Error Correcting Codes for Cooperative Broadcasting

Robert H Morelos-Zaragoza, San Jose State University

Available at: http://works.bepress.com/robert_morelos-zaragoza/1/
Error Correcting Codes for Cooperative Broadcasting

Robert Morelos-Zaragoza
Electrical Engineering Department
San José State University

Presented at the ISL Symposium
Stanford University
November 30, 2010
Outline

1. Motivation
2. Related work
3. Broadcast channels
4. Multilevel codes and the $|u|u+v|$ construction
 - Time sharing $|u|v$ versus $|u|u+v$ construction
 - Decoding for $|u|u+v$ construction: Two stages versus single state
5. Demapping and decoding performance
 - BPSK and QPSK modulations
 - 4-PAM modulation: Hierarchical mapping
6. Conclusions and future work
1. Motivation

- Background on unequal error protection (UEP) codes: *Ph.D. thesis on multilevel error-correcting codes*
- UEP codes are based on the idea of superposition coding proposed in Cover’s paper (1972) on broadcast channels
- The nodes of a wireless network (cooperative or not) always broadcast information (i.e., every node, in principle, receives this information)
- **Cooperative broadcasting** paper (Bergmans and Cover, 1974) “Superposition coding always outperforms orthogonal (time-division or frequency-division) schemes”
Broadcasting in a Wireless Network

1. Relay RN_1 has higher SNR compared to $\text{RN}_2 \quad C_1 > C_2$

2. “Shortest path” (smallest number of hops) not always most reliable
2. Related work

• Cover (1972): “Broadcast Channels”
 – Cloud structure of capacity-achieving superposition codes
• Bergmans and Cover (1974): “Cooperative Broadcasting”
 – Superposition codes always outperform orthogonal assignment
 – Amplify-and-forward, decode-and-forward, adaptive relaying, incremental relaying
• Stefanov and Erkip (2004): “Cooperative Coding for Wireless Networks”
 – Propose superposition coding. Do not refer to Cover!!?
 – Use Chase code-combining with hybrid ARQ
Related work (cont.)

 – Opportunistic coding

 – Feedback CSI and adapt constellation accordingly

• Li, Ge, Tang and Xiong (2008): Cooperative Diversity Based on Alamouti Space-Time Code
 – Multiple-access stage of relay nodes achieved with Alamouti’s scheme

 – Consider superposition coding performed at a single source, metrics

 – Constellation design for superposition (physical layer) network coding
3. Broadcast Channels

- Thomas Cover (1972) – Gaussian broadcast channel with one source broadcasting information to two users: User 1 has a larger signal-to-noise ratio (SNR) than User 2 ($N_1 < N_2$):

![Diagram of Gaussian broadcast channel]

Fig. 16. Gaussian broadcast channel.

Coding for broadcast channels: Cloud concept

- Cover showed that a channel code achieving capacity has a **cloud structure**, shown below for a binary symmetric broadcast channel:

![Diagram showing cloud structure for BSC]

Fig. 4. Space of codewords for BSC.

- A cloud is a set of codewords (or sequences) that is selected with the information bits (most important or MSB) to be transmitted to the high-noise user
Cooperitive Broadcasting (1974)

Fig. 3. Rates achievable by frequency division and variable power time sharing.

4. Multilevel LUEP codes and $|u|u+v|$ construction

- An LUEP code has subcode partition-chain $C \supset C_1 \supset \cdots \supset C_L$ with

$$G = \begin{pmatrix} G_1 \\ G_2 \\ \vdots \\ G_L \end{pmatrix}, \quad G_2 = \begin{pmatrix} G'_2 \\ G'_2 \\ \vdots \\ G'_L \end{pmatrix}, \quad \ldots, \quad G_L,$$

and $d_1 > d_2 > \cdots > d_L$.

- Practical two-level LUEP codes can be constructed based on block, convolutional or LDPC codes and Plotkin’s (or $|u|u+v|$) construction:

$$G = \begin{pmatrix} 0 & G_1 \\ G'_2 & G_2 \end{pmatrix}$$

where $d_2 = 2d'_2 < d_1$.

November 30, 2010
Time-sharing ($|u|v|$) versus Plotkin ($|u|u+v|$)

- **Time-sharing:**

 - **Transmitter:**
 - M_1 (MSB) → C_1 → BPSK mapper → B_1
 - M_2 (LSB) → C_2 → BPSK mapper → B_2

 - **Broadcast Receiver:**
 - B_1 → BPSK demapper → $L_c(Y)$ → Decoder 1
 - B_2 → BPSK demapper → $L_c(Y)$ → Decoder 2

- **Plotkin:**

 - **Transmitter:**
 - M_1 (MSB) → C_1 → BPSK mapper → C
 - M_2 (LSB) → C_2 → BPSK mapper → C

 - **Broadcast Receiver:**
 - C → BPSK demapper → $L_c(Y)$ → Two-stage decoder

Performance of $|u|v|$ vs. $|u|u+v|$: short LDPC codes

C_1, C_2: LDPC (96,50) codes of degrees (3,6) and (4,8)
A Plotkin $|u|u+v|$ coding scheme

- Multilevel codes *always improve the throughput* over any orthogonal (time- or frequency-division) approach.
- Follow Bergmans’ and Cover’s idea: Design an “*over-the-air*” $|u|u+v|$ (Plotkin) coding scheme:

\[
\bar{y}_1 = \alpha_{11} m_1(0 \mid \bar{v}_1) + \alpha_{21} m_2(\bar{v}_2 \mid \bar{v}_2) + \bar{n}_1
\]

\[
\bar{y}_2 = \alpha_{12} m_1(0 \mid \bar{v}_1) + \alpha_{22} m_2(\bar{v}_2 \mid \bar{v}_2) + \bar{n}_2
\]
Two sources with BPSK mapping

- **BPSK Mapping** m_i from a bit to a signal set M_i, $i=1,2$. Assume $\alpha_{i1}=\alpha_{i2}$
- $M_1=\{s_{11}, s_{12}\}$ and $M_2=\{s_{21}, s_{22}\}$:

 $M_1=\{s_{11}, s_{12}\}$ and $M_2=\{s_{21}, s_{22}\}$:

 \[s_{i1} \quad (B_i=0) \quad \text{and} \quad s_{i2} \quad (B_i=1) \]

 \[\begin{array}{ccc}
 -\sqrt{E} & 0 & \sqrt{E} \\
 \end{array} \]

 ### At the receiver, the **direct-sum** M_1+M_2 is equal to a ternary signal set:

 \[(B_1+B_2=0) \quad (B_1+B_2=1) \quad (B_1+B_2=0) \]

 \[\begin{array}{ccc}
 -2\sqrt{E} & 0 & 2\sqrt{E} \\
 \end{array} \]
Single-source and cooperative broadcasting

- **Single source:**
 - Transmitter
 - M_1 (MSB)\[C_1 \]
 - M_2 (LSB)\[C_2 \]
 - Broadcast Receiver
 - Mapper\[B_1 \]
 - Mapper\[B_2 \]
 - AWGN channel
 - BPSK demapper
 - Decoder

- **Cooperative (two sources):**
 - Transmitter 1
 - M_1 (MSB)\[C_1 \]
 - M_2 (LSB)\[C_2 \]
 - Transmitter 2
 - M_1 (MSB)\[C_1 \]
 - M_2 (LSB)\[C_2 \]
 - Decoder
Decoding for $|u|u+v|$ construction

Two stages (Kumar-Milenkovic, 2006)

![Diagram of two-stage decoding](image)

Single stage (SJSU, 2009)

![Diagram of single-stage decoding](image)
$|u|u+v|$ decoding: Simulation results

C_1: Regular $(96,50)$ LDPC code with degrees $(3,6)$; C_2: Regular $(96,49)$ LDPC codes with degrees $(4,8)$
H matrix used in $|u|u+v|$ construction with LDPC codes of length 96
H matrix used in $|u|u+v|$ construction with LDPC codes of length 204
Systematic encoding

- Use Gaussian elimination to produce systematic generator matrices and a permutation:

Length 96:

Length 204:
Single-source versus cooperative: BPSK Metrics

Single source

<table>
<thead>
<tr>
<th>B₁</th>
<th>B₂</th>
<th>C=B₁+B₂</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Cooperative (dual source)

<table>
<thead>
<tr>
<th>B₁</th>
<th>B₂</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
</tbody>
</table>

Log-likelihood ratio (LLR) metric:

\[
L_c(y) = \frac{\Pr\{c = 1|y\}}{\Pr\{c = 0|y\}}
\]
LLR metrics for cooperative broadcasting and BPSK modulation (E/N₀=10 dB)

<table>
<thead>
<tr>
<th>B</th>
<th>m(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cooperative $|u|u+v|$: Lengths 96 and 204 AWGN channel
Cooperative $|u|u+v|$: Length 96 Flat Rayleigh fading channel
Cooperative $|u|u+v|$: Length 204

Flat Rayleigh fading channel

\[
\begin{align*}
\text{BER} & \quad 10^{-4} \quad 10^{-3} \quad 10^{-2} \quad 10^{-1} \quad 10^0 \\
E_b/N_0 (\text{dB}) & \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12
\end{align*}
\]
Results are applicable to QPSK modulation
QPSK = BPSK x BPSK: Subset mapping

