Skip to main content
Mathematicians' Views on Transition-to-Proof and Advanced Mathematics Courses
Faculty Publications
  • Robert C. Moore, Andrews University
Document Type
Publication Date

This study explores mathematicians’ views on 1) knowledge and skills students need in order to succeed in subsequent mathematics courses, 2) content courses as transition-to-proof courses, and 3) differences in the proving process across mathematical content areas. Seven mathematicians from three different universities (varying in geographic location and department size), were interviewed. Precision, sense-making, flexibility, definition use, reading and validating proofs, and proof techniques are skills that the mathematicians stated were necessary to be successful in advanced mathematics courses. The participants agreed unanimously that a content course could be used as a transition-to-proof course under certain conditions. They also noted differences in the proving processes between abstract algebra and real analysis. Results from this study will be used to frame a larger study investigating students’ proof processes in their subsequent mathematics content courses and investigating how these skills can be incorporated into a transition-to-proof course.

Journal Title
Proceedings of the 17th Annual Conference on Research in Undergraduate Mathematics Education
Citation Information
Robert C. Moore. "Mathematicians' Views on Transition-to-Proof and Advanced Mathematics Courses" (2014) p. 1009 - 1013
Available at: