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Cosmological constant as confining U(1) charge in two-dimensional
dilaton gravity

Daniel Grumiller,1,* Robert McNees,2,† and Jakob Salzer1,‡
1Institute for Theoretical Physics, Vienna University of Technology,

Wiedner Hauptstrasse 8–10/136, A-1040 Vienna, Austria
2Loyola University Chicago, Department of Physics, Chicago, Illinois 60660, USA

(Received 4 July 2014; published 14 August 2014)

The cosmological constant is treated as a thermodynamical parameter in the framework of two-dimensional
dilaton gravity. We find that the cosmological constant behaves as a Uð1Þ charge with a confining potential,
and that such potentials require a novel Born-Infeld boundary term in the action. The free energy and other
thermodynamical quantities of interest are derived, from first principles, in a way that is essentially model
independent. We discover that there is always a Schottky anomaly in the specific heat and explain its physical
origin. Finally, we apply these results to specific examples, like anti-de Sitter–Schwarzschild–Tangherlini
black holes, Bañados-Teitelboim-Zanelli black holes and the Jackiw-Teitelboim model.

DOI: 10.1103/PhysRevD.90.044032 PACS numbers: 04.60.Kz, 04.70.Bw, 04.70.Dy, 95.36.+x

I. INTRODUCTION

About thirty years ago, Teitelboim and Henneaux
proposed a mechanism to account for the small value of
the cosmological constant [1,2]: If four-dimensional gravity
without a cosmological constant is coupled to an antisym-
metric gauge field Aμνρ the cosmological constant Λ
reappears as a constant of motion. Therefore, the cosmo-
logical constant may be considered to be dynamical,
since different values of the constant of motion correspond
to different values of Λ. One might conceivably find a
mechanism that drives this dynamical cosmological con-
stant to small values [3].
Although it is not clear whether such a mechanism

actually works in our Universe [4], it is interesting in its
own right to consider the cosmological constant not as an
input parameter of the action but instead as a state-
dependent constant that may be changed (thermo)dynami-
cally. If one allows for negative values of the cosmological
constant, then novel aspects of the anti-de Sitter/conformal
field theory (AdS/CFT) correspondence can be addressed
where the length scale set by the AdS radius is no longer a
fixed input parameter but becomes state dependent.
Following this reasoning, many authors regarded the

cosmological constant (mostly with negative sign) as a
thermodynamic variable in black hole thermodynamics
[5–11]. One of the most interesting results of these works
was the insight that the thermodynamic variable conjugate
to the cosmological constant is proportional to a negative
volume. Since the cosmological constant may be regarded
as a negative pressure, the resulting first law contains a Vdp
term. This implies that the mass of a black hole should

correspond to the enthalpy of the system rather than the
internal energy [10–14]. See also Refs. [15–20] for more
recent developments.
In this work we investigate the cosmological constant

as a state-dependent parameter in two-dimensional (2D)
dilaton gravity. Two-dimensional dilaton gravity is a
rewarding model to study, since it provides useful insights
while not being as technically involved as higher-
dimensional theories. Some specific classes of solutions
of higher-dimensional theories can be studied in 2D dilaton
gravity, including AdS-Schwarzschild-Tangherlini black
holes and Bañados-Teitelboim-Zanelli (BTZ) black holes.
Some intrinsically 2D models are also interesting in their
own right, like the Jackiw-Teitelboim model. For a general
review of dilaton gravity, see Ref. [21].
As will be shown, the cosmological constant may be

treated in 2D dilaton gravity as a Uð1Þ charge with non-
minimal coupling. This effectively leads to a confining
electrostatic potential. The variation of the cosmological
constant appears in the first law of black hole thermodynam-
ics for the same reason thevariation of chargewould appear in
the first law for a charged (e.g. Reissner-Nordström) black
hole. Thus, the cosmological constant emerges as a thermo-
dynamic variable naturally in this treatment.
One of our main results is a novel Born-Infeld type of

boundary term IBI that has to be added to the action,

Γ½gμν; Aμ; X� ¼ Ibulk þ IGHY þ IBI; ð1Þ
with

Ibulk ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p ðXR −Uð∇XÞ2 − 2VÞ

þ
Z
M

d2x
ffiffiffi
g

p
fFμνFμν − 4

Z
M

d2x
ffiffiffi
g

p ∇μðfFμνAνÞ;

ð2Þ
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IGHY ¼ −
Z
∂M

dx
ffiffiffi
γ

p
XK; ð3Þ

IBI ¼
Z
∂M

dx
ffiffiffi
γ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−Qðwþ 2FμνFμνf2hÞ

q
: ð4Þ

The bulk action Ibulk depends on three arbitrary functions
of the dilaton field X, namely on the kinetic potentialU, the
dilaton self-interaction potential V, and the gauge coupling
function f. The boundary term IGHY is the dilaton analogue
of the Gibbons-Hawking-York boundary term, which is
required to establish a Dirichlet boundary value problem
for the metric. Here γ denotes the determinant of the
induced metric at the boundary ∂M, andK is the trace over
extrinsic curvature.
The novel Born-Infeld-like boundary term IBI and its

implications for thermodynamics will be derived and
discussed in detail in the body of our paper. The functions
Q, w and h appearing in it are constructed out of integrals of
the functions U, V and f:

QðXÞ ¼
Z

X
dyUðyÞ; ð5Þ

wðXÞ ¼ −2
Z

X
dyeQðyÞVðyÞ; ð6Þ

hðXÞ ¼
Z

X
dy

eQðyÞ

fðyÞ : ð7Þ

Their somewhat bizarre form has a natural explanation
within 2D tensor-vector-scalar theories (or Einstein-
Maxwell dilaton theories), which we shall review.
Moreover, these functions have to obey certain inequalities,
which we shall derive. The inequalities imply, among other
things, that the electrostatic potential is confining.
Another key result is that we recover standard thermo-

dynamics with the usual first law, say, for free enthalpy:

dGðT; p;…Þ ¼ −SdT þ Vdpþ other work terms: ð8Þ

Here S is the 2D dilaton gravity analogue of the
Bekenstein-Hawking entropy, T is essentially the
Hawking temperature, −p is proportional to the cosmo-
logical constant and V is the “volume” of the black hole—a
quantity that we will explain in detail. Thus, standard
thermodynamics can be applied to 2D dilaton gravity
models with a state-dependent cosmological constant.
The outline of this work is as follows: in order to make

this paper self-contained we review some of the main
results of Ref. [22] in Sec. II and generalize them to
confining electrostatic potentials; in Sec. III we demon-
strate how to treat the cosmological constant as a thermo-
dynamical variable in a natural way in 2D dilaton gravity
and derive the main results; in Sec. IV we discuss general

implications for thermodynamics and show the equivalence
of thermodynamic and geometric volume definitions;
in Sec. V we address further developments: we present
alternative confinement conditions, unravel a Schottky
anomaly in the specific heat and treat the microcanonical
ensemble; in Sec. VI we apply our results to specific
examples, namely AdS-Schwarzschild-Tangherlini and
BTZ black holes, as well as the Jackiw-Teitelboim model.
In this paper we use the conventions of Ref. [22], setting

the 2D Newton constant to 8πG2 ¼ 1 and working exclu-
sively in Euclidean signature.

II. THERMODYNAMICS REVIEW

In the following we review some of the main results of
Ref. [22], starting with the (holographically unrenormal-
ized) Euclidean action of 2D dilaton gravity,

I ¼ Ibulk þ IGHY; ð9Þ
with

Ibulk ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p ðXR − Uð∇XÞ2 − 2VÞ; ð10Þ

IGHY ¼ −
Z
∂M

dx
ffiffiffi
γ

p
XK; ð11Þ

where X is the dilaton field, R the Ricci scalar, U is the
kinetic potential and V the dilaton self-interaction potential,
both of which are model-dependent functions of the dilaton
X. The boundary term is analogous to the Gibbons-
Hawking-York boundary term, with γ the induced metric
on ∂M and K the trace of the extrinsic curvature.

