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Conventions, Definitions, Identities, and Formulas 2/29/24,10:06 AM

Conventions, Definitions, Identities, and Formulas
Last modified: August 31, 2023.

A collection of results that are useful enough for me to keep them all in one place. Please let me know if you
find any typos or mistakes!

Several people have contacted me to say they used some of these results in published papers. That's great! If
you use this reference for something that ends up in a publication, please consider including a citation with
my name, the page title, and the url. Here's how to do it in REVTeX (thanks, Tim Wiser), and here's the Bib-
TeX code I used in a recent paper.

Recent changes can be found at the bottom of the page.
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1. Curvature Tensors

Consider a d + 1 dimensional spacetime (M, g). The covariant derivative V is metric-compatible with g.

e Christoffel Symbols

[ = %gﬁﬂ (0u&pv + 0v8up = 0puv) (1
¢ Riemann Tensor
R'yoy = 05T = 0 + Th Ty = T Tk 2)
¢ Ricci Tensor
Ry, = 8°,R 1, 3)

e Schouten Tensor
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Conventions, Definitions, Identities, and Formulas

1 1

S, =— (R, - —g,,R
" d—1<” 2dg”>

\YARY w = VS
e Weyl Tensor
C/I/wv = R/I/mv + gﬂv S;m' - gia Sﬂv + 8uc Sl{v — 8uv Slla

e Commutators of Covariant Derivatives

[V;u V\/] A, = RﬁauvAG

V.. V)] A* = R%;,, A°
e Bianchi Identities

VKR/I/MV - vlex/wv + VMRKAUV =0

Vval/wv = vuRia - VARMG
y 1
\Y% RMV = 5 VﬂR

e Bianchi Identities for the Weyl Tensor

chﬂyav =(d - 2) (VMSAG - VﬁSW’)

d—2 1 d—1
VAVC, . =—[V2RV—— JZV?R- ——V,V,R
e = T g B 2d O *
d+1 ; e @+
-{——)R,’R,, +C),,w,R”+ ——RR,,
(d—l) oA T dd—-1  *

+ ! <R’1"R ! R2>]
d—1 8uv Ao d

2. Differential Forms

e p-Form Components

1

Ay = F Am...ﬂp dx"t A ... A dxt

e Exterior Derivative

(dA(p)) = (P + 1) a[m AM2-~/4p+1]
Hi---Hpt1
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(13)
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1 .
By ) = — <Bm---un + permutations ) (16)
e Hodge-Star
A — 1 V1...va 17
* Ap) = €Uty ViV (17)
Hi---Hd+i-p p:

* % = ( 1 )p(d+l—p)+1 (18)

e Wedge Product

_(p+9

<A<p> A B(q)> (19)

[Hy..-H B# 1---Hpiq]
M1 -Hpig p’q‘ P P pra

3. Lie Derivatives

Let T be a rank (n, m) tensor and &£ be a vector. The Lie derivative of T along & is also a rank (n, m) tensor,
with components

£€ Tﬂlmﬂnvl...vm — giaﬂ TM]"'”"vl...vm
Aty - Hn-14
— T 'unvl...vm ai‘fﬂl — .= THHe V1--Vm ajfﬂn (20)
y! A
+ TH 'unﬂvz...vm avlf + ...+ TH ﬂnvlm‘/m—l)L a"mg

Any derivative operator can be used here.

4. Euler Densities

Let M be a manifold with dimension d + 1 = 2n an even number. Our normalization gives y(S>") = 2.

e Curvature Two-Form

1
RY, = 5 Ry € A e’ (21)
e FEuler Density
e, = 1 € R“% A ... A R%-1%2 (22)
(A T(n+ 1) vt

1

_ U U V.V Uy M Vo LV
= €, .4 €y .. R0 RFwm-1"on =172
@m)rT'(n+1) Bty "V Yoy

82n

e Fuler Number
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(M) = / d*"x /2 & (23)
M
= /EZn
M
e Examples
1 HVAp
62 = g €w€ip R (24)
1
=—R
4
1
€1 = oo Cuvip Capr R RAP10 (25)
T
1 vA v 2
=5 (R™* Ry, — 4R"R,, + R)
1 1 d—-2 d+ 1
= ——C""Cyp, — — <—) (R”VR , - —R2>
3272 ae 8z2 \d -1 K 4d

5. Hypersurface Formed by a Spacelike or Timelike Vector

Let ¥ C M be a d dimensional hypersurface whose embedding in M is normal to a unit vector n* . The vec-
tor n* is assumed to be spacelike or timelike, but not null: n* n, = e with e = +1. If the vector is spacelike
then it is taken to be “outward pointing,” while (contravariant) timelike unit vectors are taken to be “forward
pointing.”

