "reviewed nodes" (see Chapter 4 for their
definitions) are all limited in size by the length of the
dizlogue.

(ii) "last selected": the points selected by the user from

the last display = clearly a small set.

—

(1ii) "inhibit 1list": the points rejected hy ithz user,

Tt

throughout the dialogue. This set grows as the dialogue
progresses, but every point in it must have been involved
in at least one displey so, once again, itic length of the
dialogue 1is the limiting factor.

(iv) "context graph". Points are added by procedures

ADD TO _CONTEXT (Chapter 4, section 3.2.3) and FIND NODxS

M

(Chapter 4, section 3.2.4). These include a few specified,
individually, by the user, but the main bulk of points will
normally by supplied by the function procedures LINKED
DOCULENTS (called by ADD _TO_CONTHXT) and STARS (called by
FIND_NODES). Both of these functions retrieve the sets of
points adjacent to those in their arguments. (The proc-
edure UNIFY CONTEXT GRAPH - Chapter 4, section 3.2.5 - alsc
causes these functions to be invoked on occasion).

Now, the basis of a constraining featvre is already

present in the program - the treatment given to the built-

-in set of check tags. These have cropped up several tinmes

in the thesis, and were first mentioned in Chapter 3,
section 3.1.1. They are highly posted subject terms wh
were given special status in Thomas because it was founs,
in the course of development, that performance was seriou
ly impaired unless their use was restricted. The form that
the restriction took was simply to prevent, at all times,
LINKED_DOCUMENTS and STARS from fetching the neighbours of
any check tag nodes from the supergraph. The effect of
aoing this is that no document node can be considered for
display solely on the basis of the presence of a check tag,
even if the user explicitly shows interest in that term.

if, however, a document is already in the context graph,

any user-selected check tags with which it is associataed
will count in its favour when the program makes a cholce
for display.

Check tags are defined, a priori, for the hiedlars
indexers, and are consequently among the more highly
posted terms. There are other terms which are used very
frequently; and if the system were applied to another file
of indexed references, there may very well be no equivalent
to the “check tag" list in Medlars. Ve need more flexibil-
ity than is provided by a prescribed set of check tags.
iany measurements have been taken in the past few years on
the use of indexing tcrms, and there is remnarizable consist-
ency among the various indexes: terms are posted according
to a hyperbolic distribution, i.e. a few terms are used
very frequently, and the frequency figure falls rapidly so
that many terms are used only rarely (Fairthorne,1969).
Houston & Wall(1964) studied term frequencies found in ten
indexes and fit the observations tc a family of log-ncros
distributions (the points fit hyperbolic distributions

ust as well). TFigure 20 shows the cumulative distrilt oo

()

ct
[,

of postings given by Housicn and Wall for & collection o
195,000 references. Ve prcpose that, for Thomas
successor, terms be added to the check tag set when their
frequency of use reaches some chosen level, say 400
postings. Using figure 20 as an example, approximately
15¢% of terms would then be restricted and about 65% of =211
terms would have fewer than 100 postings.

On the guestion of implementation, we note that the
restricted subject nodes are distinguished from the others

by the fact that the program never wants to know their

(log scale)

X postings/term

1000+

400 e . \
!
100 1
i
!
|
10+ |
|
1 1 i i i 1 i L] 1 'E i)
0 50 ' °0 100

Fizure 20,

cumulative distribution:
% of terms having x or fewer

postings (linear scale)

Cumvlative distribution of term
postings to 195,000 documents.
(Houston & wall,1964). The
slope and intersect at x = 1

vary from one index to another.

inmediate neighbours in the supergraph. Je Call, therefors
simultaneously do away with explicit mention of check tags
in the program, and all the long lists of file adaresses
which represent the 1inks from restricted subjects to
documents. The supergraph is now a dirccted graph in
which if there is a line from point x to point y, then
there is also a line from y to x, unless X is a document
point and y a restricted subject point. When the record of
a restricted subject is retrieved, no links to documents
will be available, although 1inks to other subjccts may be.
Removing unwanted pointers, and marking the recora as
belonging to the restricted class (so that links are not
added to it in future) can be easily carried out by the
network updating procedure as soon as the number of postings
exceeds the limit.

In the present project, we have developed a program
to implement a particular type of mechanical assistant for
the browser. It is far from being a complete reference
retrieval system: there are 1o convenient aids for the
(1ivrarian) manager of the system, for example. ZProbler:
of size should Dbe considered in the context of a complete
systerni. Tecisions on such matters as the indexing procsdl ..

P

‘and the collection weeding methods should be tackled in to

(28]

light of file size. Hence the comments above should be
regarded merely as guide lines, and an argument in favour
of the feasibility of our technique for retrieval applied
tc real-life docunient collections.

