On the Nondegeneracy of Constant Mean Curvature Surfaces

Nick Korevaar
Robert Kusner, University of Massachusetts - Amherst
Jesse Ratzkin

Available at: https://works.bepress.com/robert_kusner/7/
On the Nondegeneracy of Constant Mean Curvature Surfaces

Nick Korevaar  
University of Utah  
korevaar@math.utah.edu

Rob Kusner∗  
University of Massachusetts, Amherst  
kusner@math.umass.edu

Jesse Ratzkin†  
University of Connecticut  
ratzkin@math.uconn.edu

February 8, 2008

Abstract

We prove that many complete, noncompact, constant mean curvature (CMC) surfaces $f : \Sigma \rightarrow \mathbb{R}^3$ are nondegenerate; that is, the Jacobi operator $\Delta f + |A_f|^2$ has no $L^2$ kernel. In fact, if $\Sigma$ has genus zero with $k$ ends, and if $f(\Sigma)$ is embedded (or Alexandrov immersed) in a half-space, then we find an explicit upper bound for the dimension of the $L^2$ kernel in terms of the number of non-cylindrical ends. Our main tool is a conjugation operation on Jacobi fields which linearizes the conjugate cousin construction. Consequences include partial regularity for CMC moduli space, a larger class of CMC surfaces to use in gluing constructions, and a surprising characterization of CMC surfaces via spinning spheres.

1 Introduction

Constant mean curvature surfaces in $\mathbb{R}^3$ are equilibria for the area functional, subject to an enclosed-volume constraint. The mean curvature is nonzero when the constraint is in effect, so we can scale and orient the surfaces to make their mean curvature 1, a condition we abbreviate by CMC. Over the past two decades a great deal of progress has been made on understanding complete CMC surfaces and their moduli spaces; however many interesting open problems remain. One of the most important questions concerns the possibility of decaying Jacobi fields on complete CMC surfaces, that is, the Morse-theoretic degeneracy of these equilibria. The main result of this paper is to rule out such Jacobi fields on a large class of complete CMC surfaces.

For a given immersed surface $f : \Sigma \rightarrow \mathbb{R}^3$, its mean curvature $H_f$ is determined by the quasilinear elliptic equation

$$\Delta_f f = 2H_f \nu_f,$$

where $\nu = \nu_f$ is the (mean curvature, or inner) unit normal to $f$ and $\Delta_f$ is the Laplace-Beltrami operator. The surface $f(\Sigma)$ is CMC if $H_f \equiv 1$. The oldest examples of CMC surfaces are the sphere of radius 1 and cylinder of radius $1/2$. Interpolating between these two examples are the Delaunay unduloids, which are rotationally symmetric and periodic. A Delaunay unduloid is determined (up to rigid motion) by its necksize $n$, which is the length of the smallest closed geodesic on the surface. A necksize of $n = \pi$ corresponds to a cylinder of radius $1/2$, and as $n \to 0$ one obtains the singular limit of a chain of mutually tangent unit spheres. The ODE

∗Partially supported by NSF grants DMS-0076085 at GANG/UMass and DMS-9810361 at MSRI, and by a FUNCAP grant in Fortaleza, Brasil
†Partially supported by an NSF VIGRE grant at Utah
determining the Delaunay surfaces still has global solutions when the necksize parameter is any negative number; in this case the resulting Delaunay nodoids are not embedded.

In the present paper we will study CMC surfaces in $\mathbb{R}^3$ which are Alexandrov-immersed. A proper immersion $f : \Sigma \to \mathbb{R}^3$ is an Alexandrov immersion if one can write $\Sigma = \partial M$, where $M$ is a three-manifold into which the mean curvature normal $\nu$ points, and $f$ extends to a proper immersion of $M$ into $\mathbb{R}^3$. In the finite topology CMC setting, $M$ is necessarily a handlebody with a solid cylinder attached for each end. For example, the Delaunay unduloids are Alexandrov-immersed (in fact, embedded), but the Delaunay nodoids are not.

In the remainder of this paper, all of the CMC surfaces are assumed to be complete, Alexandrov immersions of finite topology, or subsets of such surfaces.