Indices are lowered and raised using g,, and g”¥, though in some cases this is identical to lowering or raising
indices with the metric 4, induced on the hypersurface (first fundamental form). Symmetrization of indices
is implied when appropriate.

e First Fundamental Form / Induced Metric on X
hy = guw — enyn, (26)
e Projection of a tensor along X
LTH,  =h'y k. T (27)
e Covariant Derivative on X compatible with 4,
DTy =1V,T* 5 N T=1T (28)
¢ Intrinsic Curvature of (X, h)
[D,.D,]| A* = R%,,,A7 ¥V A' =147 (29)
e ‘“Acceleration” Vector
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a’ = n"V, n*

Second Fundamental Form / Extrinsic Curvature of X

K, = %J_(Vﬂnv +Vyn,) = %h/hvff (Vne + Veny)
1
= Efnhyv
= % (Vﬂnv + Vyn, —enya, — envaM)

Trace of Extrinsic Curvature

K =V,n"

2/29/24, 10:06 AM

(30)

€19

(32)

(33)

(34)

Given a local description of the surface by the condition f(x) = 0, for some sufficiently differentiable

function f', the unit vector can be defined as a normalized gradient

e
n,=4 ————a,f
"\ g0, fof "

1(v,n, —Vyn,)=0
1(vV,a, —Vy,a,) =D,a, — Dya, =0

Useful results for surface-forming n,, :

v,n, =K, +en,a,
Gauss-Codazzi
LRuuov = Ripov + e (KyoKyj — Kjs Kpy)
L (Ryuov ') = DyKyo — DKy,
1 (R,Wm, n’ln") = —£, K, + K,/ K, , + D,a, —eaya,

Projections of the Ricci tensor

L (R,W) =R, +e (D,,av — eaﬂav) -et£,K,,—eKK,

+2eK," K,
L(R,n") =D'K, — DK
R, n'n" =—-£,K—-K"K,, +D,d" —ea,ad"

Decomposition of the Ricci scalar
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(44)
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R :R—eK2—eK”VKﬂV—26£HK+2e<Dﬂa”—eaﬂa“) 45)

e Lie Derivatives along n* forany F = LF

1 (£, 7:.va...) = £, F#mv... (46)

huv £, F.. =4, F/l 47)

hHV £n Fﬂ — £n FV (48)

£,K,, = n'V,K,, + K, V,n' +K,V.n (49)
WY £,K,, = £,K +2K"K,, (50)

6. Sign Conventions for the Action

These conventions follow Weinberg (after accounting for his definition of the Riemann tensor, which has a
minus sign relative to our definition). They are appropriate when using signature (—, +, ..., +). The d + 1-di-
mensional Newton's constant is 2x> = 167G 4, . The boundary (d.M, h) is formed by a spacelike unit vector
n* | as in the previous section, and the sign on the boundary term follows from our definition of the extrinsic
curvature.

e QGravitational Action

1 1
Ig = — [ d™'x 8(R-2MN) + —/ d’x\/h K (51)
2 k2 M K2 oM
_ 1 d+1 — 2 v
_m/Md xyg (R + K> = K" K,y — 2A) (52)

e Gauge Field Coupled to Particle

Ivaxwen + Imatter = — %/dd-'-lx\/gFﬂvFﬂv (53)
M
dx,*(p) dx,"(p)
E Z’" / dp \/ 8 (6 (P) == (54)
dx,"
+Ye, / dp == dp(p et (55)

e Gravity Minimally Coupled to a Gauge Field

1 1 1
I + Ingoxwell = / d*'x /3 [—(R —2A) - —F”VFW] + — / d’x/h K (56)
M 2K‘2 4 K2 oM

7. Hamiltonian Formulation for Evolution Along a Spatial Direction

The canonical variables are the metric 4,, on X and its conjugate momentum z**, which is defined with re-
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spect to evolution along the spacelike direction n* normal to X. Even though the evolution is along a space-

like direction we will use the same terminology as for timelike evolution: “Hamiltonian”, “momentum con-
straint”, etc.

