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The electric field at the chargeless interface between two regions
of space

Robert A. McNeesa) and Asim Gangopadhyayab)

Department of Physics, Loyola University Chicago, Chicago, Illinois 60626

(Received 21 November 2012; accepted 20 February 2014)

A common method for solving Poisson’s equation in electrostatics is to patch together two or more

solutions of Laplace’s equation using boundary conditions on the potential and its gradient. Other

methods may generate solutions without the need to check these conditions explicitly, and

reconciling these solutions with the appropriate boundary conditions can be surprisingly subtle. As

a result, a student may arrive at paradoxical conclusions—even in the case of elementary

problems—that seem to be at odds with basic physical intuition. We illustrate this issue by

showing how the potential of a uniformly charged ring appears to violate continuity of the normal

component of the electric field at a chargeless surface. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4867378]

I. INTRODUCTION

In electrostatics, the first step in solving Poisson’s equa-
tion is often dividing space into multiple regions separated
by two-dimensional interfaces. A few basic techniques are
used to establish the solution (or its general form) in each
region, and these solutions are then spliced together to give
the full solution over all space. This last step is accomplished
by imposing boundary conditions on the potential and its
gradient at the interfaces between regions.

For example, suppose U1ð~rÞ is the potential throughout a
region V1 and U2ð~rÞ is the potential in an adjacent region V2.
If the two regions are separated by a surface S12 that carries
a surface charge density r, then the boundary conditions on
the potentials are

U1ð~rÞjS12
¼ U2ð~rÞjS12

and

ð~rU1ð~rÞ � ~rU2ð~rÞÞjS12
¼ r
�0

n̂12; (1)

where n̂12 is the unit vector on S12 that points from V1 to V2.
These conditions are usually summarized by stating that the
potential is always continuous, but the normal component of
the electric field will experience a “jump” discontinuity at a
charged surface. This succinct explanation is quickly inter-
nalized by undergraduate students, and it forms an important
part of their developing physical intuition for the behavior of
the electric potential.

However, some techniques for solving Poisson’s equation
do not explicitly use these boundary conditions when deter-
mining the potential. For instance, given a charge distribu-
tion with azimuthal symmetry, it may be possible to obtain
the solution on the symmetry axis directly from Coulomb’s
law. In regions where there is no charge this solution can be
compared to the general solution of Laplace’s equation to
obtain a solution that is valid at points off the symmetry
axis.1,2 This solution might take different forms in different
regions—inside and outside a charged sphere, for instance—
and of course the appropriate boundary conditions must be
satisfied at the interfaces between such regions. But in some
cases, we find that verifying the boundary conditions and
confirming the expected behavior of the potential can be sur-
prisingly subtle. This is especially true in situations where
there is no physical surface separating the regions. If there is
no physical surface then there is no surface charge density,

which leads one to expect that continuity of the electric field
should be easy (or even trivial) to demonstrate. When this
turns out to not be the case, students may be left wondering
whether they have misunderstood the essential physical ideas
expressed by the boundary conditions, or else made some
sort of error in obtaining the potential. The purpose of this
article is to show how the solutions of even very simple
examples can be tricky to reconcile with the boundary condi-
tions as they are expressed in Eq. (1).

In Sec. II, we establish notation and conventions by
reviewing the boundary conditions on the potential for an
azimuthally symmetric system that is most conveniently
described in spherical coordinates. In subsequent sections we
obtain the potential of a particular azimuthally symmetric
system—a charged ring—using the method described above,
and attempt to verify the boundary conditions as expressed
in Eq. (1). As we will show, this requires both nontrivial
effort and a careful re-examination of our assumptions.

II. BOUNDARY CONDITIONS IN

ELECTROSTATICS

Let us determine the potential due to a charged spherical
surface of radius R. The physical surface of the sphere natu-
rally divides space into two distinct regions: the “inside”
defined by r<R, and the “outside” defined by r>R. We will
assume azimuthal symmetry, as is usually the case with prob-
lems in an undergraduate course, so the surface charge density
r(h) depends only on the polar angle. Then the general solu-
tion for the potential U(r, h) in each region is given by

Uðr;hÞ ¼
Uinðr;hÞ ¼

X1
‘¼0

a‘ r‘ P‘ðcoshÞ for r < R;

Uoutðr;hÞ ¼
X1
‘¼0

b‘
r‘þ1

P‘ðcoshÞ for r > R;

8>>>><
>>>>:

(2)

where P‘ðcos hÞ are Legendre polynomials in the variable
cosh. The constants a‘ and b‘ are determined by imposing
the following boundary conditions at the interface r¼R:

1. continuity of the potential,

UinðR; hÞ ¼ UoutðR; hÞ; (3)
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2. a discontinuity in the radial derivative of the potential,

@Uin

@r

����
R

� @Uout

@r

����
R

¼ rðhÞ
�0

: (4)

The second boundary condition, which expresses the dis-
continuity in the radial component of the electric field due
to a surface charge density on the physical surface r¼R,
is derived from the integral form of Gauss’ law. It can
also be obtained directly from the differential form of
Maxwell’s equations, as in Refs. 3–5.