A. Classical solutions

The equations of motion (EOMs) for the action (10) are
given by

∇μ∂νX − gμν∇2X − gμνV

þUð∂μXÞð∂νXÞ −
1

2
gμνUð∂XÞ2 ¼ 0; ð12Þ

Rþ U0ð∂XÞ2 þ 2U∇2X − 2V 0 ¼ 0; ð13Þ

where the prime denotes a derivative with respect to the
dilaton X. Taking the trace of the first EOM (12) yields the
useful relation ∇2X ¼ −2V.
The space of all classical solutions to the EOM (12), (13)

falls into two disjoint classes: 1. Constant dilaton vacua, with
X ¼ X0 ¼ const, which exist only for special models and
require infinite fine-tuning of the value of the dilaton field
such that VðX0Þ ¼ 0; in that case, the metric is maximally
symmetric, i.e., either Minkowski, AdS or de Sitter, depend-
ing on the sign of the Ricci scalar R ¼ 2V 0ðX0Þ. 2. Linear
dilaton vacua, which exist generically as solutions to
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arbitrary dilaton gravity models and have dilaton fields that
are not constant. In this paper we exclusively focus on the
latter.
Locally, all linear dilaton solutions are parametrized by a

single constant of motion M and take the form

X ¼ XðrÞ ds2 ¼ ξðrÞdτ2 þ 1

ξðrÞ dr
2 ð14Þ

with

∂rX ¼ e−QðXÞ; ð15Þ

ξðXÞ ¼ wðXÞeQðXÞ
�
1 −

2M
wðXÞ

�
: ð16Þ

The functions QðXÞ and wðXÞ are defined as [23]

QðXÞ ≔ Q0 þ
Z

X
dyUðyÞ; ð17Þ

wðXÞ ≔ w0 − 2

Z
X
dyVðyÞeQðyÞ: ð18Þ

By an appropriate choice of w0 the constant of motion M
can be restricted to a convenient range, for instance non-
negative values,M ≥ 0. This then fixes the ambiguity from
the integration constant in the definition of the function w.
The ambiguity in the definition of the functionQ is fixed by
an appropriate choice of Q0, which in turn can be absorbed
into a rescaling of the coordinates. We shall henceforth
assume that a suitable zero point has been chosen for the
mass M and suitable physical units for the coordinates, so
that w0 and Q0 are fixed (for example, to zero).
All solutions (14) exhibit a Killing vector field ∂τ with

norm ξðXÞ that vanishes at the “Killing horizon” X ¼ Xh.
To be precise, we mean that in the Minkowskian version of
(14), constant X hypersurfaces that obey ξðXhÞ ¼ 0 are
Killing horizons. In the corresponding Euclidean space, the
“Killing horizon” reduces to a point that provides either a
lower or an upper bound on the value of the dilaton field.
The “ground-state Killing norm” ξðXÞjM¼0 will be denoted
as ξ0.
In the models that we consider there is typically at least

one Killing horizon. The dilaton field X is then restricted to
the positive, semi-infinite interval

Xh ≤ X < ∞; ð19Þ
where Xh denotes the outermost Killing horizon, i.e., the
Killing horizon at the largest possible value of X.
As in Ref. [22], we assume limX→∞wðXÞ ¼ þ∞, which

captures many models of interest, in particular black holes
in asymptotically AdS spacetimes. Thus, the asymptotic
behavior of the metric is given by ξ0ðXÞ, as is easily seen
from (16).

Before discussing black hole thermodynamics, we con-
clude this part of our review with a standard Euclidean
argument. In order to avoid conical defects at the horizon,
the Euclidean time is assumed to be periodic τ ∼ τ þ β,
with

β ¼ 4π

∂rξ

����
rh

: ð20Þ

The proper local temperature TðXcÞ evaluated at a locus
X ¼ Xc is equal to β−1 times a redshift (“Tolman”) factor

TðXcÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ξðXcÞ

p β−1: ð21Þ

Thus, in models where ξðXcÞ → 1 as Xc → ∞, the inverse
period β−1 is the temperature T as measured by an observer
at infinity.

B. Thermodynamics from the Euclidean path integral

In order to study the thermodynamics of this model, the
Euclidean path integral with appropriate boundary con-
ditions is expanded around the classical solutions of the
EOM. In the semiclassical limit the dominant contributions
are the classical solutions. Then the Euclidean partition
function is given by

Z ∼
X
gcl;Xcl

exp ð−I½gcl; Xcl�Þ × ZGauss × Zho ð22Þ

with

ZGauss ¼
Z

DδgDδX exp

�
−
1

2
δ2I½gcl; Xcl; δg; δX�

�
ð23Þ

and higher-order corrections contained in Zho. The sum in
(22) extends over all classical solutions gcl, Xcl from (14)
compatible with the boundary conditions that we impose in
order to evaluate the path integral. In our case, these
boundary conditions will always specify the locus of a
cutoff surface X ¼ Xc and the local temperature (21) at that
surface. In many cases it makes sense to think of these
boundary conditions as coupling a finite gravitational system
to a thermal reservoir at proper local temperature TðXcÞ.
The free energy in the classical approximation is

determined by the on-shell action through

F ¼ −T lnZ ≈ TI½ĝcl; X̂cl�; ð24Þ
where ĝcl, X̂cl denotes the dominant saddle point in the sum
(22). Subdominant saddle points are then nonperturbative
(“instanton”) corrections, while the neglected Gaussian
and higher-order terms are perturbative corrections. In
the present work we shall not be concerned with either
of these corrections.
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The thermodynamical ensemble is determined by the
choice of boundary conditions used in the evaluation of
the path integral. We shall always keep fixed the proper
temperature at the boundary, so that our free energy is either
the Helmholtz or Gibbs free energy (or some generalization
thereof). Once the free energy is known, all other thermo-
dynamical quantities of interest are determined, either
through partial derivatives or Legendre transformations of
the free energy.
The semiclassical approximation is well defined only if
(i) the on-shell action is bounded, and
(ii) the first variation of the action vanishes on shell for

all variations that preserve the boundary conditions.
As expected on general grounds (and shown explicitly in
Ref. [22]) the action (9) has neither of these properties for
the boundary conditions we are interested in. These short-
comings are remedied by adding a (holographic counter)
term ICT to (9), yielding an improved action

Γ ¼ Ibulk þ IGHY þ ICT ð25Þ

with

ICT ¼
Z
∂M

dx
ffiffiffi
γ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−QðXÞwðXÞ

q
: ð26Þ

It was later shown that the same boundary term can be
derived from requiring supersymmetry in the presence of
boundaries [24,25].
In 2D dilaton gravity, every sufficiently regular function

JðXÞ of the dilaton field can be used to construct a
conserved charge. This is so because a current jμ ¼
ϵμν∂νJ is trivially divergence free, ∂μjμ ¼ 0. Hence, 2D
dilaton gravity exhibits an infinite number of completely
equivalent conserved charges. Therefore, we may choose
a suitable dilaton charge, which we denote by Dc, and
demand that its value at the boundary be fixed. In the
following we simply set

Dc ¼ Xc: ð27Þ

The heat bath surrounding the cavity fixes the local inverse
temperature βc and dilaton charge Dc as boundary con-
ditions for the path integral.
The non-negative solutions of

βc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðDc;MÞ

p
βðMÞ ð28Þ

denote the possible values of the mass M, and thus the
classical solutions consistent with the boundary conditions.
The Helmholtz free energy F may be obtained from the
action via [see (24)]

FcðTc;DcÞ ¼ TcΓðTc;DcÞ: ð29Þ

With the above definitions, this yields

FcðTc;DcÞ ¼ −2πXhTc þ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p �
; ð30Þ

where a subscript c denotes evaluation of the dilaton at the
cutoff surface X ¼ Xc.
It is natural to consider the Xc → ∞ limit of (30) and

other thermodynamic quantities to obtain results for the
full, noncompact spacetime. This limit is in general well
defined for the classical theory. However, in many theories
the perturbative corrections (23) diverge as Xc → ∞, and
in those cases the cutoff cannot be removed. From the
thermodynamic point of view, this is so because the specific
heat of the system becomes negative above some maximum
value of Xc. In other words, the density of states grows too
rapidly as a function of energy, and the canonical ensemble
no longer exists.
Further details of 2D dilaton gravity thermodynamics,

elaborations, applications and many examples can be found
in Ref. [22]. Some earlier work on 2D dilaton gravity
thermodynamics is found in Refs. [26–28].