e Bulk Lagrangian Density

— 1 2 ny
LZM—ﬁ(K - K" K,y +R —2A) (57)
e Momentum Conjugate to h,,,
oL 1
o= ML (e g — ) (58)
0(£uhy)  2K7
d—-1
— H —
ﬂ—ﬂﬂ—szK (59)
e Momentum Constraint
1 \% \%
H, = K—zJ_ (n G,W) =2D"n,, =0 (60)
e Hamiltonian Constraint
H——lnﬂnvc; =2k* (2" x, — ! z? +L(R—2A)—0 61)
K2 S ood—1 2 k2 B

8. Conformal Transformations

The dimension of spacetime is d + 1. Indices are raised and lowered using the metric g,, and its inverse g"".

e Metric
A _ 20
Ew =€ 8w (62)
e Christoffel
A ] 63
FW—FW+®MV (63)
0%, =6 ,V,o+6'V,0-g,V'c (64)
¢ Riemann Tensor
N A A A A
R ,, =R +6",V,Vy6-6",V,Vo+g,,VV'0c—-g,V,V'c (65)
+ 5’1,) V,o6V,6— 5%, V,6V,0+g,V,c Vie — gup VO Vie (66)
+ (8up 6"y — g 8”,) V0 V,0 (67)
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Ricci Tensor

Ry=R,-gwVie-@d-1)V,Vo+(d-1)V,0V,0 (68)
—(d-1g,V'eV,o (69)
e Ricci Scalar
R=¢?2°(R-2dV6—d(d—-1)V*cV,0) (70)
e Schouten Tensor
~ 1 i
SW=SW—VﬂVV0+VHGVv0—5gWV ocV,o (71)
e Weyl Tensor
~ A 2
C v = Clpy (72)
e Normal Vector
' =ent n, =e’ny (73)

Extrinsic Curvature

K, =e’ (K#V + hyy nﬂV,la) (74)
K=¢° (K+dn'V,o) (75)

9. Small Variations of the Metric

Consider a small perturbation to the metric of the form g, — g,, + g, - All indices are raised and lowered
using the unperturbed metric g,, and its inverse. All quantities are expressed in terms of the perturbation to
the metric, and never in terms of the perturbation to the inverse metric. As in the previous sections, V , is the
covariant derivative compatible with the metric g,,, and D, is the covariant derivative along a hypersurface
Y C M (normal to the spacelike or timelike unit vector n*) compatible with the induced metric 4, .

e Inverse Metric
g = g — g gV 6g,y + &' 87 8 684,085, + ... (76)

e Square Root of Determinant of Metric

1
\/§—>\/§<1+§g’”5gﬂv+...) (77)

e Variational Operator

http://jacobi.luc.edu/Useful.html Page 8 of 15
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o(guv) = 68y 8°(gu) = 6(8g,,) =0 (78)
8(g") = —g"" g 6g4p (79)
5%(g") =6 (—g" 8" 8g;,) = 28" 8" &' 68,, 685, (80)
1 1
F(g+ o6g) = F(g) + oF(g) + EézF(g) + ...+ ;5"7’(;}) + ... (81)
o Christoffel
A 1 Ap
T, = 8 (Vudg, + Viég,, —V,058,) (82)
5°T = —g"* 8" 58,5 (V4 g, + V068, — V, 88, (83)
A Moon-1/ 4
§"T*,, = 55" (g 7) (Vﬂ 88, + V.68, -V, 5gw) (84)
e Riemann Tensor
A A y!
oR" sy = VsoI'),, — V0I5 (85)
¢ Ricci Tensor
SR,y = V6%, — Vo, (86)
1
= E(V’lvlﬁgh +V*V,6g,; — 87V, V.68, — Vég,,) (87)
¢ Ricci Scalar
SR = —R™5g,, + V" (V"6g,, — &V ,.68,,) (88)
e Surface Forming Unit Vector
e 1 , 1
on, = Enﬂn"n’légwl = E(Sgwn + > (89)
c, = en,n'n*ég,; — oghn’ = —h, 6g,,n" (90)
e Acceleration vector
bt = - D" (n'n’5g,;) + 1)
2 V.
¢ Extrinsic Curvatures
5K,y = —nnPbg,, K,y + e dg,n” (nK*, + n K,* 92
yv—inn Eap /4v+egﬂpn (ny vt ny /4) ( )