Before we leave the subject of size, we should
emphasize that, although the proposal to severely restrict

the role of highly posted terms would seem to lead to

practicable information handling, we have n~ rellable
evidence that it will not impair the retrieval capability
of the program, when applied on a large scsle. In Thomas,
28 (2-:06/%) of the 1357 llecH terms were designated check
tags; we were forced to distinguish them in order to

obtain the sort of dialogues we had in mind. O©On the other
hand, with a large network, we may wish to restrict as many
as 1500 (15%¢) of the 10,000 terms in MeSH to eliminate <he
large stars. Can we be sure that the information lost is
not significant for our purposes?

There is some evidence that medium and low posted
terms are more useful for retrieval than high pozted ones;
in small experimental collections, at least. Sparck Jones
(1972b; 1973c) has discussed, and established the utility
of, term weighting based on the frequency of occurrence of
the term in the document collection. The weight of a term,
and therefore its influence in linear associative retriev:’
varies inversely as the number of times the term is postes
There are other ways of weighting index terms (sce Spzro
Jenes,12973c¢), but the use of ceollection freguency weish
cives the most notable improvements in periormance over
unweighted index terms, in small-scale experiments. In
other words, if we reduce the influence of highly posved
terms in relation to that of less freguently used terms,
the retrieval mechanism becomes more effective. The
experiments of Salton & Yang(1973) and Svenonius(1972)
arpaer vo confirm this, and it is assumed to be true on a
large scale by Williams(1969), who has incorporated
collection freguency term weights, called "information

values", in the BROVWSER system.

239

2. A summing-up

The problem of reference retrieval can be s2id to be
one of communication: the transference to and interpretation
by an informwation system, of incomplefelg ~ormed ideas.
fhe source of the ideas is the searcher, and we take the
view that searching is part of his problem-solving activit-
ies. He must at times use the information system in the
process of completing his ideas. The program design
described and discussed in the foregoing chapters acknow-
ledges the fact that under these circumstances a user
cannot easily specify his requirement, even Iin his own
language. If we permit the enguiry to be made in natural
language, we are faced with an interpretation problem
which, as yet, has no satisfactory solution, save within
a very tiny universe of discourse. If we simply extract
keywords from the user's question, or ask hiii to put the
question in a simple, rigid form using keywords, then we
must have ways of locating instances of the same or clesely

~

related concepts, expressed by means of different words.

We have here the ideal application area for inter-
active computing. A search cannot usnally be entirely
delegated to a machine: it is really a problemr to be solved
by the man who, because the task contains so much tedium,
can be aided by a computer. The retrieval system should
be a synthesis of man and machine. On-line informetion
retrieval systems are now plentiful, and the main reason
for their success is the possibilities they offer for
interleaving human decisions and mechanical processes.

In spite of all the effort that has been expended on

these systems, however, we thought that for many searches

query formulation is still difficu. t and anreiieble, nd
deciaed to try to do without it. The program Thomas
allows a user to browse among the references (in preference
to the term thesaurus) in its data tase and, because the
normal ncde of operation is to show the user references,
cne after another, there is no need for a "command langueazen
as found in most on-line systems, The user must, of course,
specify at least one topic of interest; Dbut during most of
his dialogue with the machine he will be deciding upon the
pertinence of what he is shown by the pr gram, The
computer's actions will be determined by the decisions
which he makes known to it. Thus, the man is brought into
the system, doing the task for which he is particularly
suited.

In program Thomas, the dialogue structure is new.
The conceptual basis for it is the model, or representation,
that a person develops during conversaticn of another's
view of the world. He does this so that Le may undersuvar:’

e
-

the ideas being conveyed: the meanings of words dep

g8

raach upon the context in which they occur, 2nd the krow-

1

T
o

m

5

D

gainst which they are set by both the speasicer and

[
&
¢+.

the ener. Our program uses the euguirer!

wm

i
build up 2z picture of the bibliographic contert of
probvlem, The program's dispiays should help the user to
appreciate how the words have been used to describe the
documents, so that the man also censtructs 2 picture of the
other's - the program's - "viewpoint®.

Thomas' knowledge consists of the names of 2 set of
bibtliographic items and a large number of associations

tetween them. The model of the user's topic that it builds

is in terms of that; it is a small part of that nstwork -Ff
data - a cluster of inter-related items of bibliographic
interest: references, subjects and authors'® names. The
cluster changes aes the dialogue with the woer progresses,
and it is not one of a number of clusters determined
statistically from the characteristics of the ccllection
as a whole and independent of any queries. The clusters
formed by Thomas to model the searcher's area of interest
are dynamic and user-induced as opposed to collection-
—-induced.

Measuring the performance of a system with the
objectives that we hzve set ourselves is not at all
straightforward. Firstly, whatever measurements we take
on a small test data base may work out rather differently
on a large file. Secondly, it is not clear how we should
measure the success of a browse. Thirdly, we should
observe many users with real information nceds. In this
project, we have had to restrict ourselves to making sure

that the program finds the relevant references in its dat-

by the user. As a result of the tests carried out, we nan
say that, on & small collection, Thonas retrieved relevant
references about as effectively as the Medusa systen

(which was the source of Thomas' data basz), but the denand
on user effort by Thomas is much less than that demanded by
liedusa. Thomas achieved this performance without giving
the user the ability to formulate a query. If we equate
the query formulation phase of a lledusa session with the

first few interactions with Thomas, establishing the model,

the tests show that Thomas' performance is substantially

better than lcdusa's.

