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Conventions, Definitions, Identities, and Formulas
Last modified: August 31, 2023.

A collection of results that are useful enough for me to keep them all in one place. Please let me know if you
find any typos or mistakes!

Several people have contacted me to say they used some of these results in published papers. That's great! If
you use this reference for something that ends up in a publication, please consider including a citation with
my name, the page title, and the url. Here's how to do it in REVTeX (thanks, Tim Wiser), and here's the Bib-
TeX code I used in a recent paper.

Recent changes can be found at the bottom of the page.

Table of Contents

1. Curvature Tensors
2. Differential Forms
3. Lie Derivatives
4. Euler Densities
5. Hypersurface Formed by a Spacelike or Timelike Vector
6. Sign Conventions for the Action
7. Hamiltonian Formulation for Evolution Along a Spatial Direction
8. Conformal Transformations
9. Small Variations of the Metric

10. The ADM Decomposition
11. Converting to ADM Variables

1. Curvature Tensors
Consider a  dimensional spacetime . The covariant derivative  is metric-compatible with .

Christoffel Symbols

Riemann Tensor

Ricci Tensor

Schouten Tensor

𝑑 + 1 (, 𝑔) ∇ 𝑔

= ( + − )Γ𝜆
𝜇𝜈

1
2 𝑔𝜆𝜌 ∂𝜇𝑔𝜌𝜈 ∂𝜈𝑔𝜇𝜌 ∂𝜌𝑔𝜇𝜈 (1)

= − + −𝑅𝜆
𝜇𝜎𝜈 ∂𝜎Γ𝜆

𝜇𝜈 ∂𝜈Γ𝜆
𝜇𝜎 Γ𝜅𝜇𝜈Γ𝜆

𝜅𝜎 Γ𝜅𝜇𝜎 Γ𝜆
𝜅𝜈 (2)

=𝑅𝜇𝜈 𝛿𝜎
𝜆𝑅𝜆

𝜇𝜎𝜈 (3)

( )1 1

mailto:rmcnees@luc.edu?subject=Your%20notes%20were%20useful!
https://gist.github.com/mcnees/6f28060a3fd61f9d5054b3b792fa804a
https://twitter.com/tdwiser/status/1170830257458417667
https://gist.github.com/mcnees/9f4958838766157c5abbe3da4b6ea163
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Weyl Tensor

Commutators of Covariant Derivatives

Bianchi Identities

Bianchi Identities for the Weyl Tensor

2. Differential Forms

p-Form Components

Exterior Derivative

= ( − 𝑅)𝑆𝜇𝜈
1

𝑑 − 1 𝑅𝜇𝜈
1

2 𝑑
𝑔𝜇𝜈 (4)

=∇𝜈𝑆𝜇𝜈 ∇𝜇𝑆 𝜈
𝜈 (5)

= + − + −𝐶𝜆
𝜇𝜎𝜈 𝑅𝜆

𝜇𝜎𝜈 𝑔𝜆
𝜈 𝑆𝜇𝜎 𝑔𝜆

𝜎 𝑆𝜇𝜈 𝑔𝜇𝜎 𝑆 𝜆
𝜈 𝑔𝜇𝜈 𝑆 𝜆

𝜎 (6)

[ , ] =∇𝜇 ∇𝜈 𝐴𝜆 𝑅𝜆𝜎𝜇𝜈𝐴𝜎 (7)

[ , ] =∇𝜇 ∇𝜈 𝐴𝜆 𝑅𝜆
𝜎𝜇𝜈𝐴𝜎 (8)

− + = 0∇𝜅𝑅𝜆𝜇𝜎𝜈 ∇𝜆𝑅𝜅𝜇𝜎𝜈 ∇𝜇𝑅𝜅𝜆𝜎𝜈 (9)

= −∇𝜈𝑅𝜆𝜇𝜎𝜈 ∇𝜇𝑅𝜆𝜎 ∇𝜆𝑅𝜇𝜎 (10)

= 𝑅∇𝜈𝑅𝜇𝜈
1
2 ∇𝜇 (11)

=∇𝜈𝐶𝜆𝜇𝜎𝜈 (𝑑 − 2) ( − )∇𝜇𝑆𝜆𝜎 ∇𝜆𝑆𝜇𝜎 (12)

=∇𝜆∇𝜎𝐶𝜆𝜇𝜎𝜈
𝑑 − 2
𝑑 − 1 [ − 𝑅 − 𝑅∇2𝑅𝜇𝜈

1
2𝑑

𝑔𝜇𝜈∇2 𝑑 − 1
2𝑑

∇𝜇∇𝜈

− ( ) + + 𝑅
𝑑 + 1
𝑑 − 1 𝑅𝜇

𝜆𝑅𝜈𝜆 𝐶𝜆𝜇𝜎𝜈 𝑅𝜆𝜎 (𝑑 + 1)
𝑑(𝑑 − 1) 𝑅𝜇𝜈

+ ( − ) ]1
𝑑 − 1 𝑔𝜇𝜈 𝑅𝜆𝜎𝑅𝜆𝜎

1
𝑑

𝑅2

(13)

= 𝑑 ∧ … ∧ 𝑑𝐀(𝑝)
1
𝑝! 𝐴 …𝜇1 𝜇𝑝 𝑥𝜇1 𝑥𝜇𝑝 (14)

(𝑑 = (𝑝 + 1)𝐀(𝑝)) …𝜇1 𝜇𝑝+1
∂ [ 𝜇1 𝐴 … ]𝜇2 𝜇𝑝+1 (15)

( )1
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Hodge-Star

Wedge Product

3. Lie Derivatives
Let  be a rank  tensor and  be a vector. The Lie derivative of  along  is also a rank  tensor,
with components

Any derivative operator can be used here.

4. Euler Densities

Let  be a manifold with dimension  an even number. Our normalization gives .