It is a theorem of Alexandrov [A] that the only compact, connected, Alexandrov-immersed, CMC surfaces are unit spheres. Here we are primarily interested in noncompact CMC surfaces. Korevaar, Kusner and Solomon [KKS] proved that each end of such a CMC surface is exponentially asymptotic to a Delaunay unduloid, that two-ended CMC surfaces are unduloids, and that three-ended CMC surfaces have a plane of reflection symmetry. In fact, all triunduloids (three-ended, genus zero CMC surfaces) were constructed and classified by Große-Brauckmann, Kusner and Sullivan [GKS1], as were all coplanar $k$–unduloids ($k$-ended, genus zero CMC surfaces whose asymptotic axes all lie in a plane [GKS2]). These authors define a classifying map assigning each coplanar $k$–unduloid an immersed polygonal disc with $k$ geodesic edges in $S^2$, whose edge-lengths are the asymptotic necksizes of the corresponding $k$–unduloid.

The classifying map of $[GKS1, GKS2]$ is a homeomorphism, and gives information about the topological structure of moduli space of coplanar $k$–unduloids. To obtain information about the smooth structure of moduli space, one needs to understand the linearization of the mean curvature operator, which is the Jacobi operator

$$\mathcal{L}_f = \Delta_f + |A_f|^2,$$

where $|A_f|$ is the length of the second fundamental form of $f$. Solutions to the Jacobi equation $\mathcal{L}_f u = 0$ are called Jacobi fields, and correspond to normal variations of the CMC surface $f(\Sigma)$ which preserve the mean curvature to first order. More precisely, if $u$ is a Jacobi field, then the one-parameter family of immersions $f(t) = f + tu\nu$ has mean curvature $H(t) = 1 + O(t^2)$. Thus one can think of Jacobi fields as tangent vectors to the moduli space of constant mean curvature surfaces.

**Definition 1** A surface $f : \Sigma \to \mathbb{R}^3$ is nondegenerate if the only solution $u \in L^2$ to $\mathcal{L}_f u = 0$ is the zero function.

Near a nondegenerate CMC surface $f(\Sigma)$, a theorem of Kusner, Mazzeo and Pollack [KMP] shows that the moduli space of CMC surfaces is a real-analytic manifold with coordinates derived from the asymptotic data of $[KKS]$ (that is, the axes, necksizes, and neckphases of the unduloid asymptotes). In general the CMC moduli space is a real-analytic variety. Indeed, on a degenerate CMC surface, there would be a nonzero $L^2$ Jacobi field $u$, which (by [KMP]) decays exponentially on all ends. The presence of such a Jacobi field means there exists a one-parameter family of surfaces $f(t)$ with the same asymptotic data and with mean curvature $1 + O(t^2)$, indicating a possible singularity in the CMC moduli space. Thus, proving nondegeneracy eliminates the potential for such singularities.

Another application of nondegeneracy is to gluing constructions, where the pieces to be glued are nondegenerate minimal or CMC surfaces. Here one looks for CMC surfaces $\tilde{f}(\Sigma)$ which are near a given surface $f(\Sigma)$, which may or may not have constant mean curvature. Writing the nearby surface $f(\Sigma)$ as a normal graph over $f(\Sigma)$, with graphing function $u$, we see that $H_f = H_f + \mathcal{L}_f(u) + O(u^2)$. We take the mean curvature of $f$ to be $1 - \phi$, where $\phi$ is a small, but otherwise unrestricted, function. Thus, ignoring the higher order terms, finding the nearby CMC surface $\tilde{f}$ is equivalent to solving the linear differential equation $\mathcal{L}_f(u) = \phi$, with growth and/or
boundary conditions on \( u \). The nondegeneracy of \( f \) allows one to solve this, while controlling \( u \) in an appropriate norm. An early example of this method is Smale’s bridge principle \[^{Sm}\], which produces a new nondegenerate minimal surface as the boundary-connected sum of two nondegenerate minimal surfaces along a thin bridge. (Kapouleas \[^{Kap}\] had earlier constructed many new examples of complete, noncompact CMC surfaces in \( \mathbb{R}^3 \) by gluing Delaunay ends and spheres together. Although he did not explicitly mention nondegeneracy, his construction used a balancing condition to overcome the translation-degeneracy of the sphere.) Recently, a more flexible gluing technique \[^{MP,MPP1,MPP2}\] has been used to explore the moduli space theory of CMC surfaces: it involves solving several boundary value problems and then matching Cauchy data across interfaces, but again the gluing pieces must be suitably nondegenerate.

Our main theorem bounds the dimension of the space of \( L^2 \) Jacobi fields on a large class of CMC surfaces, and as a corollary shows that almost all triunduloids are nondegenerate.