The series solutions and boundary conditions for the
potential, as written above, rely only on the symmetry of the
charge distribution and the division of space into spherically
symmetric inner and outer charge-free regions. Thus, they
should be an appropriate starting point for other charge dis-
tributions with these properties, including situations where
there is no physical surface separating the inner and outer
regions. In Sec. III, we will consider the potential for just
such an example and carefully analyze the boundary condi-
tions at points where there is no surface charge.

III. POTENTIAL DUE TO A UNIFORMLY

CHARGED RING

Let us consider a ring of radius R, oriented in the xy-plane
and centered at the origin that carries a uniformly distributed
total charge Q. This configuration is shown in Fig. 1.
Working in spherical polar coordinates, space is once again
naturally divided into the two domains r<R and r>R. But
unlike the case of the charged sphere, the interface r¼R
between these regions is not a physical surface. The left-
hand side of Eq. (4) is expected to vanish at most of the
points on this interface, because there is no physical surface
there to support a charge density r.

The regions r<R and r>R contain no charge, and hence
the potential in these domains is given by Eq. (2). For this
type of azimuthally symmetric problem the coefficients a‘ and
b‘ are determined by explicitly calculating the potential on the
axis of symmetry (the z-axis with h¼ 0) using Coulomb’s
law, expanding the result in powers of r (for r<R) or r�1 (for
r>R), and then equating these expansions with the general
solution, Eq. (2), evaluated at h¼ 0.6 The equality holds for
all values of r in each region, so the coefficients can be deter-
mined by a term-by-term matching of the expansions. Since
this method gives the full solution in both regions without
invoking the boundary conditions (3) and (4), one should
check that the result exhibits the correct behavior at the inter-
face r¼R. Is the potential continuous, and is its radial deriva-
tive continuous at points where there is no charge?

The potential due to a uniformly charged ring, at a point
z¼ r on the axis of the ring, is given by

Uðr; 0Þ ¼ Q

4p�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2
p : (5)

In the above two domains, this potential can be expanded as

Uðr;0Þ ¼

Q

4p�0

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
r2‘

R2‘þ1
for r < R;

Q

4p�0

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
R2‘

r2‘þ1
for r > R:

8>>>>>><
>>>>>>:

(6)

Comparing these expansions with the general solution in
Eq. (2) shows that the odd coefficients a2‘þ1 and b2‘þ1 are
all zero, while the even coefficients are

a2‘ ¼
ð�1Þ‘ Q

4p�0 R2‘þ1

ð2‘Þ!
22‘ ‘!ð Þ2

" #
and

b2‘ ¼
ð�1Þ‘ Q R2‘

4p�0

ð2‘Þ!
22‘ ‘!ð Þ2

" #
: (7)

Hence, the potential throughout the inner and outer regions
can be written

Uðr; hÞ ¼

Uinðr; hÞ ¼
Q

4p�0

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
r2‘

R2‘þ1
P2‘ðcos hÞ for r < R;

Uoutðr; hÞ ¼
Q

4p�0

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
R2‘

r2‘þ1
P2‘ðcos hÞ for r > R:

8>>>>>>><
>>>>>>>:

(8)

Fig. 1. A uniformly charged ring located at r¼R, h¼p/2, 0 � / < 2p. The

dashed line represents the “surface” r¼R that separates the regions r<R
and r>R.
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A similar derivation of this potential can be found in Ref. 7,
and an approximation motivated by numerical analysis is
given in Ref. 8.

Now let us verify that the solutions Uinðr; hÞ and Uoutðr; hÞ
satisfy the boundary conditions at the interface r¼R.
Demonstrating continuity of the potential is straightforward:
when evaluated at r¼R the two expressions in Eq. (8) are
clearly equal to one another term-by-term. All that remains
is to check whether the radial derivative of the potential is
continuous on the parts of the interface r¼R where there is
no charge. Computing the difference in the radial derivative
across the interface, we find

@Uinðr; hÞ
@r

����
R

� @Uoutðr; hÞ
@r

����
R

¼ Q

4p�0R2

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
4‘þ 1ð ÞP2‘ðcos hÞ:

(9)