C. Charged black holes

The above results are easily generalized to charged black
holes by adding a Maxwell term

IMax ¼
Z
M

d2x
ffiffiffi
g

p
fðXÞFμνFμν ð31Þ

to the action (25). The function fðXÞ describes the coupling
of the Abelian field strength Fμν ¼ ∂μAν − ∂νAμ to the
dilaton field. The EOMs (Maxwell’s equations) are
solved by

Fμν ¼
q

4fðXÞ εμν; ð32Þ

where q denotes the electric charge, εμν is the 2D epsilon
tensor with ετr ¼ þ1, and the factor 1

4
is chosen for

convenience. We will assume, for now, that all the fields
fall off sufficiently rapidly so that no additional boundary
terms are needed in the action.
The EOMs for the action (25) with an additional

Maxwell field are still solved by equation (14), but the
Killing norm is changed to

ξðXÞ ¼ eQðXÞ
�
wðXÞ − 2M þ 1

4
q2hðXÞ

�
: ð33Þ

The function hðXÞ is defined as [29]

hðXÞ ¼
Z

X
dy

eQðyÞ

fðyÞ : ð34Þ

In the axial gauge, Ar ¼ 0, the gauge potential is given by

AτðXÞ ¼ −
q
4
ðhðXÞ − hðXhÞÞ þ AτðXhÞ: ð35Þ
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Thus, the proper electrostatic potential relative to the
horizon is

ΦðXÞ ¼ AτðXÞ − AτðXhÞffiffiffiffiffiffiffiffiffiffi
ξðXÞp : ð36Þ

Dirichlet boundary conditions on Aτ imply that this
quantity is held fixed at the cutoff surface Xc.
With these results, the Euclidean partition function (22)

may be calculated in the classical approximation. For the
boundary conditions that we impose, the relevant thermo-
dynamic potential is the Legendre transform of the
Helmholtz free energy FcðTc;Dc; qÞ with respect to the
proper electrostatic potential Φc. Since the charge q and
potential Φc play a role similar to a generic conserved
charge N with chemical potential μ, we simply denote this
potential by Yc ¼ TcΓðTc;Dc;ΦcÞ:

YcðTc;Dc;ΦcÞ ¼ FcðTc;Dc; qÞ − qΦc ð37Þ
The inverse Legendre transformation then leads to the
Helmholtz free energy Fc ¼ Yc þ qΦc:

FcðTc;Dc; qÞ ¼ −2πXhTc þ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p �
: ð38Þ

Evidently, this result is equal to the previous one (30). The
dependence on q remains implicit in the Killing norm ξðXÞ
and the locus of the horizon Xh but does not show up
explicitly.
Notice that one may add an arbitrary number of Maxwell

fields (in fact, even non-Abelian gauge fields) in this way.
Each of them will introduce new conserved charges qi that
capture some of the state-dependent information. We shall
make use of this fact in the calculation of the first law for
BTZ black holes.
If we relax the assumption that the fields fall off

sufficiently rapidly, then a new boundary term must be
added to the action along with (31). For a theory with
Dirichlet boundary conditions on Aμ, diffeomorphism
invariance restricts the form of this boundary term to be

IMCT ¼
Z
∂M

dx
ffiffiffi
γ

p
LMCTðAμAμ; XÞ: ð39Þ

A simple example that requires such a boundary term can
be found in Ref. [30]. In Sec. III we will consider theories
with Neumann boundary conditions on Aμ, and hence we
will obtain a different sort of boundary term.

D. Confinement in 2D dilaton gravity

In the discussion of charged black holes above we have
assumed that the gauge potential decays asymptotically
sufficiently fast that no modification of the boundary term
(26) and of the free energy (38) arises. However, this is not
necessarily true, and in particular it is not true for confining

potentials. Before addressing how to improve the boundary
term, we address the case of confining potentials.
To this end we consider now specific classes of 2D

Einstein-Maxwell dilaton theories that obey the inequalities

lim
X→∞

wðXÞ → þ∞; ð40Þ

lim
X→∞

jfðXÞVðXÞj < ∞: ð41Þ

We show now that these inequalities imply confinement of
the Uð1Þ charge in the sense that the gauge potential AμðXÞ
diverges to �∞ for large X. Before we explain why the
attribute “confinement” is justified, we check that our claim
is technically correct.
The result (35) together with the definition (18) imply

AτðX → ∞Þ ¼ q
4

Z
X
dy

w0ðyÞ
fðyÞVðyÞ : ð42Þ

Taking absolute values and exploiting the inequality (41)
yields

jAτðX → ∞Þj > N2wðX → ∞Þ; ð43Þ

where N is some nonvanishing real number. The inequality
(43) together with the assumption (40) prove our claim that
the gauge potential AμðXÞ diverges to �∞ for large X.
Of course, one could just define a confining potential in

2D Einstein-Maxwell dilaton gravity by the properties (40)
and (41). However, it is useful to clarify why it is justified
to call a gauge potential that diverges at large X “confin-
ing.” Physically, the decisive property of a confining
potential is that it takes infinite energy to separate two
charges. If we take as one of the charges the charged black
hole spacetime and as the other some test charge, then a
measure for the electrostatic energy is the product of the
proper electrostatic potential times the charge q̂ of the
test particle, measured for instance in units of the proper
temperature (in order to cancel redshift factors, assuming
some nonextremal configuration with T ≠ 0). Thus, if the
ratio

q̂Φc

Tc
¼ q̂

AτðXcÞ
T

þOð1Þ ð44Þ

stays finite in the limit Xc → ∞, then the gauge potential is
not confining. On the other hand, if the expression (44)
tends to �∞ in the limit Xc → ∞, then the gauge potential
is confining. From the right hand side of (44) we therefore
see that the gauge potential is confining precisely if AτðXÞ
diverges to �∞ for large X.
A simple class of examples for confining potentials

is provided by minimally coupled Maxwell fields,
fðXÞ ¼ const, and vanishing kinetic potential UðXÞ ¼ 0.
In that case the gauge potential (42) integrates to a function
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that is linear in X ∝ r. We recover the well-known fact that
the 2D electrostatic potential grows linearly in r and is thus
confining.
A simple class of examples for nonconfining potentials

are spherically reduced models with fðXÞ ∝ X,

UðXÞ ¼ −
d − 2

ðd − 1ÞX and VðXÞ ∝ X1−2=ðd−1Þ; ð45Þ

which violate the inequality (41) and reproduce the correct
d-dimensional Coulomb law Φ ∝ 1=rd−2 in d > 2 spatial
dimensions.
In the next section we stick to a single confining

Maxwell field with a specific type of coupling function
f in order to describe a state-dependent cosmological
constant Λ.

III. STATE-DEPENDENT Λ

In this section we implement a state-dependent cosmo-
logical constant Λ within 2D dilaton gravity. As a first step
we clarify how a state independent cosmological constant
appears in 2D dilaton gravity.