Curvature Two-Form

Euler Density

Euler Number

:= ( + permutations )𝐵 [ … ]𝜇1 𝜇𝑛

1
𝑛! 𝐵 …𝜇1 𝜇𝑛 (16)

( ⋆ =𝐀(𝑝)) …𝜇1 𝜇𝑑+1−𝑝

1
𝑝! 𝜖 …𝜇1 𝜇𝑑+1−𝑝

…𝜈1 𝜈𝑝 𝐴 …𝜈1 𝜈𝑝 (17)

⋆ ⋆ = ( − 1 )𝑝 (𝑑+1−𝑝)+1 (18)

( ∧ =𝐀(𝑝) 𝐁(𝑞) ) …𝜇1 𝜇𝑝+𝑞

(𝑝 + 𝑞)!
𝑝! 𝑞! 𝐴 [ …𝜇1 𝜇𝑝 𝐵 … ]𝜇𝑝+1 𝜇𝑝+𝑞

(19)

𝑇 (𝑛, 𝑚) 𝜉 𝑇 𝜉 (𝑛, 𝑚)

=£𝜉 𝑇 …𝜇1 𝜇𝑛 …𝜈1 𝜈𝑚 𝜉𝜆∂𝜆 𝑇 …𝜇1 𝜇𝑛 …𝜈1 𝜈𝑚

− − … −𝑇 𝜆 …𝜇2 𝜇𝑛 …𝜈1 𝜈𝑚 ∂𝜆𝜉𝜇1 𝑇 … 𝜆𝜇1 𝜇𝑛−1 …𝜈1 𝜈𝑚 ∂𝜆𝜉𝜇𝑛

+ + … +𝑇 …𝜇1 𝜇𝑛 𝜆 …𝜈2 𝜈𝑚 ∂𝜈1 𝜉𝜆 𝑇 …𝜇1 𝜇𝑛 … 𝜆𝜈1 𝜈𝑚−1 ∂𝜈𝑚𝜉𝜆
(20)

 𝑑 + 1 = 2𝑛 𝜒( ) = 2𝑆 2𝑛

= ∧𝐑𝑎
𝑏

1
2 𝑅𝑎

𝑏 𝑐 𝑑 𝐞𝑐 𝐞𝑑 (21)

= ∧ … ∧𝐞2𝑛

1
(4𝜋 Γ(𝑛 + 1))𝑛 𝜖 …𝑎1 𝑎2𝑛

𝐑𝑎1𝑎2 𝐑𝑎2𝑛−1𝑎2𝑛 (22)

= …2𝑛
1

(8𝜋 Γ(𝑛 + 1))𝑛 𝜖 …𝜇1 𝜇2𝑛
𝜖 …𝜈1 𝜈2𝑛

𝑅𝜇1𝜇2𝜈1𝜈2 𝑅𝜇2𝑛−1𝜇2𝑛𝜈2𝑛−1𝜈2𝑛

∫
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Examples

5. Hypersurface Formed by a Spacelike or Timelike Vector
Let  be a  dimensional hypersurface whose embedding in  is normal to a unit vector . The vec-
tor  is assumed to be spacelike or timelike, but not null:  with . If the vector is spacelike
then it is taken to be “outward pointing,” while (contravariant) timelike unit vectors are taken to be “forward
pointing.”

Indices are lowered and raised using  and , though in some cases this is identical to lowering or raising
indices with the metric  induced on the hypersurface (first fundamental form). Symmetrization of indices
is implied when appropriate.

First Fundamental Form / Induced Metric on 

Projection of a tensor along 

Covariant Derivative on  compatible with 

Intrinsic Curvature of 

“Acceleration” Vector

𝜒() = 𝑥∫
𝑑2𝑛 𝑔√ 2𝑛

= ∫
𝐞2𝑛

(23)

2

4

= 1
8𝜋

𝜖𝜇𝜈𝜖𝜆𝜌 𝑅𝜇𝜈𝜆𝜌

= 𝑅
1

4𝜋
= 1

128𝜋2 𝜖𝜇𝜈𝜆𝜌 𝜖𝛼𝛽𝛾𝛿 𝑅𝜇𝜈𝛼𝛽 𝑅𝜆𝜌𝛾𝛿

= ( − 4 + )1
32𝜋2 𝑅𝜇𝜈𝜆𝜌𝑅𝜇𝜈𝜆𝜌 𝑅𝜇𝜈𝑅𝜇𝜈 𝑅2

= − ( ) ( − )1
32𝜋2 𝐶𝜇𝜈𝜆𝜌𝐶𝜇𝜈𝜆𝜌

1
8𝜋2

𝑑 − 2
𝑑 − 1 𝑅𝜇𝜈𝑅𝜇𝜈

𝑑 + 1
4 𝑑

𝑅2

(24)

(25)

Σ ⊂  𝑑  𝑛𝜇

𝑛𝜇 = 𝑒𝑛𝜇𝑛𝜇 𝑒 = ±1

𝑔𝜇𝜈 𝑔𝜇𝜈

ℎ𝜇𝜈

Σ

= − 𝑒ℎ𝜇𝜈 𝑔𝜇𝜈 𝑛𝜇𝑛𝜈 (26)

Σ

⊥ = … …𝑇 𝜇 …
𝜈 … ℎ𝜇

𝜆 ℎ𝜎
𝜈 𝑇 𝜆 …

𝜎 … (27)

Σ ℎ𝜇𝜈

= ⊥ ∀ 𝑇 = ⊥ 𝑇𝜇𝑇 𝛼 …
𝛽 … ∇𝜇𝑇 𝛼 …

𝛽 … (28)

(Σ, ℎ)

[ , ] = ∀ = ⊥𝜇 𝜈 𝐴𝜆 𝜆
𝜎𝜇𝜈𝐴𝜎 𝐴𝜆 𝐴𝜆 (29)
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Second Fundamental Form / Extrinsic Curvature of 

Trace of Extrinsic Curvature

Given a local description of the surface by the condition , for some sufficiently differentiable
function , the unit vector can be defined as a normalized gradient

Useful results for surface-forming :

Gauss-Codazzi

Projections of the Ricci tensor

Decomposition of the Ricci scalar

=𝑎𝜇 𝑛𝜈 ∇𝜈𝑛𝜇 (30)

Σ

𝐾𝜇𝜈 = ⊥ ( + ) = ( + )1
2 ∇𝜇𝑛𝜈 ∇𝜈𝑛𝜇

1
2 ℎ𝜇

𝜆ℎ𝜈
𝜎 ∇𝜆𝑛𝜎 ∇𝜎𝑛𝜆

= 1
2 £𝑛ℎ𝜇𝜈

= ( + − 𝑒 − 𝑒 )1
2 ∇𝜇𝑛𝜈 ∇𝜈𝑛𝜇 𝑛𝜇𝑎𝜈 𝑛𝜈 𝑎𝜇

(31)

(32)

(33)

𝐾 = ∇𝜇𝑛𝜇 (34)

𝑓(𝑥) = 0
𝑓

= 𝑓𝑛𝜇
𝑒
𝑓 𝑓𝑔𝛼𝛽∂𝛼 ∂𝛽

‾ ‾‾‾‾‾‾‾‾‾‾
√ ∂𝜇 (35)

𝑛𝜇

⊥( − ) = 0∇𝜇𝑛𝜈 ∇𝜈𝑛𝜇

⊥( − ) = − = 0∇𝜇𝑎𝜈 ∇𝜈𝑎𝜇 𝜇𝑎𝜈 𝜈𝑎𝜇

= + 𝑒∇𝜇𝑛𝜈 𝐾𝜇𝜈 𝑛𝜇𝑎𝜈

(36)
(37)
(38)

⊥ =𝑅𝜆𝜇𝜎𝜈

⊥ ( ) =𝑅𝜆𝜇𝜎𝜈 𝑛𝜆

⊥ ( ) =𝑅𝜆𝜇𝜎𝜈 𝑛𝜆𝑛𝜎

+ 𝑒 ( − )𝜆𝜇𝜎𝜈 𝐾𝜇𝜎𝐾𝜈𝜆 𝐾𝜆𝜎𝐾𝜇𝜈

−𝜈𝐾𝜇𝜎 𝜎𝐾𝜇𝜈

− + + − 𝑒£𝑛 𝐾𝜇𝜈 𝐾𝜇
𝜆 𝐾𝜆𝜈 𝜇𝑎𝜈 𝑎𝜇𝑎𝜈

(39)
(40)
(41)

⊥ ( ) =𝑅𝜇𝜈

⊥ ( ) =𝑅𝜇𝜈 𝑛𝜇

=𝑅𝜇𝜈𝑛𝜇𝑛𝜈

+ 𝑒 ( − 𝑒 ) − 𝑒 − 𝑒 𝐾𝜇𝜈 𝜇𝑎𝜈 𝑎𝜇𝑎𝜈 £𝑛 𝐾𝜇𝜈 𝐾𝜇𝜈

+ 2𝑒 𝐾𝜇
𝜆 𝐾𝜈 𝜆

− 𝐾𝜇𝐾𝜇𝜈 𝜈

− 𝐾 − + − 𝑒£𝑛 𝐾𝜇𝜈 𝐾𝜇𝜈 𝜇𝑎𝜇 𝑎𝜇𝑎𝜇

(42)

(43)
(44)

 − 𝑒 − 𝑒 − 2𝑒 𝐾 + 2𝑒 ( − 𝑒 )2 𝜇𝜈 𝜇 𝜇
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Lie Derivatives along  for any 

6. Sign Conventions for the Action
These conventions follow Weinberg (after accounting for his definition of the Riemann tensor, which has a
minus sign relative to our definition). They are appropriate when using signature . The -di-
mensional Newton's constant is . The boundary  is formed by a spacelike unit vector

, as in the previous section, and the sign on the boundary term follows from our definition of the extrinsic
curvature.

Gravitational Action

Gauge Field Coupled to Particle

Gravity Minimally Coupled to a Gauge Field

7. Hamiltonian Formulation for Evolution Along a Spatial Direction
The canonical variables are the metric  on  and its conjugate momentum , which is defined with re-

𝑅 =  − 𝑒 − 𝑒 − 2𝑒 𝐾 + 2𝑒 ( − 𝑒 )𝐾2 𝐾𝜇𝜈 𝐾𝜇𝜈 £𝑛 𝜇𝑎𝜇 𝑎𝜇𝑎𝜇 (45)

𝑛𝜇  = ⊥

⊥ ( ) =£𝑛 𝜇 …
𝜈 … £𝑛 𝜇 …

𝜈 …

=ℎ𝜇
𝜈 £𝑛 𝜈… £𝑛 𝜇…

=ℎ𝜇
𝜈 £𝑛 𝜇… £𝑛  𝜈…

= + +£𝑛𝐾𝜇𝜈 𝑛𝜆∇𝜆𝐾𝜇𝜈 𝐾𝜆𝜈 ∇𝜇𝑛𝜆 𝐾𝜇𝜆∇𝜈𝑛𝜆

= 𝐾 + 2ℎ𝜇𝜈 £𝑛𝐾𝜇𝜈 £𝑛 𝐾𝜇𝜈𝐾𝜇𝜈

(46)
(47)
(48)
(49)
(50)

(−, +, … , +) 𝑑 + 1
2 = 16𝜋𝜅2 𝐺𝑑+1 (∂, ℎ)

𝑛𝜇

=𝐼𝐺

=

𝑥 (𝑅 − 2 Λ) + 𝑥 𝐾
1

2 𝜅2 ∫
𝑑𝑑+1 𝑔√

1
𝜅2 ∫∂

𝑑𝑑 ℎ‾‾√

𝑥 ( + − − 2 Λ)1
2 𝜅2 ∫

𝑑𝑑+1 𝑔√ 𝐾2 𝐾𝜇𝜈 𝐾𝜇𝜈

(51)

(52)

+ =𝐼𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝐼𝑀𝑎𝑡𝑡𝑒𝑟 − 𝑥
1
4 ∫

𝑑𝑑+1 𝑔√ 𝐹 𝜇𝜈𝐹𝜇𝜈

− ∫ 𝑑𝑝∑
𝑛

𝑚𝑛 − ( (𝑝))𝑔𝜇𝜈 𝑥𝑛
𝑑 (𝑝)𝑥𝑛𝜇

𝑑𝑝
𝑑 (𝑝)𝑥𝑛𝜈

𝑑𝑝
‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

+ ∫ 𝑑𝑝 ( (𝑝))∑
𝑛

𝑒𝑛
𝑑 (𝑝)𝑥𝑛

𝜇

𝑑𝑝
𝐴𝜇 𝑥𝑛

(53)

(54)

(55)

+ =𝐼𝐺 𝐼𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝑥 [ (𝑅 − 2 Λ) − ] + 𝑥 𝐾∫
𝑑𝑑+1 𝑔√

1
2 𝜅2

1
4 𝐹 𝜇𝜈𝐹𝜇𝜈

1
𝜅2 ∫∂

𝑑𝑑 ℎ‾‾√ (56)

ℎ𝜇𝜈 Σ 𝜋𝜇𝜈



2/29/24, 10:06 AMConventions, Definitions, Identities, and Formulas

Page 7 of 15http://jacobi.luc.edu/Useful.html

spect to evolution along the spacelike direction  normal to . Even though the evolution is along a space-
like direction we will use the same terminology as for timelike evolution: “Hamiltonian”, “momentum con-
straint”, etc.

Bulk Lagrangian Density

Momentum Conjugate to 

Momentum Constraint

Hamiltonian Constraint

8. Conformal Transformations
The dimension of spacetime is . Indices are raised and lowered using the metric  and its inverse .

Metric

Christoffel

Riemann Tensor

𝑛𝜇 Σ

= ( − +  − 2 Λ)
1

2 𝜅2 𝐾2 𝐾𝜇𝜈 𝐾𝜇𝜈 (57)

ℎ𝜇𝜈

= = ( 𝐾 − )𝜋𝜇𝜈 ∂

∂ ( )£𝑛ℎ𝜇𝜈

1
2 𝜅2 ℎ𝜇𝜈 𝐾𝜇𝜈 (58)

𝜋 = = 𝐾𝜋𝜇
𝜇

𝑑 − 1
2 𝜅2

(59)

= ⊥ ( ) = 2 = 0𝜇
1

𝜅2 𝑛𝜈 𝐺𝜇𝜈 𝜈𝜋𝜇𝜈 (60)

 = − = 2 ( − ) + ( − 2 Λ) = 01
𝜅2 𝑛𝜇𝑛𝜈 𝐺𝜇𝜈 𝜅2 𝜋𝜇𝜈 𝜋𝜇𝜈

1
𝑑 − 1 𝜋2 1

2 𝜅2
(61)

𝑑 + 1 𝑔𝜇𝜈 𝑔𝜇𝜈

=𝑔𝜇̂𝜈 𝑒 2 𝜎 𝑔𝜇𝜈 (62)

= +Γ̂ 𝜆
𝜇𝜈 Γ𝜆

𝜇𝜈 Θ𝜆
𝜇𝜈

= 𝜎 + 𝜎 − 𝜎Θ𝜆
𝜇𝜈 𝛿𝜆

𝜇∇𝜈 𝛿𝜆
𝜈∇𝜇 𝑔𝜇𝜈∇𝜆

(63)
(64)

=𝑅̂
𝜆

𝜇𝜌𝜈 + 𝜎 − 𝜎 + 𝜎 − 𝜎𝑅𝜆
𝜇𝜌𝜈 𝛿𝜆

𝜈 ∇𝜇∇𝜌 𝛿𝜆
𝜌 ∇𝜇∇𝜈 𝑔𝜇𝜌 ∇𝜈∇𝜆 𝑔𝜇𝜈 ∇𝜌∇𝜆

+ 𝜎 𝜎 − 𝜎 𝜎 + 𝜎 𝜎 − 𝜎 𝜎𝛿𝜆
𝜌 ∇𝜇 ∇𝜈 𝛿𝜆

𝜈 ∇𝜇 ∇𝜌 𝑔𝜇𝜈 ∇𝜌 ∇𝜆 𝑔𝜇𝜌 ∇𝜈 ∇𝜆

+ ( − ) 𝜎 𝜎𝑔𝜇𝜌 𝛿𝜆
𝜈 𝑔𝜇𝜈 𝛿𝜆

𝜌 ∇𝛼 ∇𝛼

(65)
(66)
(67)
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Ricci Tensor

Ricci Scalar

Schouten Tensor

Weyl Tensor

Normal Vector

Extrinsic Curvature

9. Small Variations of the Metric
Consider a small perturbation to the metric of the form . All indices are raised and lowered
using the unperturbed metric  and its inverse. All quantities are expressed in terms of the perturbation to
the metric, and never in terms of the perturbation to the inverse metric. As in the previous sections,  is the
covariant derivative compatible with the metric , and  is the covariant derivative along a hypersurface

 (normal to the spacelike or timelike unit vector ) compatible with the induced metric .

Inverse Metric

Square Root of Determinant of Metric

Variational Operator

=𝑅̂𝜇𝜈 − 𝜎 − (𝑑 − 1) 𝜎 + (𝑑 − 1) 𝜎 𝜎𝑅𝜇𝜈 𝑔𝜇𝜈 ∇2 ∇𝜇∇𝜈 ∇𝜇 ∇𝜈

− (𝑑 − 1) 𝜎 𝜎𝑔𝜇𝜈∇𝜆 ∇𝜆

(68)
(69)

= (𝑅 − 2 𝑑 𝜎 − 𝑑 (𝑑 − 1) 𝜎 𝜎)𝑅̂ 𝑒−2 𝜎 ∇2 ∇𝜇 ∇𝜇 (70)

=𝑆̂𝜇𝜈 − 𝜎 + 𝜎 𝜎 − 𝜎 𝜎𝑆𝜇𝜈 ∇𝜇∇𝜈 ∇𝜇 ∇𝜈
1
2 𝑔𝜇𝜈∇𝜆 ∇𝜆 (71)

=𝐶̂
𝜆

𝜇𝜌𝜈 𝐶𝜆
𝜇𝜌𝜈 (72)

= =𝑛̂𝜇 𝑒−𝜎 𝑛𝜇 𝑛̂𝜇 𝑒 𝜎 𝑛𝜇 (73)

= ( + 𝜎)𝐾̂𝜇𝜈 𝑒 𝜎 𝐾𝜇𝜈 ℎ𝜇𝜈 𝑛𝜆∇𝜆

= (𝐾 + 𝑑 𝜎)𝐾̂ 𝑒−𝜎 𝑛𝜆∇𝜆

(74)
(75)

→ +𝑔𝜇𝜈 𝑔𝜇𝜈 𝛿𝑔𝜇𝜈
𝑔𝜇𝜈

∇𝜇
𝑔𝜇𝜈 𝜇

Σ ⊂  𝑛𝜇 ℎ𝜇𝜈

→ − + + …𝑔𝜇𝜈 𝑔𝜇𝜈 𝑔𝜇𝛼 𝑔𝜈𝛽 𝛿𝑔𝛼𝛽 𝑔𝜇𝛼 𝑔𝜈𝛽 𝑔𝜆𝜌 𝛿𝑔𝛼𝜆 𝛿𝑔𝛽𝜌 (76)

→ (1 + + …)𝑔√ 𝑔√
1
2 𝑔𝜇𝜈𝛿𝑔𝜇𝜈 (77)

2
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Christoffel

Riemann Tensor

Ricci Tensor

Ricci Scalar

Surface Forming Unit Vector

Acceleration vector

Extrinsic Curvatures

𝛿( ) = ( ) = 𝛿( ) = 0𝑔𝜇𝜈 𝛿𝑔𝜇𝜈 𝛿 2 𝑔𝜇𝜈 𝛿𝑔𝜇𝜈

𝛿( ) = −𝑔𝜇𝜈 𝑔𝜇𝛼 𝑔𝜈𝛽 𝛿𝑔𝛼𝛽

( ) = 𝛿 (− ) = 2𝛿 2 𝑔𝜇𝜈 𝑔𝜇𝜆 𝑔𝜈𝜌 𝛿𝑔𝜆𝜌 𝑔𝜇𝛼 𝑔𝜈𝛽 𝑔𝜆𝜌 𝛿𝑔𝛼𝜆 𝛿𝑔𝛽𝜌

(𝑔 + 𝛿𝑔) = (𝑔) + 𝛿(𝑔) + (𝑔) + … + (𝑔) + …1
2 𝛿 2 1

𝑛! 𝛿 𝑛

(78)
(79)
(80)

(81)

𝛿 = ( + − )Γ𝜆
𝜇𝜈

1
2 𝑔𝜆𝜌 ∇𝜇 𝛿𝑔𝜌𝜈 ∇𝜈 𝛿𝑔𝜇𝜌 ∇𝜌 𝛿𝑔𝜇𝜈

= − ( + − )𝛿 2Γ𝜆
𝜇𝜈 𝑔𝜆𝛼 𝑔𝜌𝛽 𝛿𝑔𝛼𝛽 ∇𝜇 𝛿𝑔𝜌𝜈 ∇𝜈 𝛿𝑔𝜇𝜌 ∇𝜌 𝛿𝑔𝜇𝜈

= ( ) ( + − )𝛿 𝑛Γ𝜆
𝜇𝜈

𝑛
2 𝛿 𝑛−1 𝑔𝜆𝜌 ∇𝜇 𝛿𝑔𝜌𝜈 ∇𝜈 𝛿𝑔𝜇𝜌 ∇𝜌 𝛿𝑔𝜇𝜈

(82)
(83)
(84)

𝛿 = 𝛿 − 𝛿𝑅𝜆
𝜇𝜎𝜈 ∇𝜎 Γ𝜆

𝜇𝜈 ∇𝜈 Γ𝜆
𝜇𝜎 (85)

𝛿 =𝑅𝜇𝜈

=

𝛿 − 𝛿∇𝜆 Γ𝜆
𝜇𝜈 ∇𝜈 Γ𝜆

𝜇𝜆

( + − − )1
2 ∇𝜆∇𝜇𝛿𝑔𝜆𝜈 ∇𝜆∇𝜈𝛿𝑔𝜇𝜆 𝑔𝜆𝜌∇𝜇∇𝜈𝛿𝑔𝜆𝜌 ∇2𝛿𝑔𝜇𝜈

(86)

(87)

𝛿𝑅 = − + ( − )𝑅𝜇𝜈𝛿𝑔𝜇𝜈 ∇𝜇 ∇𝜈𝛿𝑔𝜇𝜈 𝑔𝜆𝜌∇𝜇𝛿𝑔𝜆𝜌 (88)

𝛿 = = +𝑛𝜇
𝑒
2 𝑛𝜇𝑛𝜈 𝑛𝜆𝛿𝑔𝜈𝜆

1
2 𝛿𝑔𝜇𝜈𝑛𝜈 1

2 𝑐𝜇 (89)

= 𝑒 − = −𝑐𝜇 𝑛𝜇𝑛𝜈 𝑛𝜆𝛿𝑔𝜈𝜆 𝛿𝑔𝜇𝜈𝑛𝜈 ℎ𝜇
𝜆𝛿𝑔𝜆𝜈𝑛𝜈 (90)

𝛿 = − ( 𝛿 ) +𝑎𝜇 1
2 𝜇 𝑛𝜈 𝑛𝜆 𝑔𝜈𝜆 𝑐𝜇 (91)

𝛿 =𝐾𝜇𝜈 + 𝑒 ( + )𝑒
2 𝑛𝛼 𝑛𝛽𝛿𝑔𝛼𝛽𝐾𝜇𝜈 𝛿𝑔𝜆𝜌𝑛𝜌 𝑛𝜇𝐾𝜆

𝜈 𝑛𝜈 𝐾𝜇
𝜆

− ( + − )1
2 ℎ𝜇

𝜆ℎ𝜈
𝜌𝑛𝛼 ∇𝜆𝛿𝑔𝛼𝜌 ∇𝜌𝛿𝑔𝜆𝛼 ∇𝛼𝛿𝑔𝜆𝜌

(92)
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Gibbons-Hawking-York Lagrangian (  )

10. The ADM Decomposition
The conventions and notation in this section (and the next) differ from the preceding sections. In this section
we consider a -dimensional spacetime with metric  and metric-compatible covariant derivative . Note
that, among other differences, the definition of the extrinsic curvature here differs from the one used in the
section on hypersurfaces by a sign: .

We start by identifying a scalar field  whose isosurfaces  are normal to the timelike unit vector given by

where the lapse function  is

An observer whose worldline is tangent to  experiences an acceleration given by the vector

which is orthogonal to . The (spatial) metric on the  dimensional surface  is given by

The intrinsic Ricci tensor built from this metric is denoted by , and its Ricci scalar is . The covariant
derivative on  is defined in terms of the  dimensional covariant derivative as

The extrinsic curvature of  embedded in the ambient  dimensional spacetime is

This definition has an overall minus sign compared to the extrinsic curvature in section 4, where we
considered surfaces normal to a spacelike vector.

𝛿 𝐾 = − − ( − ) +1
2 𝐾𝜇𝜈𝛿𝑔𝜇𝜈

1
2 𝑛𝜇 ∇𝜈𝛿𝑔𝜇𝜈 𝑔𝜈𝜆∇𝜇𝛿𝑔𝜈𝜆

1
2 𝜇𝑐𝜇 (93)

𝑒 = ±1

𝛿(𝑒 𝐾) =ℎ‾‾√ 𝑒 [ ( 𝐾 − ) +ℎ‾‾√
1
2 ℎ𝜇𝜈 𝐾𝜇𝜈 𝛿𝑔𝜇𝜈

1
2 𝜇𝑐𝜇

− ( − )]1
2 𝑛𝜇 ∇𝜈𝛿𝑔𝜇𝜈 𝑔𝜈𝜆∇𝜇𝛿𝑔𝜈𝜆

(94)

𝑑 ℎ ∇𝑑

= −𝜃𝜇𝜈 𝐾𝜇𝜈

𝑡 Σ𝑡

= −𝛼 𝑡 ,𝑢𝑎 ∂𝑎 (95)

𝛼

𝛼 :=  .1
− 𝑡 𝑡ℎ𝑎𝑏 ∂𝑎 ∂𝑏‾ ‾‾‾‾‾‾‾‾‾‾√

(96)

𝑢𝑎

= ⋅  ,𝑎𝑏 𝑢𝑐 ∇𝑑
𝑐𝑢𝑏 (97)

𝑢𝑎 𝑑 − 1 Σ𝑡

= +  .𝜎𝑎𝑏 ℎ𝑎𝑏 𝑢𝑎𝑢𝑏 (98)

𝑎𝑏 
Σ𝑡 𝑑

:= ( ) for any =  .𝐷𝑎𝑉𝑏 𝜎𝑎
𝑐𝜎𝑏

𝑒 ∇𝑑
𝑐𝑉𝑒 𝑉𝑏 𝜎𝑏

𝑐𝑉𝑐 (99)

Σ𝑡 𝑑

:= − ( ) = − − = −  .𝜃𝑎𝑏 𝜎𝑎
𝑐𝜎𝑏

𝑑 ∇𝑑
𝑐𝑢𝑑 ∇𝑑

𝑎𝑢𝑏 𝑢𝑎𝑎𝑏
1
2 £𝑢𝜎𝑎𝑏 (100)

𝑎
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Now we consider a ‘time flow’ vector field , which satisfies the condition

The vector  can be decomposed into parts normal and along  as

where  is the lapse function  and  is the shift vector. An important result in the derivations
that follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to  in all of its
indices) along the time flow vector field, to Lie derivatives along  and . Let  be a scalar. Then

Rearranging this expression then gives

Similarly, for a spatial tensor with all lower indices we have

This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along  in terms of regular time derivatives and Lie derivatives along the
shift vector .

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates  are defined by

The  are coordinates along the  dimensional hypersurface . If we define

then it follows from the definition of the coordinates that  and we can use  to project tensors
onto . For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and
shift vectors are

The line element in the adapted coordinates takes a familiar form:

𝑡𝑎

𝑡 = 1 .𝑡𝑎 ∂𝑎 (101)

𝑡𝑎 Σ𝑡

= 𝛼 +  ,𝑡𝑎 𝑢𝑎 𝛽𝑎 (102)

𝛼 (96) :=𝛽𝑎 𝜎𝑎
𝑏 𝑡𝑏

𝑢𝑎

𝑢𝑎 𝛽𝑎 𝑆

𝑆 = 𝑆 + 𝑆 = 𝛼 𝑆 + 𝑆 .£𝑡 £𝛼 𝑢 £𝛽 £𝑢 £𝛽 (103)

𝑆 = ( 𝑆 − 𝑆) .£𝑢
1
𝛼

£𝑡 £𝛽 (104)

= 𝛼 +  .£𝑡𝑊𝑎… £𝑢𝑊𝑎… £𝛽𝑊𝑎… (105)

𝑢𝑎

𝛽𝑎

(𝑡, )𝑥𝑖

:=  .∂𝑡𝑥𝑎 𝑡𝑎 (106)

𝑥𝑖 𝑑 − 1 Σ𝑡

:=  ,𝑃𝑖
𝑎 ∂𝑥𝑎

∂𝑥𝑖 (107)

𝑡 = 0𝑃𝑖
𝑎∂𝑎 𝑃𝑖

𝑎

Σ𝑡

=𝜎𝑖𝑗 𝑃𝑖
𝑎𝑃𝑗

𝑏𝜎𝑎𝑏

=𝜃𝑖𝑗 𝑃𝑖
𝑎𝑃𝑗

𝑏𝜃𝑎𝑏

=𝑎𝑗 𝑃𝑗
𝑏𝑎𝑏

= =  .𝛽𝑖 𝑃𝑖
𝑎𝛽𝑎 𝑃𝑖

𝑎𝑡𝑎

(108)
(109)
(110)
(111)

( )( )∂ 𝑏 ∂ 𝑏
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Thus, in the adapted coordinate system we can express the components of the spacetime metric  and its
inverse  as

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices 
in the adapted coordinates are lowered and raised using the spatial metric  and its inverse .

In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a
scalar  along the time-flow vector  is just the regular time-derivative

Next, we consider the projector  applied to the Lie derivative along  of a general vector , which
gives

The important point is that this applies not just to spatial vectors but to any vector , as a consequence of
the result

Finally, we can show that the Lie derivative along  of any contravariant spatial vector satisfies

This follows from a lengthier calculation than what is required for the first two results.

𝑑 𝑑 =ℎ𝑎𝑏 𝑥𝑎 𝑥𝑏

=
=
=

⇒ 𝑑 𝑑 =ℎ𝑎𝑏 𝑥𝑎 𝑥𝑏

( 𝑑𝑡 + 𝑑 )( 𝑑𝑡 + 𝑑 )ℎ𝑎𝑏
∂𝑥𝑎

∂𝑡
∂𝑥𝑎

∂𝑥𝑖 𝑥𝑖 ∂𝑥𝑏

∂𝑡
∂𝑥𝑏

∂𝑥𝑗 𝑥𝑗

( 𝑑𝑡 + 𝑑 )( 𝑑𝑡 + 𝑑 )ℎ𝑎𝑏 𝑡𝑎 𝑃𝑖
𝑎 𝑥𝑖 𝑡𝑏 𝑃𝑗

𝑏 𝑥𝑗

𝑑 + 2 𝑑𝑡 𝑑 + 𝑑 𝑑𝑡𝑎𝑡𝑎 𝑡2 𝑡𝑎 𝑃𝑖
𝑎 𝑥𝑖 ℎ𝑎𝑏𝑃𝑖

𝑎𝑃𝑗
𝑏 𝑥𝑖 𝑥𝑗

( − + )𝑑 + 2 𝑑𝑡𝑑 + 𝑑 𝑑𝛼2 𝛽𝑖𝛽𝑖 𝑡2 𝛽𝑖 𝑥𝑖 𝜎𝑖𝑗 𝑥𝑖 𝑥𝑗

− 𝑑 + (𝑑 + 𝑑𝑡)(𝑑 + 𝑑𝑡) .𝛼2 𝑡2 𝜎𝑖𝑗 𝑥𝑖 𝛽 𝑖 𝑥𝑗 𝛽𝑗

(112)

(113)
(114)
(115)
(116)

ℎ𝑎𝑏
ℎ𝑎𝑏

= ( )ℎ𝑎𝑏
− +𝛼2 𝛽𝑖𝛽𝑖

𝜎𝑖𝑗𝛽 𝑗
𝜎𝑖𝑗𝛽 𝑗

𝜎𝑖𝑗

=ℎ𝑎𝑏
⎛

⎝
⎜⎜

− 1
𝛼2

1
𝛼2 𝛽𝑖

1
𝛼2 𝛽𝑖

−𝜎𝑖𝑗 1
𝛼2 𝛽𝑖𝛽𝑗

⎞

⎠
⎟⎟

det( ) = − det( )ℎ𝑎𝑏 𝛼2 𝜎𝑖𝑗

(117)

(118)

(119)

𝑖, 𝑗, …
𝜎𝑖𝑗 𝜎𝑖𝑗

𝑆 𝑡𝑎

𝑆 = 𝑆 = = 𝑆 .£𝑡 𝑡𝑎∂𝑎
∂𝑥𝑎

∂𝑡
∂𝑆
∂𝑥𝑎 ∂𝑡 (120)

𝑃𝑖
𝑎 𝑡𝑎 𝑊𝑎

= ∀  .𝑃𝑖
𝑎£𝑡𝑊𝑎 ∂𝑡𝑊𝑎 𝑊𝑎 (121)

𝑊𝑎

= 0 .𝑃𝑖
𝑎£𝑡𝑢𝑎 (122)

𝑡𝑎

= ∀ =  .𝑃 𝑖
𝑎£𝑡𝑉 𝑎 ∂𝑡𝑉 𝑖 𝑉 𝑖 𝑃 𝑖

𝑎𝑉 𝑎 (123)
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Given these results, we can express various geometric quantities and their projections normal to and along 
in terms of quantities intrinsic to  and simple time derivatives. First, the extrinsic curvature is

Since  is a spatial tensor, projections of its Lie derivative along  can be expressed in a similar manner

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

These allow us to write out the various projections of the Einstein equations .

Hamiltonian Constraint

Momentum Constraint

ADM Evolution Equations

Σ𝑡
Σ𝑡

=𝜃𝑖𝑗

=

⇒ =𝜃𝑖𝑗

− 1
2 𝑃𝑖

𝑎𝑃𝑗
𝑏£𝑢𝜎𝑎𝑏

− ( ( − ))1
2 𝑃𝑖

𝑎𝑃𝑗
𝑏 1

𝛼
£𝑡𝜎𝑎𝑏 £𝛽𝜎𝑎𝑏

− ( − ( + )) .1
2𝛼

∂𝑡𝜎𝑖𝑗 𝐷𝑖𝛽𝑗 𝐷𝑗𝛽𝑖

(124)

(125)

(126)

𝜃𝑎𝑏 𝑢𝑎

= ( − ) .𝑃𝑖
𝑎𝑃𝑗

𝑏£𝑢𝜃𝑎𝑏
1
𝛼

∂𝑡𝜃𝑖𝑗 £𝛽𝜃𝑖𝑗 (127)