**Theorem 1** Let \( f : \Sigma \to \mathbb{R}^3 \) be a coplanar \( k \)-unduloid. Then the space of \( L^2 \) Jacobi fields on \( f(\Sigma) \) is at most \((k - 2)\)-dimensional. Moreover, if the span of the vertices of the classifying geodesic polygon in \( S^2 \) is \( \mathbb{R}^3 \), then the space of \( L^2 \) Jacobi fields on \( f(\Sigma) \) is at most \((k - 3)\)-dimensional.

To precisely state the corollary, recall \(^{GKS1}\) and our earlier discussion that a triunduloid uniquely determines a spherical triangle whose edge-lengths are the asymptotic necksizes \( n_1, n_2, n_3 \). The spherical triangle inequalities imply \( n_1 + n_2 + n_3 \leq 2\pi \) and \( n_i + n_j \geq n_k \). When these inequalities are strict, the vertices of the classifying triangle span \( \mathbb{R}^3 \), and so our main theorem asserts that the space of \( L^2 \) Jacobi fields is \( \{0\} \).

**Corollary 2** Let \( f : \Sigma \to \mathbb{R}^3 \) be a triunduloid. Then \( f \) is nondegenerate if its necksizes satisfy the strict spherical triangle inequalities.

When a coplanar \( k \)-unduloid has cylindrical ends, Theorem \(^{22}\) improves the dimension bound in Theorem 1 and shows many of these CMC surfaces are also nondegenerate (see Section 6).

The main tool we develop is a conjugate Jacobi field construction, which converts Neumann fields to Dirichlet fields. This conjugate variation field arises from linearizing the conjugate cousin construction of Cosín and Ros \[^{CR}\], their method relies on the conformality of the Gauss map, and on the presence of a homothety Jacobi field. Both these properties are special to the minimal case and do not generalize to our CMC situation. This difference in the geometry forced us to develop a new approach. Not only does it provide another proof of their nondegeneracy result, but also new insight into the classifying map for triunduloids and, more generally, for coplanar \( k \)-unduloids (see \[^{GKS1,GKS2}\]). Our conjugate Jacobi field construction also yields a simple, synthetic characterization of constant mean curvature in terms of a spinning sphere with speed 2 along the surface (see Section 4).

The paper is organized as follows. Notation and preliminary computations appear in Section 2. The conjugate Jacobi field construction is in Section 3. In Section 4 we develop the spinning sphere characterization for CMC surfaces, and the interpretation of the classifying map for coplanar \( k \)-unduloids. The proofs of Theorem 1 and Corollary 2 are in Section 5. Finally, we discuss some extensions and applications, as well as pose some related open questions, in Section 6.

As with any mathematical problem which has been outstanding for so long, the present paper has benefited from fruitful discussion with many people. In particular, we wish to thank John Sullivan, Karsten Große-Brauckmann and Frank Pacard for reading earlier drafts of this paper, and for their helpful suggestions.

## 2 Notation and conventions

On a simply connected domain of a CMC (or minimal) surface, we find it convenient to use *conformal curvature coordinates*. These are coordinates \((x, y) = (x_1, x_2)\) on a domain \( \Omega \subset \mathbb{R}^2 \), so
that the mapping \( f : \Omega \rightarrow \mathbb{R}^3 \) which parameterizes the surface satisfies

\[
g_{11} := (f_x, f_x) = \rho^2 = (f_y, f_y) =: g_{22}, \quad g_{12} := (f_x, f_y) = 0,
\]

and the (inner) unit normal \( \nu \) to the surface satisfies

\[
h_{11} := \langle \nu, f_{xx} \rangle = -\langle \nu_x, f_x \rangle = \rho^2 \kappa_1, \quad h_{22} := \langle \nu, f_{yy} \rangle = -\langle \nu_y, f_y \rangle = \rho^2 \kappa_2, \quad h_{12} := \langle \nu, f_{xy} \rangle = 0.
\]