According to Eq. (4), the left-hand side of this equation is
expected to be zero at any point where there is no charge
density (i.e., for h 6¼p/2). For instance, there is no charge
along the z-axis, so the radial derivative of the potentials on
the inner and outer regions should agree at h¼ 0. But the dif-
ference in the radial derivatives at this point is

@Uinðr; 0Þ
@r

����
R

� @Uoutðr; 0Þ
@r

����
R

¼ Q

4p�0R2

X1
‘¼0

ð�1Þ‘ ð2‘Þ!
22‘ ‘!ð Þ2

" #
4‘þ 1ð Þ: (10)

Is the infinite sum on the right-hand side equal to zero?
Applying one of the many convergence tests shows that the
sum does not converge.9 Does this mean that the radial com-
ponent of the electric field is somehow discontinuous at this
point? Surely this cannot be the case—it is clear from Eq. (5)
that the potential and its radial derivative are continuous
everywhere on the z-axis.

To shed light on this confusing result, we return to the
expression for the discontinuity in @rU at a general point.
Using P2‘ð0Þ ¼ ð�1Þ‘ ð2‘Þ!=½22‘ ð‘!Þ2�, we write Eq. (9) as

@Uinðr; hÞ
@r

����
R

� @Uoutðr; hÞ
@r

����
R

¼ Q

4p�0R2

X1
‘¼0

4‘þ 1ð ÞP2‘ð0ÞP2‘ðcos hÞ: (11)

Since odd Legendre polynomials vanish when evaluated at 0
(i.e., P2‘þ1(0)¼ 0) we can insert them in this expression to
obtain a sum that includes both even and odd terms:

@Uinðr; hÞ
@r

����
R

� @Uoutðr; hÞ
@r

����
R

¼ Q

2p�0R2

X1
‘¼0

2‘þ 1

2

� �
P‘ð0ÞP‘ðcos hÞ: (12)

This sum does not converge at h¼ 0, as we saw above, or at
any other value of h.10 However, using the completeness
property of the Legendre polynomials, we obtain

@Uinðr; hÞ
@r

����
R

� @Uoutðr; hÞ
@r

����
R

¼ Q

2p�0R2
dðcos h� 0Þ

¼ Q

2p�0R2

d h� p=2ð Þ
jsinðp=2Þj

¼ Q

2p�0R2
d h� p

2

� �
:

(13)

The discontinuity in the radial derivative of the potential at
r¼R is proportional to the Legendre series representation of
the Dirac delta function. In fact, the right-hand side of this
equation correctly expresses the uniform line charge on the
ring, k ¼ Q=2pR, as a surface charge density. To the extent
that we are willing to think of the delta function d(h – p/2) as
being “zero” at h 6¼p/2, this confirms our expectation: the ra-
dial derivative of the potential is continuous at points where
there is no surface charge.

On the other hand, a literal interpretation of Eq. (13) is
problematic. A delta function is a distribution that makes
sense only inside an integral, and its Legendre series repre-
sentation, Eq. (12), does not converge. So how does one
prove that the radial derivative of the potential is continuous
at points on the surface r¼R where there is no charge, if
expressions like Eqs. (12) and (13) cannot be evaluated at
such points? The problem here is the condition given in Eq.
(4), which assumes that the surface charge density is a well-
behaved function on the surface r¼R. Since r is singular for
the charged ring, we must take a step back and use the full
integral form of Gauss’ law to understand what happens.

Consider a Gaussian pillbox that straddles the surface
r¼R and encloses a region A on the surface. Then the inte-
gral form of Gauss’ law gives

1

�0

ð
A

da r ¼
ð

A

da
@Uinðr; hÞ

@r
� @Uoutðr; hÞ

@r

� �����
R

; (14)

where da ¼ R2 sin h dh d/ is the scalar area element on the
sphere. The left-hand side is the charge Qenc enclosed by the
Gaussian surface, which is just the surface charge on the part
of the sphere A inside the pillbox, and the right-hand side is
the integral over A of the divergent sum in Eq. (12). Let us
explicitly evaluate this integral for arbitrary regions with
h1� h� h2 and /1 � / � /2, as shown in Fig. 2. Then
Eq. (14) becomes

Qenc ¼ Q
D/
4p

X1
‘¼0

ð2 ‘þ 1ÞP‘ð0Þ
ðh2

h1

dh sin h P‘ðcos hÞ;

(15)

where D/ ¼ /2 � /1. The integral of P‘ can be expressed in
terms of P‘þ1 and P‘�1, and the resulting sum can be rear-
ranged so that it takes the form

Qenc ¼ Q
D/
4p

X1
‘¼0

P2‘þ2ð0Þ � P2‘ð0Þ½ �P2‘þ1ðcos hÞ
 !����

h2

h1

:

(16)

Unlike the sum in Eq. (12), the sum in this expression is
well-defined and converges for any value of h. It is just the
Legendre series representation of a function f(h) given by11
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f ðhÞ ¼
�1 for 0 � h < p=2;

1 for p=2 < h � p:

(
(17)

As a result, the surface charge on the region A is

Qenc ¼

0 for h1 < h2 < p=2;

0 for p=2 < h1 < h2;

Q
D/
2p

for h1 < p=2 < h2:

8>>>><
>>>>:

(18)

Thus, the enclosed charge is always zero if A does not over-
lap the ring at h¼p/2, and we can use this result to prove
that the radial derivative of the potential is continuous at a
point on r¼R with no surface charge. First, consider a small
region A that contains the point in question and does not
overlap the ring. Then Qenc¼ 0, and Eq. (14) becomesð

A

da
@Uinðr; hÞ

@r
� @Uoutðr; hÞ

@r

� �����
R

¼ 0: (19)

This equality does not depend on the details of A—it is true
for all values h1, h2, /1, and /2 such that A does not overlap
the ring—so we can conclude that the integrand is equal to
zero. Therefore, the radial derivative of the potential is contin-
uous at points on the surface r¼R where there is no charge.

IV. CONCLUSION

Using the example of a uniformly charged ring, we
showed that verifying the expected behavior of the potential
at the interface between two charge-free regions can be non-
trivial. In particular, significant analysis and careful consid-
eration of Gauss’ law is needed to confirm that the derivative
of the potential is continuous at points on the interface where
there is no charge. Similar issues arise in many other situa-
tions involving singular or localized charge distributions,
such as a collection of point charges, multiple charged rings,
or a band or annulus of charge. It is important to be aware of
instances where these elementary examples appear to dis-
agree with a student’s physically motivated expectations.

The potential for the uniformly charged ring was obtained
without appealing to the boundary conditions at r¼R, so the
process of checking these conditions might be regarded as an
intellectual exercise rather than a necessary step in solving the
problem. But it is easy to see how the example we have
described might cause confusion for students in their first elec-
tromagnetism course. Methods for obtaining solutions like
Eq. (8) are usually taught not long after the boundary condi-
tions are first expressed in the form given in Eq. (1), and it is
natural for a student to appeal to these simple boundary condi-
tions as a tool for understanding new results. Examples like
the one described here both reinforce the physical meaning of
the boundary conditions—the electric field is continuous at
points where there is no charge—and illustrate how careful
one must be in jumping from a generally applicable result like
Gauss’ Law to an expression like Eq. (1).

One might question the relevance of this example, since a
perfectly thin ring of charge is unrealistic. Shouldn’t the
issues we describe be resolved by more physically realistic
charge distributions like the ones shown in Fig. 3? After all,
the sum in Eq. (10) fails to converge because the charge dis-
tribution of the ring is singular, with the surface charge den-
sity given by a delta function:

Fig. 2. Two patches h1� h� h2, /1 � / � /2 on the surface r¼R.

Fig. 3. Three ways of smoothing out the singular charge distribution of the ring: (a) a charged band (p=2� d < h < p=2þ d, r¼R); (b) a charged annulus

(h¼p/2, Rinner< r<Router); and (c) a solid of revolution formed by rotating an annular sector about the z-axis (p=2� d < h < p=2þ d; Rinner < r < Router).

In each case, the analog of Eq. (12) converges but demonstrating continuity of the radial component of the electric field at points with r¼ 0 requires nontrivial

identities for Legendre polynomials.
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rðhÞ ¼ k
R

d h� p
2

� �
: (20)

While it is true that spreading the charge over an extended
region addresses the issue of convergence, there are at least two
reasons why our example should not be discounted. The first
reason is pedagogical. Singular charge distributions are a com-
mon tool in electromagnetism courses because they tend to be
conceptually simple and mathematically tractable, and this
helps a student focus on essential physics. When one of these
examples leads to a confusing result, the student is forced to an-
alyze basic statements like Eq (1) and think deeply about the
physics involved in order to determine the source of the prob-
lem. The second reason is technical, but no less important.
Replacing the singular charged ring with one of the distribu-
tions shown in Fig. 3 makes it more difficult to demonstrate
continuity of the gradient of the potential. In those cases, verify-
ing the boundary conditions requires Legendre polynomial
identities that are outside the scope of most undergraduate
courses.12 Such examples, which are more difficult to work out
in detail, would be just as likely to leave students wondering
why their expression for the potential does not seem to satisfy
the expected boundary conditions at points where r¼ 0.
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