( ) =𝑃𝑖
𝑎𝑃𝑗

𝑏 𝑅𝑑
𝑎𝑏

( ) =𝑃𝑖
𝑎 𝑅𝑑

𝑎𝑏𝑢𝑏

=𝑅𝑑
𝑎𝑏𝑢𝑎𝑢𝑏

𝑅 =𝑑

+ 𝜃 − 2 − ( − ) − 𝛼𝑖𝑗 𝜃𝑖𝑗 𝜃𝑖
𝑘𝜃𝑗𝑘

1
𝛼

∂𝑡𝜃𝑖𝑗 £𝛽𝜃𝑖𝑗
1
𝛼

𝐷𝑖𝐷𝑗

𝜃 −𝐷𝑖 𝐷𝑗𝜃𝑖𝑗

( 𝜃 − 𝜃) − + 𝛼1
𝛼

∂𝑡 𝛽 𝑖∂𝑖 𝜃𝑖𝑗𝜃𝑖𝑗
1
𝛼

𝐷𝑖𝐷𝑖

 + + − ( 𝜃 − 𝜃) − 𝛼 .𝜃2 𝜃𝑖𝑗𝜃𝑖𝑗
2
𝛼

∂𝑡 𝛽 𝑖∂𝑖
2
𝛼

𝐷𝑖𝐷𝑖

(128)

(129)

(130)

(131)

=𝐺𝑎𝑏 𝜅2𝑇𝑎𝑏

 + − = 2 𝜌𝜃2 𝜃𝑖𝑗 𝜃𝑖𝑗 𝜅2

𝜌 := 𝑇𝑎𝑏𝑢𝑎𝑢𝑏
(132)
(133)

− 𝜃 =𝐷𝑗𝜃𝑖𝑗 𝐷𝑖 𝜅2𝑗𝑖

:= − ( )𝑗𝑖 𝑃𝑖
𝑎 𝑇𝑎𝑏𝑢𝑏

(134)
(135)

−  − ( − 𝜃) + ( − 𝜃)𝑖𝑗
1
2 𝜎𝑖𝑗

1
𝛼

∂𝑡𝜃𝑖𝑗
1
2 𝜎𝑖𝑗∂𝑡

1
𝛼

£𝛽𝜃𝑖𝑗
1
2 𝜎𝑖𝑗£𝛽

+ 𝜃 − 2 − ( + ) − ( 𝛼 − 𝛼)𝜃𝑖𝑗 𝜃𝑖
𝑘𝜃𝑗𝑘

1
2 𝜎𝑖𝑗 𝜃2 𝜃𝑘𝑙𝜃𝑘𝑙

1
𝛼

𝐷𝑖𝐷𝑗 𝜎𝑖𝑗𝐷𝑘𝐷𝑘

= 𝜅2𝑃𝑖
𝑎𝑃𝑗

𝑏𝑇𝑎𝑏

(136)
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Or, if we use the trace of this equation to rewrite  and define the spatial stress tensor as
, this can be written as

11. Converting to ADM Variables
The line element is often presented in the form

We would like to relate the components of the metric to the ADM variables: the lapse function , the shift
vector , and the spatial metric . This is a straightforward exercise in linear algebra. Comparing with

, we first note that

The inverse spatial metric, , is literally the inverse of , which is not in general the same thing as 
(see, for instance, equation )

For the shift vector we have

Finally, for the lapse we obtain

Recent Changes
August 31, 2023

Updated hypersurface results to include both spacelike and timelike unit normals.
Added useful simplifications associated with surface-forming (normalized gradient) unit normals.
Reorganized the order of results in the section on hypersurfaces.
Changed definition of the vector  in the section on small variations of the metric.
Updated variations of , , and  to accommodate both spacelike and timelike hypersurfaces.
Added explicit variation of the Gibbons-Hawking-York Lagrangian, including the (usually neglected)
corner term.
Added a note about the different conventions used for the extrinsic curvature in the ADM and


:=𝑖𝑗 𝑃𝑖

𝑎𝑃𝑗
𝑏𝑇𝑎𝑏

=∂𝑡𝜃𝑖𝑗 + 𝛼 ( + 𝜃 − 2 ) − 𝛼£𝛽𝜃𝑖𝑗 𝜃𝑖𝑗 𝜃𝑖
𝑘𝜃𝑗𝑘 𝐷𝑖𝐷𝑗

− 𝛼 ( − ) − 𝛼 𝜌𝜅2 𝑖𝑗
1

𝑑 − 2 𝜎𝑖𝑗 𝑘
𝑘 𝜅2 1

𝑑 − 2 𝜎𝑖𝑗

(137)

𝑑 𝑑 = 𝑑 + 2 𝑑𝑡𝑑 + 𝑑 𝑑  .ℎ𝑎𝑏 𝑥𝑎 𝑥𝑏 ℎ𝑡𝑡 𝑡2 ℎ𝑡𝑖 𝑥𝑖 ℎ𝑖𝑗 𝑥𝑖 𝑥𝑗 (138)

𝛼
𝛽𝑖 𝜎𝑖𝑗

(116)

=  .𝜎𝑖𝑗 ℎ𝑖𝑗 (139)

𝜎𝑖𝑗 ℎ𝑖𝑗 ℎ𝑖𝑗

(118)

= ( = ( ≠  .𝜎𝑖𝑗 𝜎𝑖𝑗)−1 ℎ𝑖𝑗)−1 ℎ𝑖𝑗 (140)

= → = =ℎ𝑡𝑖 𝜎𝑖𝑗𝛽 𝑗 𝜎𝑖𝑘ℎ𝑡𝑘 𝜎𝑖𝑘𝜎𝑘𝑙𝛽 𝑙 𝛽 𝑖

⇒ =  .𝛽𝑖 𝜎𝑖𝑗ℎ𝑡𝑗

(141)
(142)

= −  .𝛼2 𝜎𝑖𝑗ℎ𝑡𝑖ℎ𝑡𝑗 ℎ𝑡𝑡 (143)

𝑐𝜇

𝑛𝜇 𝐾𝜇𝜈 𝐾
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hypersurface sections.

May 5, 2023
Added a short section with the explicit form of the Lie derivative of an arbitrary tensor.
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