The most important follow-up to thi: work would be
the creation of & much larger network, with a suitably
modified program. Experiments should bte onsne with many
different users, having genuine information needs. It is
important that the data available to the program should be
sufficient to satisfy many of the users' requirements. An
enlarged system could be the vehicle for experiments on
size, the efficient organization of large graph structures
on disk storage, and measurements of the performance cof

man and computer together, looking for relevant references.

DAZ

SIBLIOCGRAPHY

The names of some of the journals fr uently referred
to are abbreviated in the following pages. They are:
Am.Doc American Documentation

CACN Communications of the Association for

Computing Machinery

ISR Information Storage and Retrieval

JACHM Journal of the Association for Computing
Machinery

JASIS Journal of the American Society for

Information Science

J.Doc Journal of Documentation
JOLA Journal of Library Automation
* ¥ ¥

Alberga C.N.(1967). "String similarity and misspellings"
CACii,10, pp302-13.

Augustson J.G. & J.ilinker(1970). "Deriving term relaticr=
for a corpus by graph theoretical clusters" JASIS .. |
ppi01-11.

Auctin D.(1974). "The development of PRECIS: a theoretical

and technical history" J.ilecc,30, prndi7-1CZ.

H., J.German, N.Loukes & R.H.Searle(1968). "Author
sus Title: a comparative survey of the accuracy of
ormation which the user brings to the library
atalogue" J.Doc,24, pp266-T2.

Ayres F
p

Bar-Hillel Y.{1964). Language and information: selected
essays on their theory and application. Addison-
wesley: 1964,

Barraclough ®.D., A.S.Barber & W.A.Gray(1972). Medlars
on-line search formulation and indexing. University
of Newcastle upon Tyne, Computing Lavoratory, Technical
Report Series, no.34: 1972.

244

Barber A.S., E.D.Ba;ldLTOuLL & WA Gray(1973) On-1ine
information retrieval as a scienticiis tool® ISRk, 9,
pp429-40.

Earker F.H., D.C.Veal & B.K.N”att(‘l@] . "Tawards auvtomatic
profile construction" J.Toc,?28, pp/d ~-55.

Batten #.£.(1947). "4 punched card system of indexing to

meet special reqguireisents® Report of the 22nd Aslib
Conference, pp37-9.

Bays C.(1973). "The reallocation of hash-coded tables"
CiaCl,16, ppt1-4.

Eelkin N.J.(1974). "Towards a definition of information
for informatics" Paper presented at Informatics 2,
Aslib Co-ordinate Indexing Group Annual Co cnference,
25-27 lsarch 1974, Oxford.

Elair C.R.(1960). "a program for correcting s7.lling
errors”™ Information and Control,3, pp60-7.

Bobrow D.G., J.Z.Fraser & il.R.Quillian(1967a). "Automzted
lanvuage procesulnb Anrmzal Review of Information
ocience and Technologv,2, ppl6el-86.

Bobrow D.G. & D.L.iurphy(1967b). "Structure of a LISP
system using two-level storage" CACil, 10, pp155-9.

Eobrow D.G. & B.Raphael(1974). "New pro:ramming languages
for artificial intelligence research® Computing
:__L(I’V@VU ’ép pp1 5.)—74

Bookstein A.(1972). ‘"Double hashing® JAS1S,2%, pp402-5,

Borko H. & W.Bernick(1963). "iutomatic document classific-
ation"™ JACH,10, ppl151-62.

Borko H. & WM.Eernick{1964). "iutomatic document classi-
ation. Part II. Additional experiments® JACU, 11,

pp138-51.

Zourne C.P. « D.Ford(1961). "4 siu8v ¢f methods for
systemetlically abbrevisting snglish words and namech
JACK,3, ppb538-52.

b
tt

Eritich Standards Institution{1963%)

Guide to the Univers
Decimal Classification {(UDC :

B.5.1000C: 1963,

Eroockes B.C.(1974) "Robert Falrthozne and the scope of
Information Science" J.Doc, 20, pp139-52.

Puchholz W.(1963). "File organization and addressi ing"
L1 Systens Journal,2, pp86-111.

Burnaugh H.P.(1367). "The BOLD (Bibliogravhic Un-Line
Dlsplay) System" Information retrieval: a critical
view G.Schechter (Ed.), Thompson: 1967, pPp53-66.,

245

Bush V. (1945). Mis we may Lnink" Avlantic Lor

[0y

ppl101-8.

Carville k., L.D.Higgins & F.J.Cmith(197%). “Interactive
reference reirieval in lzrge filesg" I5R,7, pp205-10.

Cleverdon C.W.{(1972). "On the relaticns’ of rernall znd
precision" J.Dcc .78, pp195-201,

Cleveraon C.¥.(1974). "User evaluation of information
retrieval systems™ J.Doc,30, pptT70-80.

Cleverdon C.W., J.Mills & iL..Keen(1946 Factors detﬂrmin~

¥

ing the performance of indexing %ybte*" Azlib
Cranfield rroject, Craniield: 196w, Vol.%: Df 31gn
(Parts 1 and 2). Vol.2: Test results. (clcverdon &
Keen).

Coates E.J.(1973). "Some properties of relat? nships in
the structure of indexing languages" J..n:,20,
pp390-404.,

Cooper W.S5.(1973). "On selecting a measure of retrieval
effectlvUness" JABTS,24, pp87-100; "Part II.
Implementzation of the philosophy™ JASTS, 24, ppdl12-24,

Crouch D.B.(1973%). ¥i proccse for reducing cluster
representation and retrieval costs”™ Proec. ACM annual
conference, 1475, pp2z4i-7.

Cuadra C.A., R.V.Xa B.F.Helres & E Lace(1067)

Experimental of rélévawce Juag 2tg: final
report. June =55 20/001/00, $0C, Santa konica,
Calif.

Dahl O0.-J., E.J¢U13K & C.A.R.Heare(1972a), Structured
programming. Academic Press: 1972.

Dahl ~-J. & C.A.R.Hoare(1972b). "Hierarch:
sV¢ucp1Les" in Dahl et 21{(1G72a) q.v.

van Dan A. & 2.E.Rice(1270
it editing, anc

10, pp'lrc,;«-' T4,

~ N RGP .
i \Jr A}J\l u\,:“
- -t
ST LT BN

£}

i Computers,

SR . s A o g et

P7",

ha' = - i f [=R S | ETN e oo

Jidketre Lo A nrimer of Alg sl 00 profremming,
3~ Ey AT
ACadoiniid |\jb£,n

. "wotes on structured programming"
1972a) g.v., ppli-82.

"Ilements of data managenent systems"

i =n
rvevs,t, ppiii-=33.

Dolby J.L.(1970}. #An algorithm for variable-length
proper-neme compression" JOLA,3, pp257-75.

Dolby J.L.{(1971). *"Programming languages in mechanized
documentation® J.Doc,27, pp136-5

Doyle L.3.(1941). “Senantic road uaps ‘or Liiercoure
searcherse” Jali., &8, pp553-78,

Doyle L.B.(1965). ‘'Expending the editing funci.on in
langusge data processing®™ CACH,8, ppZ28-43

Farley J.(1971). "Toward an unde:
structures" CACI,, %4, D6l
Elcock E.W., J.i.foster, P.M.D.Cray, J.J.ilcGregor &
A urray(1971). "Abset, a programming language
based on sets: motivation and evamplou" m<ch1ne
1ntelll{once 6 B.lieltzer & D,iichie (Eds.), Ldin.
Univ. Press: 1971, pp4s7-92.

Englebart D.C., R.W.Watson & J.C.Horton(1973%). "”he
augmented knowledge workshep" Proc. Jetional Computer
Conference, 1973, pp9-21.

Fairtiorng R-4,(1956). "The patterns of retric. 1 Am.

Doc,7, ppb5-70. Reprinted in Fairthorne(1251), gq.v.

Fairthorne R.4.(1958). ‘"Delegation of classification”
Am.Doc,9, pp1538~-64. Reprinted in Fairthorne(1961),
qQeVe

Fairthorne R.4.(1961). Towercés information retrieval.
Buttervorths: 1961.

Fairthorne R.A.(19264 ;. rs of retrieval
tests"™ American Docu v ity 1+uub, Perameters
nT infornation science: Proc, 2 fth snnual meetng
Spartan Bookes: 1Und, pp343-5

Fairthorne R.A.(1¢
(Braéord -
description

IOV

AEN I
A NI

>
T ,,,«O
uf’[®

R.®.Griswold

arber L.Jd
»ing manipulation

oy
cin

nforaation

umnps in

Foskett D.J.{1272), "4 note on the concerpt of ‘relevance'?”
15{\,,“{17 P?Trf“ss

Glantz R.5.(1970). "SHOEB0X - A personal file handling
system for textual data" DPreoc. AFIPS,37, pp535-45.

Goodliffe E.C. & SQJ.Hayler(1974). "On-line inTormation
retrieval: some commnents on the use of Retrospec I in
an industrial litrary" Aslib Proceedings,26,ppl177-88.

247

Gorman W, & J.=
record -
Service -
National

Gotliek C.C. &
index ternt

N
el
S
s
-
C
=
[last
T
=
+
[
[
[}
9
&)
]
w“
o
@
joN
[

Gray W.A. & A.JHerl
Isr,7., ppleT7-T4.
Halmos P.R.(1960).
Company: 1960,

ndexing®

Naive set thecry. Van Hostrand Reinhold

Harary F.(1969). Graph itheory. Addison-Weslecy: 1969.