In other words, choosing conformal curvature coordinates amounts to simultaneously diagonalizing the first and second fundamental forms, \( g \) and \( h \). In these coordinates, the shape operator \( A = g^{-1} h \) is diagonal with the principal curvatures \( \kappa_1, \kappa_2 \) as its entries. Equivalently, the \( x \) and \( y \) coordinate lines are principal curves. Notice that \( H = (\kappa_1 + \kappa_2)/2 \) is half the trace of \( A \). In what follows it will be useful to define \( \kappa := \kappa_2 - \kappa_1 \), and to adopt the convention \( \kappa_2 > \kappa_1 \) (away from umbilic points). It also will be convenient to decompose the shape operator as \( A = B + C \), where \( C = HI \) is the trace part and \( B = A - HI \) is trace-free. Thus, in conformal curvature coordinates, \( A \) and \( B \) have matrices

\[
A = \begin{bmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{bmatrix}, \quad B = \begin{bmatrix} (\kappa_1 - \kappa_2)/2 & 0 \\ 0 & (\kappa_2 - \kappa_1)/2 \end{bmatrix} = \begin{bmatrix} -\kappa/2 & 0 \\ 0 & \kappa/2 \end{bmatrix}.
\]

The existence of conformal curvature coordinates (away from umbilics) on a CMC surface can be seen using the Hopf differential, a holomorphic quadratic differential associated with \( B \) (see [Ho]). More precisely, suppose we have any conformal coordinates \((u, v)\) on the surface, and consider the complex coordinate \( w = u + iv \). The Codazzi equation implies the complex-valued function

\[
\phi := (h_{11} - h_{22})/2 + ih_{12}
\]

is holomorphic with respect to \( w \) if and only if \( H \) is constant. Under conformal changes of coordinates, the holomorphic quadratic differential

\[
\Phi := \phi(w) dw^2
\]

is invariant. This \( \Phi \) is the Hopf differential of our CMC surface.

**Lemma 3** If \( \Omega \) is simply connected and \( f : \Omega \rightarrow \mathbb{R}^3 \) is a conformal immersion of a CMC surface without umbilics, then there exists a conformal change of coordinates so that \( f \) is an immersion with conformal curvature coordinates, and so that \( \kappa > 0 \). Moreover, in any conformal curvature coordinates, \( \kappa \rho^2 \) is a constant.

**Proof:** Observe that umbilic points of \( f \) are precisely the zeroes of \( \Phi = \phi(w) dw^2 \). Because \( \Omega \) is simply connected and \( f(\Omega) \) has no umbilics, we can pick a branch of \( \sqrt{\phi(w)} \). Make a conformal change of coordinates \( z = z(w) = x + iy \) by integrating the one-form

\[
dz := i\sqrt{\Phi} = i \sqrt{\phi(w)} dw.
\]

Then in the \( z \) coordinates, \( \Phi = -dz^2 \). This means \( h_{12} \equiv 0 \), and so \( f(w(z)) \) is an immersion in conformal curvature coordinates. Also, \( h_{11} - h_{22} = -2 \) implies \( \kappa \rho^2 = 2 \), and so \( \kappa > 0 \).

Moreover, for any conformal curvature coordinates, \( h_{12} \equiv 0 \), so \(-2\phi = \kappa \rho^2 \) is a real-valued holomorphic function, and hence constant. \( \square \)

We now proceed with some preliminary computations using conformal curvature coordinates. These are elementary, but we include them for the convenience of the reader. Using the flat Laplacian, \( \Delta_0 = \partial_x^2 + \partial_y^2 \), the CMC equation is

\[
\rho^2 \Delta f = \Delta_0 f = 2f_x \times f_y = 2 \rho^2 \nu.
\]
and the Jacobi equation reads
\[ \rho^2 \mathcal{L}_f u = \Delta_0 u + \rho^2 (\kappa_1^2 + \kappa_2^2) u = 0. \] (2)

Unlike the previous lemma, the next two do not require \( f \) to have constant mean curvature. However, they do require that \( f : \Omega \to \mathbb{R}^3 \) is an immersion in conformal curvature coordinates.

**Lemma 4** If \( f : \Omega \to \mathbb{R}^3 \) is an immersion in conformal curvature coordinates, with unit normal \( \nu \) and conformal factor \( \rho \), then one can write the complex structure of the surface \( f \) as
\[ f_{xx} = \frac{\rho_x}{\rho} f_x - \frac{\rho_u}{\rho} f_y + \kappa_1 \rho^2 \nu, \quad f_{yy} = -\frac{\rho_x}{\rho} f_x + \frac{\rho_u}{\rho} f_y + \kappa_2 \rho^2 \nu. \]