A. Defining a 2D cosmological constant

The notion of a cosmological constant is ambiguous in
2D dilaton gravity. In any dimension greater than two it
implies simultaneously two things: 1. Λ is a parameter
in the action that is multiplied by the volume form, and
2. Vacuum solutions asymptote to constant curvature
spaces, i.e., de Sitter or AdS, depending on the sign of
Λ. In 2D dilaton gravity, however, adding a constant to the
potential V does not lead to asymptotically constant
curvature spaces in general. Instead, in order to obtain
such spaces one has to add a linear term in the dilaton to the
potential V. This is seen most easily from the EOMs (13)
for kinetic potentials U that vanish asymptotically suffi-
ciently fast: if V is constant, then the Ricci scalar vanishes
asymptotically. However, if V ¼ ΛX, then the Ricci scalar
asymptotes to R ¼ 2Λ.
In our work we always use the second notion of

“cosmological constant,” i.e., when we have positive
(negative) Λ and the cosmological constant term in the
dilaton potential

V ¼ ΛX þ Vrest ð46Þ

dominates at large values of X, then the metric asymptotes
to 2D de Sitter or AdS space.
In fact, there is a natural interpretation of V ¼ ΛX in the

context of theories that emerge from dimensional reduction
of sufficiently symmetric higher-dimensional theories of
gravity. Namely, the original volume form is proportional
to the 2D volume form times the dilaton field times some
(irrelevant) constant volume factor, the value of which

depends on the internal space. We recall this now explicitly
for spherical reduction.
The bulk term in the Einstein-Hilbert action for pure

Einstein gravity with a cosmological constant in dþ 1
dimensions is

Idþ1 ¼ −
1

16πGdþ1

Z
M

ddþ1x
ffiffiffiffiffiffiffiffiffi
gdþ1

p ðRdþ1 − 2ΛÞ: ð47Þ

Spherical symmetry implies that the ðdþ 1Þ-dimensional
metric can be brought into the adapted form [31–35]

ds2 ¼ gμνdxμdxν þ ðGdþ1Þ 2
d−1φ2ðxμÞdΩ2

Sd−1
; ð48Þ

where μ; ν ∈ f0; 1g, φðxμÞ is essentially the surface radius
and dΩ2

Sd−1 is the line element of the round ðd − 1Þ-sphere.
Inserting this ansatz into the Einstein-Hilbert action (47)
upon integrating out the ðd − 1Þ-sphere yields

ISRG ¼ −
Ad−1

16π

Z
M

d2x
ffiffiffi
g

p
φðrÞd−1ðRdþ1 − 2ΛÞ; ð49Þ

where Ad−1 denotes the solid angle subtended by a
ðd − 1Þ-sphere. The action (49) is now a special case of
the 2D dilaton gravity bulk action (10) if we express the
ðdþ 1Þ-dimensional Ricci scalar in terms of 2D quantities
(see for instance Eq. (C.10) in Ref. [36])

Rdþ1 ¼ Rþ ðd − 1Þðd − 2Þ
φ2

ðG 2
1−d
dþ1 − ð∇φÞ2Þ

−
2ðd − 1Þ

φ
∇2φ ð50Þ

and define the dilaton field XðrÞ as

XðrÞ ¼ Ad−1

8πGdþ1

Gdþ1φðrÞd−1: ð51Þ

The result (49) makes it explicit that the dilaton field
couples to the Ricci scalar and the cosmological constant in
the same way, i.e., linearly in terms of X as defined in (51).
We recover exactly the potentials (45), but with V replaced
by V þ ΛX, concurrent with (46).

B. Converting Λ into a Uð1Þ charge
Having agreed that the term we want to add to the dilaton

potential V is given by ΛX, we proceed now with one of our
main goals, namely to make Λ a state-dependent quantity
rather than a parameter in the action. In fact, there is a well-
known procedure in 2D dilaton gravity to convert param-
eters in the action into constants of motion by “integrating
in” Maxwell fields (see Appendix B of Ref. [37] for a
summary).
Translating the general procedure to the present context,

we add a Maxwell term (31) with the specific coupling
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fðXÞ ¼ 1

X
: ð52Þ

This choice leads to the nonminimally coupled Maxwell
action

IMax ¼
Z
M

d2x
ffiffiffi
g

p 1

X
FμνFμν: ð53Þ

Inserting the on-shell value (32) for the field strength
establishes

IMaxjEOM ¼
Z
M

d2x
ffiffiffi
g

p
X
q2

8
: ð54Þ

From the above it seems reasonable to set q2 ∝ Λ. The
correct relation (in particular, the correct sign and factor)
between the Uð1Þ charge and cosmological constant,

q2

8
¼ −Λ; ð55Þ

can be deduced from comparing the full bulk action Ibulk
(2) with the Uð1Þ field integrated out and (49). Namely,
if we disregard for a moment the terms containing the
potentials U and V, we obtain

IbulkjU¼V¼0 ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p ðXRþ fðXÞFμνFμνÞ

− 4

Z
M

d2x
ffiffiffi
g

p ∂rðfðXÞFrτAτÞ; ð56Þ

which on shell reduces to

IbulkjU¼V¼0 ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p �
XRþ q2

4

1

fðXÞ
�
: ð57Þ

The result above with the identification (52) then leads to
the equality (55) upon comparison with (49)–(51).
Thus, we have succeeded in converting the cosmological

constant into a state-dependent parameter, namely a con-
served Uð1Þ charge. For real charges q the cosmological
constant is negative, so henceforth we restrict ourselves to
discussions of asymptotically AdS spacetimes.

C. Confinement of Λ

The cosmological constant emerges as a thermodynamic
variable naturally this way, since we may regard it as the
charge of a Maxwell field with the peculiar coupling (52).
Let us now check under which conditions this leads to a
confining potential. The inequality (41) holds provided the
dilaton potential VðXÞ obeys

lim
X→∞

����VðXÞX

���� < ∞: ð58Þ

In other words, as long as the original dilaton potential does
not grow faster than X at large values of the dilaton, the
confinement inequality (41) holds. To ensure this inequality
we assume from now on that VðXÞ grows more slowly than
X at large values of the dilaton,

VðX → ∞Þ ∝ Xα α < 1: ð59Þ

This assumption holds for all values of dimension
2 < d < ∞ for spherically reduced models; see (45) [38].
A key property of confining charges in general and the

charge describing an effective cosmological constant in
particular is that the asymptotic behavior of the Killing
norm in the metric (14) is dominated by the charge term

ξ ¼ −2ΛeQðXÞhðXÞ þ � � � : ð60Þ

The fact that all other terms in the Killing norm are
subleading follows from the inequalities (40) and (41).
The discussion in Sec. II C, in particular the use of the

boundary term (26), assumed that the term in the metric
highlighted in (60) was asymptotically subleading. This is no
longer the case, so we need to find a suitable boundary term
that gives a well-defined variational principle. We have
summarized this main result, which is a natural generaliza-
tion of (26), in equations (1)–(4) of the Introduction. There
are two main differences from the old results used in Sec. II.
First, the action now includes a bulk total derivative term,

−4
Z
M

d2x
ffiffiffi
g

p ∇μðfFμνAνÞ: ð61Þ

This term arises from requiring that the on-shell action
be a function of q rather than Φc. In fact, the term (61)
corresponds on shell to qΦc, the expression appearing in
the (inverse) Legendre transformation of (37). So, this term
ensures that we are in a thermodynamic ensemble where the
cosmological constant Λ is fixed as part of the boundary
conditions, as we shall discuss in detail in the next section.
Note that a corresponding term was already considered in
Ref. [3] in a similar model.
Secondly, the boundary term (26) is extended to a

Born-Infeld type of boundary action,

IBI ¼
Z
∂M

dx
ffiffiffi
γ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−QðXÞðwðXÞ þ 2FμνFμνfðXÞ2hðXÞÞ

q
:

ð62Þ

This is one of our main results. We explain now why (and
under which conditions) this result is correct, starting first
with an on-shell argument, showing next that the result
above leads to a meaningful expression for the free energy
and arguing finally that the full action with the boundary
term (62) leads to a well-defined variational principle, in
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the sense that the first variation of the action (1) vanishes
for all variations that preserve our boundary conditions.
With hindsight, the Born-Infeld boundary term (62) is a

natural generalization of (26) that reduces on shell to the
ground-state Killing norm,

ξ0ðXÞ ¼ eQðXÞðwðXÞ − 2ΛhðXÞÞ: ð63Þ

In order to ensure that the ground-state Killing norm is also
the asymptotic Killing norm

ξðXÞ ¼ ξ0ðXÞ − 2eQðXÞM ¼ ξ0ðXÞ þ subleading; ð64Þ

we have to impose a restriction on the kinetic potential
UðXÞ or, equivalently, on the function hðXÞ, viz.