Henderson P. & R.A4.Snowdon{1972). "An experiment in
structured programming® 277,12, pp38-53,

Herner $.(1970). ‘"Erowsing" Encyclopedia of I 1 :ry and
information science. karcel Dekker: 197C,

Heyting A.(1956;. Intuitionism: an intrcduction. North
Holland Publishing Co.: 1356,

Higgins L.D. & F.J.8m:on{1269). “Cq line subject indexing
and retrieval® i 147-56.

Higgins L.D. & ﬁﬁJ.N:;Z‘
Computer Journa

Y oo R 3 & o !
"ise nccess algorithns”

Hillman D.J.(1964). Two snodels for retrieva. system
design" Am.Dog, > N p

Hillman D.J.(1968),
retrieval syste

5nquiriea in an on-line

8.

Hillman D.J.(1437%;. “Customized user se v via inter-

actlions with LxaDoRUARTD™ ISR, 9, 1y

k:) fD
[52]

575

b ~ o J A7 Y - ¢ - S S S I F- NN] ; ™~
Hoars C.A.R.(1972). "lHotes on data structuring n Daiid

Y A —~ i 4 DY s - s oy o4

T ow <~1.!\:_“/(21} qg\/-, b Yeen oy
b oy A J1 - "\ P! Y AN e e e - - ~
Houston 4, & anﬁLl(64 4. phie QLU Lo Lo Sl b agh

e S ey - —\2 b . N - Fl e~ ;
in manipulotive indexes Am.Deoc,15, ppi0c-14,

IBNK

Ide E. & ¢.8a2won(7971). M"Interactive search “tra%egies
and dvmamic file organization in information retrieval”
: 40 ~ It =
Chapter 13 in Salton{1471) q.v., pp373-93

Inforuatics 1. <Frroceedings of a conference held by the
Aslib Co-ordinate Indexing Group on 11-13 April 197
at Durham University. Aslib: 1974.

DA

chieber(1973). “Term asscciation
e file of bibliograrhic data, usirs

vy I R S

Jaciuebson A. & W, D S

analysis on a l1a

a hlghlymcontr ol
PQS -94.

J
A)
)

T
led indexing vocabulary® IZR,G,

Jardine N. & C.J.van Rijsbergen(1971). "The uze of
hierarchic clustering in informaticr eztricval®
7, pp217-40.

|
|

Johnson R.L.(1974). "An extended ALGOL fer language
processing”™ Informatics 1 gq.v., pp182-93.

Jones K.P.(1971). '"Easic structures for thesaural systems"
Aslib Proceedings,23, pp577-90.

Jones P.E.(1965). "Historical foundations of research on
statistical association techniques for mechanized
documentation" Statistical association'nethods for

mechanized documentation. OSymposium prc *-dings,
washington 1964. S5tevens, Guiliano & Heii . rin (Eds),
pPp>-8.

Katz J.J. & J. A.“odo*(1963). "Phe structure of a semantic
theory" Language,39, ppl170-210.

Kay k. & K.Sparck Jones(1971). "Automatic lanfuage
processing”™ Annual Review of Information Science and
Technology,6, ppi41-66.

Keen B.M.(1971). "Bvaluation parameters® Chapter 5 in
Salton(1971) q.v., pp74-111,

Keen Z.10.(1973). "Tne Aberystwyth-index languages test"
J.Doc,29, pp1-35.

eimp D.A.(1974). "Relevance, pertinence and inforination
system development" ISR,10, pp37-47.

Kilgecur ¥.G., P.L.Long & 2.B.Leidernan{1¢7C), Tietrie:
of bivliographic entries from & name~titie catalog -
use of truncated search keys" Proc.A4SIic,7, ppT79-&64.

nuth D.2,.{1973). The art of combuic.
Secrching and sorting. Addison-

Kraft D.H.{197%). "4 decision theory 2y c
ion retrieval situation: an operatvions re%@arch
avproach® JASIS,24, pp368-Tc.

{uno S.(1966). "Computer analysis of natural languages"
9*” ium on mathematical aspects cf computer science;

DOS
American .athematical society, Wew York, April 1966,
52 110

Kunz W. & E.W.J.Ritte1(1972). ‘“"Information science: on
the structure of its problems" I5R,8, pp95-8.

24Q

Iancaster F.W.(1968). Information retricval sysisns: i
characteristics, testing, and evalueciion, +“iley:1968.

Lancaster F.%.(1969). "WEDLARS: Report on the evaluation
of its operating efficiency” Am.Doc,Z0., pp119-42.

Lancaster F.%.(1972). Vocabulary control icr information
retrieval. Information Resources Press: 1972,

Lancaster F.W. & E.G.Fayen(1973). Information retrieval
on-line. Melville Publishing Co.: 1973.