1
— Eh/hvﬂn“ (V1684p + V10820 — Vabe,,)

http://jacobi.luc.edu/Useful.html Page 9 of 15
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1 1 1
6K = —EK”VégMV - En" (Vvégﬂv - gV’IVﬂ(SgM) + EDHC" (93)

e Gibbons-Hawking-York Lagrangian (e = +1 )
Lo pv 1 p
5(evhK) =evh E(h K-K )5gw+§D,,c (94)
1

5 (V55 = £ V.88, |

10. The ADM Decomposition

The conventions and notation in this section (and the next) differ from the preceding sections. In this section
we consider a d-dimensional spacetime with metric h and metric-compatible covariant derivative V . Note
that, among other differences, the definition of the extrinsic curvature here differs from the one used in the
section on hypersurfaces by a sign: 8, = —K,,, .

We start by identifying a scalar field t whose 1sosurfaces X; are normal to the timelike unit vector given by
U, = —ad,t, 95)

where the lapse function «a is

= ! (96)

\/ —h 0,1 0yt '

An observer whose worldline is tangent to u, experiences an acceleration given by the vector

ap = u - V., 7
which is orthogonal to u, . The (spatial) metric on the d — 1 dimensional surface X; is given by
Oap = hgp +uyuy . (98)

The intrinsic Ricci tensor built from this metric is denoted by R, and its Ricci scalar is R . The covariant
derivative on X, is defined in terms of the d dimensional covariant derivative as

D,Vy:= aacabe(dVCVe) forany V, = o6,V . (99)
The extrinsic curvature of X, embedded in the ambient d dimensional spacetime is

1
O = — Gacabd<dvcud) = -9V up — ugap = ) £,064 - (100)

This definition has an overall minus sign compared to the extrinsic curvature in section 4, where we
considered surfaces normal to a spacelike vector.

http://jacobi.luc.edu/Useful.html Page 10 of 15
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Now we consider a ‘time flow’ vector field ¢, which satisfies the condition
90,0 = 1. (101)
The vector * can be decomposed into parts normal and along %, as
t =au’ + p°, (102)

where « is the lapse function (96) and ¢ := ¢ t” is the shift vector. An important result in the derivations
that follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to u“ in all of its
indices) along the time flow vector field, to Lie derivatives along u® and . Let S be a scalar. Then

£8 = £,,5 + £S5 = a£,5 + £35. (103)

Rearranging this expression then gives
1
£,8 = — (£S5 - £5) . (104)
a

Similarly, for a spatial tensor with all lower indices we have
EWa. =at,Wo  +£W, . (105)

This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along u“ in terms of regular time derivatives and Lie derivatives along the
shift vector .

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (z, x') are defined by

0rx® =17 (106)
The x' are coordinates along the d — 1 dimensional hypersurface X, . If we define

ox?
ox!

P4 = , (107)
then it follows from the definition of the coordinates that P;%d,t = 0 and we can use P, to project tensors

onto ;. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and
shift vectors are

oij = PP o (108)
0, = P P;" 0 (109)
a; = P’a, (110)

B = Py = P1, . (111)

The line element in the adapted coordinates takes a familiar form:

http://jacobi.luc.edu/Useful.html Page 11 of 15
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hopdx®dxb = ha,,< a;‘: dr + aa’; dx"> <aa—x: dt + gixj dxf> (112)

= hay (t°dt + Pdx") (t"dt + P, dx’) (113)

= t%,dt* + 2t,dt P dx" + hgy P P;” dx' dx’ (114)

= (—a® + §'4;)dt* + 2pdtdx" + o;;dx'dx’ (115)

= hapdx®dx” = — a’d® + o;;(dx' + p'dt) (dx’ + p/dr) . (116)

Thus, in the adapted coordinate system we can express the components of the spacetime metric /., and its
inverse h° as

2 i j

— + ; i J
hap = : l.”} %ub (117)

cijf’ Oij

. -L | Ly
h = 1 i ij 1 inj (118)

2 p ‘ ot — el p'p

det(h,y) = —a” det(o;)) (119)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices i, j, ...
in the adapted coordinates are lowered and raised using the spatial metric o;; and its inverse ¢/ .