**Proof:** The frame \((f_x, f_y, \nu)\) is orthogonal, so
\[ f_{xx} = \rho^{-2} \langle f_{xx}, f_x \rangle f_x + \rho^{-2} \langle f_{xx}, f_y \rangle f_y + \langle f_{xx}, \nu \rangle \nu, \quad f_{yy} = \rho^{-2} \langle f_{yy}, f_x \rangle f_x + \rho^{-2} \langle f_{yy}, f_y \rangle f_y + \langle f_{yy}, \nu \rangle \nu. \]

One can then complete the proof by differentiating the equations
\[ \langle f_x, f_x \rangle = \rho^2 = \langle f_y, f_y \rangle, \quad \langle f_x, f_y \rangle = \langle f_x, \nu \rangle = \langle f_y, \nu \rangle = 0. \]

**Lemma 5** If \( f : \Omega \to \mathbb{R}^3 \) is an immersion in conformal curvature coordinates and \( u \in C^2(\Omega) \), then one can write the complex structure of the surface \( f(t) = f + tu + O(t^2) \) as
\[ J(t) = J_0 + tJ_1 + O(t^2) \]
where
\[ J_0 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad J_1 = \begin{bmatrix} 0 & uk \\ uk & 0 \end{bmatrix}. \]
Thus the coordinate-free expression for \( J_1 \) is the product \( 2uJ_0B \), where \( B \) is the trace-free shape operator of \( f \).

**Proof:** In any oriented local coordinates,
\[ J = \frac{1}{\sqrt{\det(g)}} \begin{bmatrix} -g_{12} & -g_{22} \\ g_{11} & g_{12} \end{bmatrix}. \]
Using conformal curvature coordinates at \( t = 0 \), we compute the metric at \( t \):
\[ g_{11} = \langle f_x(t), f_x(t) \rangle = \rho^2 (1 - 2t \kappa_1) + O(t^2) \]
\[ g_{22} = \langle f_y(t), f_y(t) \rangle = \rho^2 (1 - 2t \kappa_2) + O(t^2) \]
\[ g_{12} = \langle f_x(t), f_y(t) \rangle = O(t^2). \]
Thus
\[ J(t) = \frac{1}{\rho^2 \sqrt{1 - 2(\kappa_1 + \kappa_2)t}\rho} \begin{bmatrix} 0 & -\rho^2(1 - 2t\kappa_2) \\ \rho^2(1 - 2t\kappa_1) & 0 \end{bmatrix} + O(t^2) \]
\[ = (1 + tu(\kappa_1 + \kappa_2)) \begin{bmatrix} 0 & -1 + 2tu\kappa_2 \\ 1 - 2tu\kappa_1 & 0 \end{bmatrix} + O(t^2), \]
which yields the desired expansion. \( \square \)

Lawson \( \square \) pioneered the conjugate cousin relation between CMC surfaces and minimal surfaces in \( S^3 \). The first order conjugate cousin construction was initiated by Karcher \( \square \) and
developed in [G, GKS1]. It uses the realization of $S^3 \subset \mathbb{R}^4 = \mathbb{H}$ as the unit quaternions, and of $\mathbb{R}^3 = 3\mathbb{H}$ (the imaginary quaternions) as the Lie algebra of $S^3$, or as the tangent space $T_1S^3$. For imaginary quaternions $p, q \in \mathbb{R}^3$, we can write their product as
\[ pq = -(p, q) + p \times q. \] (3)
In particular, orthogonal imaginary quaternions anti-commute. Thus we can also write the CMC condition $H_f \equiv 1$ as
\[ \Delta_0 f = 2f_x f_y = 2 \rho^2 \nu. \] (4)

Let $\Omega \subset \mathbb{R}^3$ be a simply connected domain. Theorem 1.1 of [GKS1] shows that conjugate cousins $f : \Omega \to \mathbb{R}^3$ and $\tilde{f} : \Omega \to S^3$ satisfy the first order system of partial differential equations
\[ df = \tilde{f} df \circ J_0, \] (5)
where $J_0$ is the standard complex structure on $\mathbb{R}^2$ and the product is the quaternion product. The integrability condition for $\tilde{f}$ reduces to the CMC equation for $f$, and in this case the resulting surface $\tilde{f}(\Omega) \subset S^3$ is minimal. Conversely, given a minimal immersion $\tilde{f}$, one can consider $f$ as the unknown in the system (5). Then the integrability condition for $f$ is the minimality of $\tilde{f}$, and the resulting surface $f(\Omega) \subset \mathbb{R}^3$ is CMC. Moreover, the immersions $f$ and $\tilde{f}$ are uniquely determined up to translation in $\mathbb{R}^3$ and left translation in $S^3$, respectively. One can also see from equation (5) that $f$ and $\tilde{f}$ are isometric.