Lefkovitz D.(1969). File structures for on-line systems.,
Spartan Books: 1969.

Long P.L. & F.G.Kilgour(1972). "A truncated search key
title index" JOLA,5, pp17-20.

Iord Todd(1967). "Introduction: the problem stated"™ in
de Reuck & Knight(1967) q.v., pp4-15.

Tum V.Y. & P.S.T.Yuen & ¥.Dodd(1971). "Key-to-addess
transform technigques: a fundamental performance study
on large existing formatted files" CACM,14, pp228-3C.

Lyons J.(1968). Introcduction to theoretical linguistics.
Cambridge Univ. Press: 1968,

Maron M.8., & J.L./uhns(1960). "On relevance, probabilistic
indexing and information retrieval"™ JACL,T7, pp216-44.

Martin T.H., J.Carlisle & S.Treu(197%). "The user inter-
face for interactive bibliographic searching: an

eanalysis of the attitudes of nineteen inrormation
scientists" JASIS,24, ppl42-T7.

mcCarn D.B. & C.R.Stein(1967). "Intelligence systems
evaluation" Electronic handling of information:
testing and evaluation. A.Kent et al {%0,). Acadini:
rress: 1967, ppl09-22.

MeCarthy J., P.Abrahams, D.odvords, T.5z2rt & W.Levin(1962).
LISP 1.5 programmer's manual. LIT Press: 1962,

Melracken D.D. & U.Garbassi(1970). A zuide to COROL
vrosramminz., 2nd Ed., ¥iley: 1970.

l.enzel H.(1967). "Planning the consequences of unplanned
action in scientific communication" in de Reuck &
Knight(1967) q.v., pp57-T7.

filler G.A.(1358)., "Psychology and information™ Am.Doc,19,

Ninker J. & S.Rosenfeld (Eds) Proceedinzs of a symposiunm
on information storage and retrieval. ACK: 1971.

Ilinker J., G.4A.Wilson & E. Peltola(1973). "UocLont
retrieval experimente using cluster analysis"
JASIS, 24, p246 €0

ilinsky . (1948). "Introduction" Chapter 1 in Sementic
informetion processing. K. .Minsky(Bd.), 1iT Tress:

1968, ppl-32.

fontgomery C.A.(1969). "iLutomatic language processing"
Annual Review of Information Science and Technology,4.
ppl145-T4.

Kontgomery C.A.(1972). "Linguistics and information
science" JASIS,23, pp195-219.

Mooers C.N.(1951). "Zatocoding applied to mechanical
organization of knowledge" Am.Doc,2, pp20-32,.

liorgan H.L.(1970). "Spelling correction in oy ieuns
programs" CACK,13, pp90-4.

Morris R.(1968). "icatter storage techniques" CACH,11

’

Moyne J.A.(1969). Information retrieval and natural
language. Report FSC-69-5005. IBM Federal Systems,
Gaithersburg: June 19, 1969.

NTS(1973). The kichigan Terminal System. Vol.1: 1.TS and
the Computing Center. 3*rd Kd. Univ. of Kichigan
Computing Center, iAnn Arbor, hichigan: 1973,

Murphy D.L.(1972). "Storage organization and maznagement
in TEHEX" Proc. AFI2S ,41, pp23-32.

Murray D.ii.(1970). "A scatter storage scheme for dictior-
ary lookups" JOIA,3, pp173-201.

vy of

Needham R.li.(1965). "Applications of ithe thecr
0n113-27.

clumps" Iechanical translation.S.

Wewell A.(1961). Infornetion Processin~ Language - ¥
Kanual. Trentice-dHall: 1vel.

Nugent W.R.(1968). "Compression word coding techniques
for information retrieval® JOLL,1, pp25C0-60.

~(Glney J.C.(1962). Building a concept network for
retrieving information from large libraries. Part 1.
SDC Report Ti-634/001/00: Jan.196Z2.

£.I1.(1972). The iultics system: an examination
ts structure. 1111 Fress: 1972.

Overhage C.F.J. & J.F.Reintjes(1974). "Project Intrex:
a general review" I5R,10, pp157-88.

Pacak . & A.W.Pratt{1971). "The functicn of senantics in
automated language processing" DProc. of a symwposium
on _information storage and retrieval., J.uinker &
Se.Rosentela(ids), ACu: 1971, pph-18.

Parnas D.L.{(1972). "On the criteria to L used in decomp-
osing systems in modules" CACi,15, pp1053-8.

Porter R.J., J.K.Penry & J.F.Caponio(1970). “"Epilepsy
Abstracts Retrieval Systean(EARS), a new concept for
inedical literature storage and retrieval®™ DProc. ASIS,
1, ppt71-2,

Price N.H., C.bye & B.Niblett(1974). "On-line searching
of Council of Europe Conventions and sLgreements: a
study in bilingual document retrieval" 1ISK,10,

Quillian ®.R.(1968). "Semantic Memory" (Ph.D it:sszis) in
Semantic information processing. M.Minsky{zd.;, KIT
Press: 1968, pp2<7-170.