In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a
scalar S along the time-flow vector # is just the regular time-derivative

ox? 3S
£ =199, = = =, (120)
ot 0x¢

Next, we consider the projector P; applied to the Lie derivative along ¢ of a general vector W, , which
gives

PiaftVVa =W, YV W,. (121)

The important point is that this applies not just to spatial vectors but to any vector W, as a consequence of
the result

Pfu, =0. (122)
Finally, we can show that the Lie derivative along t* of any contravariant spatial vector satisfies
P &Vi=09V' ¥V VIi=P V. (123)

This follows from a lengthier calculation than what is required for the first two results.

http://jacobi.luc.edu/Useful.html Page 12 of 15
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Given these results, we can express various geometric quantities and their projections normal to and along 2;
in terms of quantities intrinsic to 2; and simple time derivatives. First, the extrinsic curvature is

1
9,']' - - EBanbi‘uO-ab (124)
1 1
= -3 P,-“ij<— (£0a - £ﬁoab)> (125)
o
1
= 0 = — oy <at0'ij - <Dzﬂj + Djﬂi)) : (126)

Since 6, is a spatial tensor, projections of its Lie derivative along u® can be expressed in a similar manner
apb 1
PP 00 = — (0:6:; — £56;;) - (127)

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

. . 1 1
( Rab> Rl/ + 0911 - 20, ejk — ; (atﬁu - £ﬁ9,]> - ; D,’Dja (128)
P“(dRabub) = D0 — D6, (129)

1 : .. 1 .
1Rypuu’ = — (0,0 — p'9,0) — 66,; + — D;D'a (130)

a (01
y 2 . 2 |
‘R=R+6*+076; — = (90— $'0,0) — = D;D'ar. (131)
(01 a

These allow us to write out the various projections of the Einstein equations G, = k>T;.

e Hamiltonian Constraint

R+6*—676,;=2c"p (132)
p=Tyuu’ (133)
¢ Momentum Constraint

D’6;; — D;6 = «*j (134)
Jii= = PO (Typu’) (135)

e ADM Evolution Equations

1 1 1 1 1

R,‘j - EO'in - ;(0;0,7 - 50’[j0,9> + ;(fﬂgl] - EO'[jfﬁe) (136)

1 1
+00i; =200 = S0 (0° + 00w ) = —(DiD;a = 0y, D" Dyar)
— KzBaP/bTab
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Or, if we use the trace of this equation to rewrite R and define the spatial stress tensor as
Sij= P,~“ij T,» , this can be written as

0,0, = £30;; + a (R + 06, —26,0,) — D;D;a (137)
1 1
— K'2 (04 <Sij - md,‘jskk> — K2 d— Zaijap
11. Converting to ADM Variables
The line element is often presented in the form
hapdx®dx® = h,dt* + 2h,dtdx’ + h;dx'dx’ . (138)

We would like to relate the components of the metric to the ADM variables: the lapse function a, the shift
vector f; , and the spatial metric o;; . This is a straightforward exercise in linear algebra. Comparing with
(116), we first note that

Cijj = hij . (139)

The inverse spatial metric, 6, is literally the inverse of A; > which is not in general the same thing as h
(see, for instance, equation (118))

o = (o;)"" = (hip)~" # hV. (140)
For the shift vector we have
hi =0~ 0"“hy=0c"oup =p' (141)
= pl = O'ijhtj _ (142)
Finally, for the lapse we obtain
a* = 6" hihy — hy . (143)

Recent Changes
August 31,2023

Updated hypersurface results to include both spacelike and timelike unit normals.

Added useful simplifications associated with surface-forming (normalized gradient) unit normals.

Reorganized the order of results in the section on hypersurfaces.

Changed definition of the vector ¢# in the section on small variations of the metric.

Updated variations of n, K, , and K to accommodate both spacelike and timelike hypersurfaces.

e Added explicit variation of the Gibbons-Hawking-York Lagrangian, including the (usually neglected)
corner term.

e Added a note about the different conventions used for the extrinsic curvature in the ADM and
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hypersurface sections.

May 5, 2023

e Added a short section with the explicit form of the Lie derivative of an arbitrary tensor.

© 2012-2023 Robert A. McNees
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