lim
X→∞

jhðXÞj → ∞: ð65Þ

Expressed as a condition on the function QðXÞ, the
condition (65) yields the inequality

lim
X→∞

eQðXÞ >
N2

X2
; ð66Þ

where N is some nonvanishing real number. Translating
this into a condition on the kinetic potential UðXÞ finally
establishes [44]

lim
X→∞

UðXÞ > −
2

X
: ð67Þ

In the present work we are going to consider exclusively
models that obey the inequality (67). Note that this includes
the special case of vanishing kinetic potential, U ¼ 0, as
well as spherically reduced gravity (45) for spatial dimen-
sions 1 < d ≤ ∞.
Following the steps reviewed in Sec. II, the on-shell

action (1) yields the same expression for the thermody-
namic potential as equation (38), with ξ0 now defined as
above. But since we wish to interpret the cosmological
constant Λ as (negative) pressure, the thermodynamic
potential for this ensemble should now be regarded as
the Gibbs free energy, rather than the Helmholtz free
energy:

GcðTc;Λ; DcÞ ¼ −2πXhTc þ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p �
: ð68Þ

This point will be discussed in more detail in the beginning
of the next section.
The new action (1) yields a well-defined variational

principle, provided the dilaton field obeys Dirichlet boun-
dary conditions

δ lnXj∂M ¼ 0 ð69Þ

and the asymptotic behavior of the variation of the Killing
norm δξ obeys

δξ ¼ UξδX − 2eQhδΛþ � � � ; ð70Þ

where the ellipsis denotes asymptotically subleading terms,
given our assumptions on the potentials [45].
The above discussion was concerned with treating Λ as

a particular example of a confining Uð1Þ charge, but as
mentioned in Sec. II D, the action (1) provides a well-defined
variational principle and the correct thermodynamics for
generic confining Uð1Þ fields subject to the conditions (40)
and (41), provided we are in the thermodynamic ensemble
where q is kept fixed. For related work in higher dimensions,
see Ref. [46].
Without the bulk total derivative term (61), the action (1)

diverges when evaluated on shell. In the case of AdS, this is
an unwanted property, which motivated the addition of the
term (61) to the full action. However, for generic confining
potentials, the divergence of the on-shell action has a
physical interpretation, namely the infinite amount of energy
required to bring a charge out to infinity, and is therefore a
feature of the on-shell action appropriate for the ensemble in
which the electrostatic potentialΦc is kept fixed. Thus, when
studying generic confining potentials in that ensemble, one
removes the term (61) from the full action (1) and keeps only
the Born-Infeld boundary term (62).
In the next section we exploit the results of the present

section to discuss thermodynamics in the presence of a
state-dependent cosmological constant Λ < 0.

IV. Λ THERMODYNAMICS

In the following, we are going to study black hole
thermodynamics with the cosmological constant promoted
to a thermodynamic variable. We start by clarifying some
nomenclature regarding energy versus enthalpy.
In the previous sections the on-shell action determined

the Legendre transform of the Helmholtz free energy with
respect to the pair q (the charge) and Φc (proper electro-
static potential) (37). The Helmholtz free energy (38)
depends on temperature Tc, the electric charge q, and
the dilaton charge Xc. The label “Helmholtz free energy”
was justified there, since the charge is usually an extensive
quantity (doubling the volume doubles the charge), while
the proper electrostatic potentialΦc is an intensive quantity.
However, when interpreting the (square of the) electric
charge as the cosmological constant through the identi-
fication (55), we should not consider Λ as an extensive
quantity (doubling the volume should not change the
cosmological constant). Instead, Λ is now intensive and
acts as a pressure and, as we shall demonstrate below,
its conjugate variable has the properties expected of a
“volume.” Therefore, the expression (68) is actually the
Gibbs free energy, also known as free enthalpy.
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A. Entropy, chemical potential and volume

The entropy is obtained from the free enthalpy Gc in the
usual way:

S ¼ −
∂Gc

∂Tc

����
Dc;Λ

¼ 2πXh: ð71Þ

This result for entropy is the same as the ones that follow
from (30) and (38) [22]. Thus, a variable cosmological
constant [or more generally, a confining Uð1Þ charge]
leaves the form of entropy unchanged and enters only in
determining the locus of the horizon Xh.
The entropy (71) coincides with the Wald entropy [47]

and, in the case of dimensionally reduced Einstein gravity,
correctly captures the higher-dimensional Bekenstein-
Hawking area law. In that sense, the relation (71) between
entropy and Xh is the 2D analogue of the Bekenstein-
Hawking law. For dilaton gravity models coming from
spherical reduction, Xh is proportional to the horizon area
of the higher-dimensional theory (51), which allows us to
write (71) in the usual way:

S ¼ Ah

4Gdþ1

: ð72Þ

A Bekenstein-Hawking law for intrinsically 2D models can
be formulated as well, if one associates the horizon to one
connected component of a sphere in one dimension (which
consists of two disjoint points) Ah ¼ A1=2 ¼ 1 and intro-
duces the effective Newton coupling Geff ¼ G2=X for
scalar-tensor theories, where X should be evaluated at
some scale. Since the horizon is the only scale available,
one can define Geff ¼ G2=Xh, which allows us to rewrite
(71) in the suggestive form [22]

S ¼ Ah

4Geff
: ð73Þ

The variable conjugate to the dilaton charge Dc used to
determine the location of the cavity around the black hole is
called the dilaton chemical potential ψc, which is obtained
from the free enthalpy by

ψc ¼ −
∂Gc

∂Dc

����
Tc;Λ

¼ −
1

2
Uce−Qc

� ffiffiffiffiffi
ξc

p
−

ffiffiffiffiffi
ξ0

p �

þ
�
1

2
w0
c − Λh0c

��
1ffiffiffiffiffi
ξc

p −
1ffiffiffiffiffi
ξ0

p
�
: ð74Þ

In the case Λ ¼ 0, this expression reduces to the one found
in Ref. [22]. The presence of a negative cosmological
constant increases the value of the dilaton chemical
potential at the cutoff surface.
The third pair of variables is given by Λ and its conjugate

Θc. These correspond to the pair q and Φc when the

interpretation of the Uð1Þ charge as a cosmological con-
stant is not invoked. The quantity Θc, which we shall refer
to as the “thermodynamical volume,” is obtained from the
Gibbs free energy by

Θc ¼ −
∂Gc

∂Λ
����
Tc;Dc

¼ hcffiffiffiffiffi
ξ0

p −
hcffiffiffiffiffi
ξc

p þ hhffiffiffiffiffi
ξc

p : ð75Þ

Here, the subscripts h; c denote evaluation at the horizon or
the cavity wall, respectively, and h is the function defined in
(34). The specific coupling fðXÞ ¼ 1=X, used to model Λ
as a Uð1Þ charge, yields

hðXÞ ¼
Z

X
dyyeQðyÞ: ð76Þ

When evaluated at the horizon, this is precisely the
definition for the geometric volume of a 2D black hole
presented in Ref. [48] up to a constant factor. We shall
elaborate on the connection betweenΘc and this quantity in
Sec. IV C.