-

Resnikoff H.L. & J.L.Dolby(1965). "The nature of affixing
in written English, Part 1" ilechanical translation,8,

pp84-9.
Resnikoff H.L. & J.L.Dolby(1966). "The nature of affixing
in written Lngllsh Part II" echanical translation,q.
pp23-33. '

Rettemeyer J.W.(1972). "File ordering and rzi*rieval cost"

de Reuck A. & J.Knight(Eds)(1967). Communicacion in
Science: documentation and automation. A Uiba
Foundation Volumne. Churchill, London: 1967,

Rickman J. & W.E.¥alden(1973%). "Structures for an inter
active on-line thesaurus" Interngtionesl Journal ¢l
Compoubing and Information Sciences,Z, pplio-27.

van Rijsbergen C.J.{1974). PIurther v oorizents with
nierarchic document clustering in coouvment raitrieval®
ISR,1C8, ppi-14.

ven Rijstergen C.J. & K.Sparck Jones{1¢73). "4 test for
the gseparavion of relesvant and non-relievant documents
in experimental retrieval collections" J.Doc,29,
PEZ251-T.

Robertson $5.32.(1969). "The parametric description of
r;trA:VQL tests. Pt.1: The basic parameters"; "Pt.2:
Overall TﬂeasureS" J-I"OC 9_2__2, pp1—27’ 93—107'

[es)

Jd.Yates(1973), "The Scrapbook inform-

Robinson k.G. &
system” Information Scientist,7, pp135-43.

ation

Rocchic J.J.,dr.{1971). "Bvaluation viewp
document retrieval® Chapter 4 in %11'U3(1971) qQeVo,

nints in

ppb8-73.

Salton G.(1962). "Y“Iipulation of tress in information
retrieval® CuC.,5, pp103-14.

Salton G.{(1966). "Data manipulation and programmning
problems in automatic information retrieval® CACH, 9,
pp204-10.

Salton G.(1968). Automatic information organization and
retrieval, I.cGraw-Hill: 1968,

Salton G.(Ed.)(1971). The SHART retrievel system: experi-
ments in automatic document processing. Prentice-Hall:

1971,

Salton G.(1972). "A new comparison between con ~entional
indexing (medlaro) and automatic text groc*oslng
(SKART)"™ JASIS,23, ppT15-84.

Salton G.(1973 "Pecent studies in automatic text analysis
and docunent retrieval® JACK,20, pp258-178.

Salton G. & &.d.5ussenguth,Jr.(1964). "Some flexible
information retrieval systems using structure natching
procedures" Proc. AFIPS,25, pp5S8T7-97.

Salton G. & C.S.Yanz(1973). "On the specification of term
values in au oAa+1c indexing" J.Doc.2%, pp351-=T12.

Santos C.S. & A.L. Turtado(1972). G/PL/I - Extending PL/I
for graph processing. onograpns in conputer scilence
and computer applications No. 11/72, Computer Science
Dept., Pontificia Universidade Catolica dc Rio de
Janeiro: 1972.

Science Research Counc 1i1{1373). Arti

ificici intelligencd:
a peper symposium, 51O AprIl W9T7Z. Inciuclng .
TR T cial intelligence: s general savvey" by Sir
james Lishthill.
Senko M.D., 5.3.A1tman, « ¥.L.Y¥ender (1973)
in datz-bzse systems"

atructures An*

'rste”% Journal,

svolutvion of info; tpms pp20-44.

. Information organ‘udtlon” ppi5-63.

11I. Data representations and the data independent
ecsing model" ppé4-93

(1956). sonparametric statistics for the
benavioural scieonces. hcGraw-nill: 1956,

Simmons R.F., J.F.Burger & R.i..Schwarcz(1968). "A comp-—
utatlonal model of verbal understanding” Proc. AFIPS,
2%, vph41-56,

Simmons R.F. & J.Slocum
discourse from seina

Simon H.A.(1965). The shape of automation for men and
management. Harpsr & row: 1965,

Snowdon R.4.(1974). Interactive use of a computer in the
preparation of structured programs, Ph.U. Thesis,
University of Newcastle upon Tyne: June 1974,

Sparck Jones K.(1965). "Experiments in semantic classific-
ation" liechanical translation,8, pp97-112.

Sparck Jones K.{(1970). "Some thoughts on classification
for retrieval" J.Doc,26, pp89-101.

cparck Jones K.(1971). Automatic keyword class flc ation
for inforuation retrieval. Butterworths: -1,

Sparck Jones K.(1972a). "Some thesauric history" 4aslib
Proceedings,?4, ppd00-11.

Sparck Jones X.{1972b). "A statistical interpretation of
term specificity and its application in retrieval"
J.Doc,28, ppli1-21.