- Two basis functions: $\phi_1(t), \phi_2(t)$.
- Basic idea: Quadrature multiplexing
- Source i: BPSK mapping with $\phi_i(t), i=1,2$
- Receiver processes two BPSK sequences in parallel branches
QPSK subset vs Cooperative $|u|u+v|$ BPSK

C_1, C_2: LDPC (204,102) codes of node degrees (3,6) and (5,10)
Cooperative $|u|u+v|$ with 4-PAM and natural mapping

- **4-PAM Mapping** m_i from two bits to a signal set M_i, $i=1,2$. Assume $\alpha_{i1}=\alpha_{i2}$

- $M_1=\{s_{11},s_{12},s_{13},s_{14}\}$ and $M_2=\{s_{21},s_{22},s_{23},s_{24}\}$:

 \[
 s_{i1} (B_{i1}B_{i2}=00) \quad s_{i2} (01) \quad s_{i3} (10) \quad s_{i4} (11) \quad \phi(t)
 \]

 \[
 \begin{array}{cccc}
 -3\sqrt{E}/10 & -\sqrt{E}/10 & 0 & \sqrt{E}/10 & 3\sqrt{E}/10 \\
 \end{array}
 \]

- At the receiver, the **direct-sum** M_1+M_2 is equal to a 7-ary signal set:

 \[
 y/\sqrt{E}/10
 \]

 \[
 \begin{array}{cccccccc}
 -6 & -4 & -2 & 0 & 2 & 4 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{cccccccc}
 B_{11}+B_{12}= & 0 & 0 & 1,0,1 & 1 & 1,0,1 & 0 & 0 \\
 B_{21}+B_{22}= & 0 & 1 & 0,0,0 & 1 & 0,0,0 & 1 & 0 \\
 \end{array}
 \]

 No dichotomy for bit B_2
LLR metrics for cooperative broadcasting and 4-PAM modulation with **natural mapping** \((E/N_0=10)\)
Metrics for cooperative broadcasting and 4-PAM modulation with Gray mapping ($E/N_0=10$)
Cooperative |u|u+v| with 4-PAM and hierarchical mapping

- **4-PAM Mapping** m_i from two bits to a signal set M_i, $i=1,2$. Assume $\alpha_{i1}=\alpha_{i2}$

- Again, two sets: $M_1=\{s_{11},s_{12},s_{13},s_{14}\}$ and $M_2=\{s_{21},s_{22},s_{23},s_{24}\}$ with two power levels

- At the receiver, the **direct-sum** M_1+M_2 is equal to a 28-ary signal set:

 ![Signal Set Diagram]

 \[y / \sqrt{E/10} \]

This idea was proposed by L. Xiao, T.E. Fuja, J. Kliewer and D.J. Costello (2009)

Note: In their scheme, superposition takes place at the transmitter ...

- All dichotomies (i.e., metric $L_c=0$) are removed, in exchange for decreased error performance

- **Results are applicable to 16-QAM modulation**
Metrics for cooperative broadcasting with 4-PAM modulation and hierarchical mapping

![Graphs showing metrics for cooperative broadcasting with 4-PAM modulation and hierarchical mapping.](image)
Performance of 4-PAM with hierarchical mapping.
Length 96 LDPC codes
Performance of 4-PAM with hierarchical mapping. Length 204 LDPC codes
Conclusions and future work

• Proposed a coding scheme for two-user cooperative broadcasting ("over-the-air mixing"), based on Plotkin’s $|u|u+v|$ construction using BPSK, QPSK, 4-PAM and 16-QAM modulations

• **Cooperative broadcasting = Network coding over physical layer**

 MILCOM 2010 presentation, comment from Matthew C. Valenti: (His paper was on “Receiver Design for Noncoherent Digital Network Coding”)

• Future directions
 – Performance with **longer LDPC codes** (such as those used in WiMax)
 – Design rules based on LDPC code parameters (minimum distance, node distributions) versus proportion of MSB and performance
 – Use **a software radio** platform to study
 • Synchronization techniques for over-the-air mixing
 • Effect of channel estimation errors
 • Error performance over realistic (frequency-selective) wireless channels
 • Noncoherent modulation: Differential encoding, FSK (as in Valenti’s paper)
Supporting slides
Performance of WiMax codes

C1 = rate 3/4, n = 2304; C2 = rate 1/2, n = 2304

- Uncoded BPSK
- MSB
- LSB

BER vs. E_b/N_0 (dB)
Combining cooperative $|u|u+v|$ with Alamouti: Length 96 codes
Combining cooperative $|u|u+v|$ with Alamouti: Length 204 codes