B. Enthalpy, energy and the first law

With the above definitions of the variables of thermo-
dynamic phase space, one can now formulate the first law
of black hole thermodynamics. A Legendre transformation
of the Gibbs free energy (68) with respect to the pair Tc; S
yields the enthalpy

HcðS;Λ; DcÞ ¼ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p �
: ð77Þ

This expression for enthalpy coincides with the one
obtained from the boundary stress tensor.
The boundary stress tensor Tab is obtained from the

usual Brown-York prescription:

Tab ¼ −
2ffiffiffi
γ

p δΓ
δγab

����
EOM

: ð78Þ

This yields

Tττ ¼ −nμ∇μXγττ þ e−Q
ffiffiffiffiffi
ξ0

p
γττ: ð79Þ

In particular, the energy measured by an observer along
the timelike unit Killing vector ua is

Tabuaub ¼ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p �
; ð80Þ

which coincides with the enthalpy (77) [49].
The first law of thermodynamics can be deduced from

(77) by making use of the relations
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dξc ¼ eQcðw0
cdDc − 2Λh0cdDc − 2dM − 2hcdΛÞ

þ UcξcdDc; ð81Þ

dM ¼ TdS − hhdΛ: ð82Þ

where the subscript h indicates evaluation at Xh. Thus, one
arrives at

dHcðS;Λ; DcÞ ¼ TcdS − ΘcdΛ − ψcdDc; ð83Þ
with the temperature Tc from (21), the dilaton chemical
potential ψc calculated in (74), and the thermodynamical
volume Θc determined in (75). This is the quasilocal form
of the first law of black hole thermodynamics in dilaton
gravity with the cosmological constant treated as a thermo-
dynamic variable (for a discussion of the difference
between the quasilocal and asymptotic forms of the first
law, see Ref. [22]). The three conjugate pairs of variables
are as follows: 1. Local temperature Tc and entropy S,
2. Thermodynamical volume Θc and (sign-reversed) cos-
mological constant −Λ, and 3. Dilaton charge Dc and
dilaton chemical potential ψc.
When written on the “matter side” of Einstein’s equa-

tions, the cosmological constant acts like a perfect fluid
with pressure p ¼ − Λ

8πGdþ1
. Thus, if we identify the

cosmological constant as a negative pressure and denote
the volume as Vc ¼ 8πGdþ1Θc (for intrinsically 2D models
we have p ¼ −Λ; Vc ¼ Θc due to our conventions), then
the first law above takes the familiar form

dHcðS; p;…Þ ¼ TcdSþ Vcdpþ other work terms: ð84Þ

Similarly, the first law for the Gibbs free energy reads in
this notation

dGcðT; P;…Þ ¼ −SdTc þ Vcdpþ other work terms; ð85Þ

while the one for internal energy is given by

dEcðS; Vc;…Þ ¼ TcdS − pdVc þ other work terms ð86Þ

and the one for Helmholtz free energy by

dFcðTc; Vc;…Þ ¼ −SdTc − pdVc þ other work terms:

ð87Þ

Thus, standard thermodynamics is recovered. The asymp-
totic form of the first law is derived in the next section,
and an equivalent microcanonical analysis is presented in
Sec. V C.
For a vanishing cosmological constant, (83) reduces to

the first law derived in Ref. [22]. We stress again that, in the
framework of 2D dilaton gravity, treating the cosmological
constant as a thermodynamical variable requires no further
assumptions in this setup, since it is just a charge with a

specific coupling to the dilaton field. The first law for dilaton
gravity coupled to a generic Maxwell field essentially looks
the same. The only differences lie in the definition of the
coupling function and the resulting function hðXÞ, which
always lead to confinement for a cosmological constant,
and the extensivity properties discussed in the beginning of
this section.

C. Asymptotic form of the first law

The conserved quantityM, the mass of the black hole, is
related to the asymptotic limit of the proper enthalpyHc via

lim
Xc→∞

ffiffiffiffiffi
ξc

p
Hc ¼ M: ð88Þ

One can readily use the condition ξðXhÞ ¼ 0 and the result
(71) for the entropy to derive the first law (82) for M. But
this same result also follows from (88) and the quasilocal
form of the first law (83). Differentiating the quantityffiffiffiffiffi
ξc

p
Hc gives

d
� ffiffiffiffiffi

ξc
p

Hc

�
¼

ffiffiffiffiffi
ξc

p
TcdS −

ffiffiffiffiffi
ξc

p
ΘcdΛ −

ffiffiffiffiffi
ξc

p
ψcdDc

þ e−Qc

� ffiffiffiffiffi
ξ0

p
−

ffiffiffiffiffi
ξc

p � 1

2
ffiffiffiffiffi
ξc

p dξc: ð89Þ

Using (81) for dξc and taking the Xc → ∞ limit yields

lim
Xc→∞

d
� ffiffiffiffiffi

ξc
p

Hc

�
¼ dM ¼ TdSþ hhdð−ΛÞ: ð90Þ

Thus, in the asymptotic form of the first law, the quantity
ΘcdΛ is replaced by hhdΛ, which identifies hh as the
(asymptotic) thermodynamical volume V of the black hole
spacetime. Note that the correct expression for V must be
obtained from the first law; the Xc → ∞ limit of

ffiffiffiffiffi
ξc

p
Θc

yields additional finite terms besides hh.

D. Generalization to charged black holes

We generalize now equation (83) for systems with
additional Uð1Þ charges, like Reissner-Nordström or
BTZ black holes. This introduces an additional term in
the Killing norm for each charge,

ξðXÞ ¼ eQðXÞ
�
wðXÞ − 2M − 2ΛhΛðXÞ þ

X
i

q2i
4
hiðXÞ

�
;

ð91Þ
where the sum runs over the number of additional Uð1Þ
fields. Here, the superscript Λ indicates that the function
hΛðXÞ is associated with the cosmological constant
coupling function (76). The coupling functions fiðXÞ for
the Uð1Þ gauge fields are left unspecified, subject only to
the assumption that the hiðXÞ terms do not dominate the
asymptotic behavior of (91).
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As before, we want the ground state to be asymptotic
AdS. Therefore, we choose ξ0ðXÞ to be the state with
M ¼ qi ¼ 0. The first law for the Gibbs free energy is thus
generalized to

dGc ¼ −SdTc þ
X
i

Φi
cdqi − ΘcdΛ − ψcdDc; ð92Þ

with Φi
c being the proper electrostatic potential for the ith

Uð1Þ field:

Φi
c ¼

∂Gc

∂qi
����
Tc;Λ;Dc

¼ −
qi
4

hic − hihffiffiffiffiffi
ξc

p : ð93Þ

Again, the subscripts h and c stand for evaluations at
the horizon and cavity wall, respectively. The addition of
the new charges affects both the Killing norm (91) and the
locus Xh of the horizon, but it leaves the expressions (71)
for the entropy S and (75) for the thermodynamical volume
Θc unchanged. The dilaton chemical potential, however,
acquires a new term:

ψc ¼ −
∂Gc

∂Dc

����
Tc;Λ;qi

¼ −
1

2
Uce−Qc

� ffiffiffiffiffi
ξc

p
−

ffiffiffiffiffi
ξ0

p �

þ
�
1

2
w0
c − Λh0c

��
1ffiffiffiffiffi
ξc

p −
1ffiffiffiffiffi
ξ0

p
�
þ
X
i

q2i
8

hicffiffiffiffiffi
ξc

p : ð94Þ

Generalizations to non-Abelian gauge fields are straight-
forward as well, but they will not be discussed in detail
in the present work. The main change as compared to the
Abelian case is that the conserved charges qi are replaced
by the conserved Casimirs of the corresponding gauge
algebra. For each Casimir Ci, one can introduce a separate
coupling function fiðXÞ, exactly as above. For instance, in
the case of suð2Þ, one would have only the quadratic
Casimir as conserved quantity from the gauge sector,
while for suð3Þ, one would have quadratic and cubic
Casimirs, which could have separate coupling functions
to the dilaton field.
In the next section we address further developments of

black hole thermodynamics in the presence of a state-
dependent cosmological constant Λ. Those results also
generalize to charged black holes in the same way as
described above and to black holes with a confining Uð1Þ
charge as described in Sec. II D.

V. FURTHER DEVELOPMENTS

In this section we proceed with some further develop-
ments. In Sec. VA we present an alternative confinement
condition that arises in some applications and violates
our assumption (40). In Sec. V B we unravel the presence
of a Schottky anomaly in the specific heat and explain its
physical origin. In Sec. V C we conclude with a micro-
canonical analysis, thereby recovering in a simple way

results from the canonical analysis in the limit when the
cavity wall is removed to infinity.