Sparck Jones K.(1973a). "Collection properties influencing
automatic term classification periocrmance" ISR,9,

Sparck Jones K.(1973b). "Does indexing exhaustivity
matter?" JASIS,24, pp313-6.

Sparck Jones K.(1973c). "Index term weighting" ISR,9,
pp619-33.

Stevens i.£., V.E.Giulianc & L.3.Heilprin(Eds)(1965).
Stotistical association methods for morhanized
documentation. Lymposium proc;ealnnu Leshington 14964,
Naticnal Rureau 0I Standarcs wmiSC. Jab. 269: 13965,

Stiles H.T.(1961)., ™MThe =zcsccistion Zazc.or in information
retrieval™ JACWK,8, pp<7i-9.

). "An experiment in index term freguency”
1

). "Bracketing techtnigque in elastic
omputer Journal,l16, »pl32-4.

Tagliacozzo R., M.Kochen & L.Rosenherg(1370). "Crthographic
error patterns of author names in catalogue searches"
JOLA,%, ppS3-~101.

”ague J.(1970). ‘"Ascociation trails™ Encyclopedia of
libragy and information science. Marcel bekker: 1970.

Treu S.(1970). Supplensniting human memorw uv i2ans of
interactive, coipuie F-bascd associativs ¢ age and
retrieval. rh.,u. Thesis, University ol . itsburgh:

1970.

Treu S$.(1971). "A conneptual framework .. the sec
~system interface® in Walker(1971) q.v., pp53-66.

University of Newcastle upon Tyne. Computiig Laboratory
(1972). PL360 programming manual.

University of Newcastle upon Tyne. Coumputing Lzboratory
(1974). lledusa information retrieval scrvice user
manual. Preparea by J.Alan Hunter.

Vernimb C.0. & G.Steven(1973). "'IENDS' -~ European Nuclear
Documentation Service" Nuclear Enginep“f o & Design,
25, pp325-33.

Vickery B.C.(1973). Information systems. Butterworths:
1973.

Jagner R.A.(1974). "Order-n correction for regular
languages" CACM,17, pp<65-8.

Valker D.E.(E4d.)(1971). Interactive bibliographic search:
the user/computer interface. FProc. 0of =z WOTLKShop on
"The user interiace for interactive sezrych of biblio-
graphic data pasea®™, Palo Alto, Calif., JTan.1971.
AFIPS Press: 1971.

Weiler G.(1973). "Relesvance again" (Letter) IZH,9, pil121.

Veinberg B.H.(1974). "Bibliographic coupling: = review"
ISR,10, pp180-96.

Weizenbaun J.(1963). "Symmetric list procesan=’ CACii, 6,

pp>24-44.
Wente, van A.{(1971). "HASA/RECOW and user iatiriace
considerations® in Welrker(1971) g.v.. oo -104.
Hth“PaLl T.{1974), "I theszauzrus for the ucor® Informatics

—— q v"’ PI13)-‘443
Williams J.He,dr.{1945G). BROYSER: an automatic
cn-line teyt retrieval system. anaual
rederal Systems Division: 1069. AD 697 74

n,

Williams J.H.,Jr. (1397
interactive info
pp311-T.

Tunctions of a man-machine
ation retrieval system™ J4S1S,22,

1)

Wilson P.{1973). “Situational relevance" ISK,9, pp457-T1.

Yinograd T.(1972). Understanding natural langnage. (Ph.D.
"“hesis, MIT). Edin. Univ. Fress: 1972.

erth No(1968). “‘les C’y
360 computers"

a programming lan:mage for the
JACK,15, pp3T7-T4.
wirth N.(1971). "irogram development by st-nwise refine-
ment" CACil,14, pp221-7.
Wirth N. & C.A.R.Hoare{i366). "A contributicn to the
development of ALGOL"™ CAC..,9G, pp413f32.
¥oodward P.W. & S.G.Bond(1974). £1pol 68-R users guide
2nd Ed HNSO: 1974,
Wright 11.A.(1960) "llechanizing a large indcxz" Computer
Journal,3, pp76-83.
Yngve V.(1963) COMIT programmers reference manual. MIT
Press: 1963.
Zunde P.(1971) "Structural models of complex
sources" ISR,7, ppi1-18.

orimation

	Syracuse University
	From the SelectedWorks of Robert Oddy
	December, 1974

	Reference retrieval based on user induced dynamic clustering.
	PHD merged 1
	PHD thesi 1
	PHD thesi 2
	PHD thesi 3
	PHD thesi 4
	PHD thesi 5
	PHD thesi 6
	PHD thesi 7
	PHD thesi 8

	PHD merged2
	Oddy 1
	Oddy 2
	Oddy 3
	Oddy 4
	Oddy 5
	Oddy 6
	Oddy 7
	Oddy 8
	Oddy 9

	PHD merged3
	robert 1
	robert 2
	robert 3
	robert 4
	robert 5
	robert 6