**Lemma 6** The Jacobi operators for $f$ and $\tilde{f}$ coincide, and so we can identify Jacobi fields on the two surfaces.

**Proof:** In general, the Jacobi operator for a two-sided (CMC or minimal) surface with normal $\nu$ in a manifold with Ricci curvature $\text{Ric}$ is
\[ L = \Delta + |A|^2 + \text{Ric}(\nu, \nu). \]
Since the Ricci curvature of $\mathbb{R}^3$ or $S^3$ is 0 or 2, respectively, for $f$ and its cousin $\tilde{f}$ we have
\[ L_f = \Delta_f + |A_f|^2, \quad L_{\tilde{f}} = \Delta_{\tilde{f}} + |A_{\tilde{f}}|^2 + 2. \]
The two surfaces are isometric, so $\Delta_f = \Delta_{\tilde{f}}$. Moreover, we have (see Proposition 1.2 of [GKS1])
\[ \tilde{\kappa}_1 = \kappa_1 - 1, \quad \tilde{\kappa}_2 = \kappa_2 - 1. \]
Thus
\[ |A_f|^2 = \tilde{\kappa}_1^2 + \tilde{\kappa}_2^2 = (\kappa_1 - 1)^2 + (\kappa_2 - 1)^2 = \kappa_1^2 + \kappa_2^2 - 2(\kappa_1 + \kappa_2) + 2 = |A_{\tilde{f}}|^2 - 2. \]
\[ \square \]

### 3 Existence of the conjugate cousin variation field

In this section we construct a conjugate cousin variation field $\tilde{\epsilon}$ on $\tilde{f}$ from a normal variation field $u\nu$ on $f$. The idea behind this construction is to linearize the conjugate cousin equation (4).

We begin with a CMC immersion $f : \Omega \to \mathbb{R}^3$ of a simply connected domain and a solution $u : \Omega \to \mathbb{R}$ to the Jacobi equation (4). In general, $u\nu$ is not the initial velocity of a one-parameter family of CMC surfaces
\[ f(t) = f + tu\nu + O(t^2). \]
Although one can always find such a family on a sufficiently small subdomain, the families will 
not coincide on the overlaps of these subdomains. However, when there does exist such a one-
parameter family of CMC surfaces, then one can define a conjugate cousin family

\[ \tilde{f}(t) = f + t\check{c} + O(t^2) \]

by integrating equation (5). In this case, the two families are related by the system

\[ d\tilde{f}(t) = \tilde{f}(t)df(t) \circ J(t), \]

where \( J(t) \) is the complex structure on \( f(t) \). Surprisingly, if the domain \( \Omega \) is simply connected, 
then an initial velocity field \( \check{c} \) can be defined globally, even though this may not be possible for 
the conjugate cousin family itself.

**Proposition 7** Let \( p \) be a point in a simply connected domain \( \Omega \). Let \( f \) and \( \tilde{f} \) be conjugate 
cousins satisfying equation (6). Then for any Jacobi field \( u \) on \( \Omega \), and any choice of initial 
velocity \( \check{c}(p) \), there exists a unique global variation field \( \check{c} \) on \( \tilde{f}(\Omega) \) which is locally associated to 
\( u \) in the manner described above. The field \( \check{c} \) satisfies the first order system of linear partial 
differential equations

\[ d\check{c} = \tilde{f}df \circ J_1 + \tilde{f}d(u\nu) \circ J_0 + \check{c}df \circ J_0. \] (7)

**Remark 1** The new variation field \( \check{c} \) need not be a normal field along \( \tilde{f} \).

**Proof:** We first sketch an abstract proof of the proposition, before giving a purely computa-
tional one. Small patches of a CMC surface are graphical and therefore strictly stable. Thus 
one can always use the implicit function theorem to solve a family of Dirichlet problems for the 
normal variation CMC equation, with boundary data \( f(t) = f + tu\nu \). This yields a one-parameter 
family of CMC patches \( f(t) \) with \( t \) in a neighborhood of 0, and with initial velocity \( u\nu \) on such 
a small patch. From these CMC patches, solve equation (6) for a family \( \tilde{f}(t) \) of minimal surface 
patches in \( S^3 \), uniquely determined for each \( t \) once one specifies a basepoint \( \check{c}(t) = \check{c}(t)(p) \). These 
conjugate cousin surfaces have an initial velocity field \( \check{c} \). Note, \( \check{c}(p) = \tilde{c}(0) \) can be adjusted at 
will. Once we show that the fields \( \check{c} \) all satisfy the first order system (7) we deduce not only local 
existence for the initial value problem (as just described), but also uniqueness, since equation (5) 
reduces to a first order system of differential equations along any curve. Global existence and 
uniqueness then follow because \( \Omega \) is simply connected.