A. Alternative confinement condition

The confinement condition (41) holds, assuming that the
assumption (40) is also true. If instead of (40) the function
w obeys

lim
X→∞

wðXÞ ¼ 0; ð95Þ

then the confinement condition (41) is replaced by

lim
X→∞

jhðXÞj ¼ ∞: ð96Þ

The whole discussion in Sec. III C remains valid, in
particular the condition (67). We shall discuss two exam-
ples where the conditions (95), (96) hold in Sec. VI.

B. Schottky anomaly

The Schottky anomaly in the specific heat is the phe-
nomenological observation that specific heat can have a
maximum and decrease monotonically at sufficiently large
temperatures. The attribute “anomaly” is justified because
usually the specific heat increases with temperature (or
remains constant) in standard condensed matter systems.
Typically, the Schottky anomaly arises in systems with a
limited number of energy levels, see e.g. Refs. [51,52].
We argue now that generically we have a Schottky

anomaly in the specific heat as long as we are working with
a finite cutoff Xc. The specific heat (at constant dilaton
charge Dc and constant Λ < 0) is given by

Cc ¼ Tc
∂S
∂Tc

����
Dc;Λ

¼ 2πw0
h − 4πΛh0h

wh
00 − 2Λhh00 þ ðw0

h−2Λh
0
hÞ2

2ðwc−2M−2ΛhcÞ
; ð97Þ

where the mass M is determined as a function of the
temperature Tc, cosmological constant Λ and dilaton
charge Dc from the relation

Tc ¼
w0
h − 2Λh0h

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eQcðwc − 2M − 2ΛhcÞ

p : ð98Þ

For small black holes, Xh ≪ Xc, the behavior of specific
heat depends on the particular model. Either specific heat
tends to zero from above as the black hole shrinks, or there
is a Hawking-Page phase transition, in which case specific
heat could have a pole at some critical temperature and
become negative below that temperature. So there is no
universal behavior of specific heat for small black holes.
For large black holes, Xh ¼ Xcð1 − ϵÞ with ϵ ≪ 1, we

expand in powers of ϵ and obtain

Cc ¼ ϵ4πXh þOðϵ2Þ: ð99Þ

COSMOLOGICAL CONSTANT AS CONFINING U(1) … PHYSICAL REVIEW D 90, 044032 (2014)

044032-11



This quantity is non-negative for positive ϵ. Thus, specific
heat tends to zero from above as the horizon approaches the
cutoff surface. At the same time, temperature is monoton-
ically increasing in this limit,

Tc ¼
1ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0
h − 2Λh0h

p
4π

ffiffiffiffiffiffiffiffiffiffiffiffi
eQcXh

p þOð ffiffiffi
ϵ

p Þ; ð100Þ

since the Tolman factor diverges if the black hole horizon
coincides with the cutoff surface due to an infinite blueshift.
Parametrically we have the relation

Cc ¼
N2 þOðϵÞ

T2
c

; ð101Þ

where N2 is some numerical factor given by

N2 ¼ w0
c − 2Λh0c
4πeQc

ð102Þ

that is independent from ϵ. The 1=T2
c behavior of specific

heat in the high-temperature limit is typical for a non-
interacting spin system (“ideal paramagnet”) in an external
field, see e.g. Ref. [52].
In conclusion, specific heat decreases strictly monoton-

ically as a function of temperature for black holes whose
size approaches the cutoff surface. If specific heat is
monotonically increasing at some lower temperature, by
continuity specific heat must have a maximum. This is the
essence of the Schottky anomaly for the specific heat.
In fact, it is simple to understand the physical origin of

our Schottky anomaly. Namely, the large growth of temper-
ature is not associated with a large growth of states or
a large growth of the black hole mass, because there is
literally no room left for additional states, as the black
horizon is already close to the cutoff surface. Instead, the
growth of temperature is almost entirely due to increased
blueshifts. This is why the specific heat is decreasing, as is
the case for the Schottky anomaly.
The Schottky anomaly above exists for arbitrary models

compatible with our assumptions, as long as we work at
finite cutoff Xc. If one would like to have a Schottky
anomaly that persists as the cutoff is removed to infinity,
then one would need to introduce functions w and h that are
chosen such that the specific heat for Xc → ∞,

C∞ ¼ lim
Xc→∞

Cc ¼ 2π
w0
h − 2Λh0h

w00
h − 2Λh00h

; ð103Þ

is positive and has a maximum if expressed as a function
of T. None of the models that we are going to discuss as
examples has this property. It could be interesting to
construct such examples in order to model Schottky
anomalies in an AdS/CFT context.

C. Microcanonical analysis

While so far we have worked in the canonical ensemble
(or related ensembles), our main result (1)–(4) can also be
applied to microcanonical thermodynamics. In that case
the cutoff, which is needed to ensure the existence of the
canonical ensemble in most models, is not introduced. As a
result, there is no dilaton charge or dilaton chemical
potential, and Tolman factors do not appear.
Let us start by directly deriving a microcanonical first

law. By analogy to Ref. [22] we formulate first “Smarr’s
law,” i.e., a relation between the mass parameter M and
other parameters (the cosmological constant Λ and value of
the dilaton at the horizon Xh):

M ¼ 1

2
wðXhÞ − ΛhðXhÞ: ð104Þ

Differentiating this relation obtains

dM ¼
�
1

2
w0
h − Λh0h

�
dXh − hhdΛ; ð105Þ

where the subscript h denotes evaluation at the horizon.
With the Hawking temperature T ¼ β−1 from (20), the
Bekenstein-Hawking entropy S from (71), the pressure
p ¼ −Λ=ð8πGdþ1Þ, and the volume V ¼ 8πGdþ1hh [see
(76)], this yields the microcanonical first law [see (82)]:

dMðS; pÞ ¼ TdSþ Vdp: ð106Þ
This is the same result obtained via an asymptotic analysis
in Sec. IV C.
In the next section we consider various examples of

canonical and microcanonical black hole thermodynamics in
the presence of a state-dependent cosmological constant Λ.

VI. EXAMPLES

In this section we present three examples. The purpose of
the first two examples is to confirm that our general results
in Secs. II, III, IV and V are correct, so we focus on
recovering known results in the language of 2D dilaton
gravity. We stress here the generality of our results, which
can be applied to any 2D dilaton gravity theory, subject to
the conditions (40) and (41) [or the alternative conditions
(95) and (96)] with (52) on the model-dependent functions
UðXÞ and VðXÞ. As the last example we discuss one of the
simplest intrinsically 2D models whose solutions asymp-
tote to AdS and whose potentials obey the alternative
confinement conditions (95) and (96) [again with (52)].

A. AdS-Schwarzschild-Tangherlini

Since AdS-Schwarzschild-Tangherlini is an effectively
2D spacetime [fibered by ðd − 1Þ-spheres], it can be
described in the framework of 2D dilaton gravity. For a
thorough treatment of the thermodynamics of this space-
time, see e.g. Ref. [53]. We will make use of the
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prescription for spherical reduction of higher-dimensional
black holes given in Ref. [22] and take into account the
proportionality factor omitted in (45), which involves
Newton’s constant in dþ 1 dimensions, Gdþ1.

UðXÞ ¼ −
d − 2

ðd − 1ÞX ; ð107Þ

VðXÞ ¼ −
1

2
ðd − 1Þðd − 2Þϒ 2

d−1X1− 2
d−1: ð108Þ

Here ϒ ¼ Ad−1
8πGdþ1

, where Ad−1 denotes again the solid angle

subtended by the ðd − 1Þ-dimensional unit sphere. We
assume 1 < d < ∞.
According to our general discussion we add now a Uð1Þ

gauge field with coupling function (52). The functions
wðXÞ, eQðXÞ and hðXÞ are easily calculated to yield

wðXÞ ¼ ðd − 1Þϒ 1
d−1X

d−2
d−1; ð109Þ

eQðXÞ ¼ 1

d − 1
ϒ

1
1−dX

2−d
d−1; ð110Þ

hðXÞ ¼ 1

d
ϒ

1
1−dX

d
d−1: ð111Þ

We recover the first law (83) for AdS-Schwarzschild-
Tangherlini black holes with variable cosmological con-
stant with the volume

Θc ¼
1

d
ϒ

1
1−d

�
X

d
d−1
cffiffiffiffiffi
ξ0

p −
X

d
d−1
cffiffiffiffiffi
ξc

p þ X
d

d−1
hffiffiffiffiffi
ξc

p
�
: ð112Þ

The dilaton field is related to the radial coordinate r of
ðdþ 1Þ-dimensional AdS-Schwarzschild via

XðrÞ ¼ ϒrd−1: ð113Þ
From the results above, the known relations for temperature
and surface pressure follow (see Ref. [53]).
If written on the right side of Einstein’s equation, the

cosmological constant can be regarded as a negative
pressure p ¼ −Λ=ð8πGdþ1Þ, concurrent with our general
discussion in Sec. IV B. If the cavity is removed, Xc → ∞,
then the asymptotic form of the first law given in
Sec. IV C is

dMðS; pÞ ¼ TdSþ Vdp; ð114Þ

where V ¼ 8πGdþ1hh is the volume of a ðd − 1Þ-sphere
with radius rh:

V ¼ 1

d
Ad−1rdh: ð115Þ

Thus, the mass should be regarded as enthalpy in AdS
space. This result was discussed already in Refs. [6,8–11].

B. BTZ black holes

BTZ black holes are solutions of Einstein gravity with a
negative cosmological constant in three dimensions [54,55].
In Ref. [56], a Kaluza-Klein reduction to 2D of BTZ black
holes was presented. However, in this treatment the angular
momentum J enters as a parameter in the action rather than
emerging as a constant of motion. In the same way that
the cosmological constant can be promoted to a constant of
motion by integrating in a Uð1Þ field, a nonzero angular
momentumofBTZcanbe treatedbyintroducinganadditional
Uð1Þ field with a specific coupling and charge q ¼ J [22].
The following functions are used to model BTZ in 2D

dilaton gravity:

eQðXÞ ¼ 4G3; wðXÞ ¼ 0;

fΛðXÞ ¼ 1

X
; fJðXÞ ¼ −2G2

3X
3;

hΛðXÞ ¼ 2G3X2; hJðXÞ ¼ 1

G3X2
: ð116Þ

The BTZ black hole is thus a model satisfying the
generalized confinement condition given in Sec. VA.
With the functions (116) in the action, the analysis of

Sec. IV D yields the first law for BTZ black holes with
the cosmological constant as a thermodynamic variable.
In terms of the (proper) enthalpy, the first law reads

dHc ¼ TcdSþΩcdJ − ΘcdΛ − ψcdDc; ð117Þ

with

Tc ¼
2G3

πl2
ffiffiffiffiffi
ξc

p
�
Xh −

1

X3
h

�
lJ
4G3

�
2
�
; ð118Þ

Ωc ¼
J

4G3

ffiffiffiffiffi
ξc

p
�

1

X2
h

−
1

X2
c

�
; ð119Þ

ψc ¼
4G3ffiffiffiffiffi
ξc

p
�
1

l
Hc −

1

X3
c

�
J

4G3

Þ2
�
; ð120Þ

Θc ¼
�

hΛcffiffiffiffiffi
ξ0

p −
hΛcffiffiffiffiffi
ξc

p þ hΛhffiffiffiffiffi
ξc

p
�
; ð121Þ

where we have introduced the AdS radius l related to Λ in
three dimensions via Λ ¼ − 1

l2. The dilaton is related to the
standard AdS radial coordinate r by X ¼ r=ð4G3Þ. Using
this to rewrite the thermodynamic quantities in terms of the
inner horizon r− and outer horizon rþ, given by

r� ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4G3M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J2

M2l2

qr
; ð122Þ

gives the thermodynamic quantities (118)–(121) in their
more familiar forms.
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Again, we express the cosmological constant in terms of
the associated pressure p ¼ − Λ

8πG3
. Accounting for Tolman

factors, using the relation (88), and taking the limit
Xc → ∞, one recovers the analogue of (114) for BTZ
black holes, which was already presented in Ref. [8]:

dMðS; J; pÞ ¼ TdSþ ΩdJ þ πr2þdp: ð123Þ

The last term again contains the geometric volume
V ¼ πr2þ of the black hole, see Ref. [48].

C. Jackiw-Teitelboim model

The Jackiw-Teitelboim model [57,58] has vanishing
kinetic potential, UðXÞ ¼ 0, and linear dilaton self-
interaction potential, VðXÞ ¼ ΛX. Like in our general
discussion, we convert the parameter Λ of the action into
a constant of motion by integrating in a Maxwell field.
In our conventions the relevant functions read

QðXÞ ¼ wðXÞ ¼ 0; hðXÞ ¼ X2

2
: ð124Þ

The Killing norm (33) simplifies to

ξ ¼ ð−ΛÞX2 − 2M; ð125Þ

so that the Killing horizon for negative Λ ¼ −1=l2 is
located at

Xh ¼ l
ffiffiffiffiffiffiffi
2M

p
: ð126Þ

The confinement conditions (95) and (96) hold, so the
gauge field is confining:

AτðXÞ ¼ −
ffiffiffi
2

p

4l
ðX2 − X2

hÞ þ AτðXhÞ Ar ¼ 0: ð127Þ

Thus, the Jackiw-Teitelboim model is the simplest example
of the class of models that satisfy the generalized confine-
ment condition presented in Sec. VA.
The Hawking temperature (20) yields

T ¼ ξ0

4π

����
X¼Xh

¼
ffiffiffiffiffiffiffi
2M

p

2πl
; ð128Þ

so that the Tolman temperature (21) is given by

Tc ¼
ffiffiffiffiffiffiffi
2M

p

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
c − 2l2M

p ; ð129Þ

which leads to a unique value for the mass as a function of
Tc, Λ, and Dc ¼ Xc:

MðTc;Λ; DcÞ ¼
2π2T2

cΛD2
c

Λ − 4π2T2
c
: ð130Þ

The Gibbs free energy reads

GcðTc;Λ; DcÞ ¼ Dc

� ffiffiffiffiffiffiffi
−Λ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2

c − Λ
q �

: ð131Þ

From the Gibbs free energy we derive

S ¼ −
∂Gc

∂Tc

����
Λ;Dc

¼ 4π2TcDcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2

c − Λ
p ¼ 2πXh; ð132Þ

Θc ¼ −
∂Gc

∂Λ
����
Tc;Dc

¼ Dc

2

�
1ffiffiffiffiffiffiffi
−Λ

p −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2T2
c − Λ

p
�
; ð133Þ

ψc ¼ −
∂Gc

∂Dc

����
Tc;Λ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2

c − Λ
q

−
ffiffiffiffiffiffiffi
−Λ

p
: ð134Þ

As it must be, the first law holds:

dGc ¼ −SdTc − ΘcdΛ − ψcdDc: ð135Þ
For small temperatures, T4

c ≪ Λ2, entropy vanishes
linearly, while volume and dilaton chemical potential
vanish quadratically in Tc. For large temperatures,
T4
c ≫ Λ2, entropy and volume approach constant values,

while the dilaton chemical potential diverges linearly in Tc.
Other thermodynamical quantities of interest can be

calculated straightforwardly. As an example, we calculate
the specific heat at constant Λ and constant dilaton charge
and find

CcjΛ;Dc
¼ Tc

∂S
∂Tc

����
Λ;Dc

¼ 4π2Tcð−ΛÞDc

ð4π2T2
c − ΛÞ3=2 ≥ 0: ð136Þ

Thus, specific heat at constant Λ and constant dilaton charge
is non-negative for the Jackiw-Teitelboim model and van-
ishes linearly at low temperatures, just like a free Fermi gas.
The high-temperature behavior, which is valid in the limit of
large black holes, X2

h ≫ X2
c − X2

h, is given by

Cc ∼
Dcð−ΛÞ
2πT2

c
þOðT−4

c Þ ð137Þ

in accordance with equation (101) and thus exhibits the
Schottky anomaly predicted from our general discussion in
Sec. V B.
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