To derive our governing system (7) we expand the conjugate family equation (6) (using quater-
nionic multiplication throughout):

\[ d\tilde{f} + t\check{c} + O(t^2) = d\tilde{f}(t) = \tilde{f}(t)df(t) \circ J(t) \]

\[ = (f + t\check{c} + O(t^2))(df + tdu\nu + O(t^2)) \circ (J_0 + tJ_1 + O(t^2)) \]

Equating the \( O(1) \) terms in this expansion gives the cousin equation (6). Equating the \( O(t) \) terms 
yields equation (7), completing our sketch of the abstract proof.

A direct and instructive proof of Proposition 7 is to show that the first order system of partial 
differential equations (7) satisfies the Frobenius integrability conditions, namely that the formal 
mixed partial derivatives are equal. Existence and uniqueness for the initial value problem then 
follows directly from the Frobenius theorem and the fact that \( \Omega \) is simply connected. Verifying 
the mixed-partials condition amounts to showing that the formal computation of \( d(d\check{c}) \) yields 0. 
Differentiating and expanding equation (7), we get eight terms:

\[ d(d\check{c}) = d(\tilde{f}df \circ J_1) + d(\tilde{f}d(u\nu) \circ J_0) + d\check{c} \wedge df \circ J_0 + \check{c}df \circ J_0 \]

\[ = \tilde{f}df \circ J_0 \wedge df \circ J_1 + \tilde{f}d(df \circ J_1) + \tilde{f}d(df \circ J_0) \wedge df \circ J_0 + \check{c}d(df(u\nu) \circ J_0) \]

\[ + \check{c}d(df \circ J_1) \wedge df \circ J_0 + \check{c}d(df(u\nu) \circ J_0) \wedge df \circ J_0 + \check{c}d(df \circ J_0) + \check{c}d(df \circ J_0). \]
It is easiest to analyze equation (5) term by term. We use conformal curvature coordinates to compute coordinate-free identities. Since umbilic points are isolated (we are not considering subdomains of spheres), continuity implies these identities hold everywhere. All terms are multiples of the area form \( da = \rho^2 dx \wedge dy \), and two of the terms vanish:

**Lemma 8**

\[
    df \circ J_1 \wedge df \circ J_0 = 0 = df \circ J_0 \wedge df \circ J_1.
\]

**Proof:** We compute \( df \circ J_1 \wedge df \circ J_0 \):

\[
    df \circ J_1 \wedge df \circ J_0 = (u \kappa f_y dx + u \kappa f_x) \wedge (f_y dx - f_x dy) = u \kappa (-f_y f_x dx \wedge dy + f_x f_y dy \wedge dx) = u \kappa (f_x f_y - f_x f_y) dx \wedge dy = 0.
\]

Here \( f_x \) and \( f_y \) are orthogonal, so they anti-commute. We also have

\[
    df \circ J_0 \wedge df \circ J_1 = -df \circ J_1 \wedge df \circ J_0 = 0.
\]

Using equation (4), the next lemma implies that two more terms sum to zero:

**Lemma 9**

\[
    d(df \circ J_0) = -\Delta_0 f dx \wedge dy = -2\rho^2 \nu dx \wedge dy = -2\nu da, \quad df \circ J_0 \wedge df \circ J_0 = 2\rho^2 \nu dx \wedge dy = 2\nu da.
\]

**Proof:** First we compute

\[
    d(df \circ J_0) = d(f_y dx - f_x dy) = f_{yy} dy \wedge dx - f_{xx} dx \wedge dy = -\Delta_0 f dx \wedge dy = -2\rho^2 \nu dx \wedge dy.
\]

Similarly,

\[
    df \circ J_0 \wedge df \circ J_0 = (f_y dx - f_x dy) \wedge (f_x dx - f_y dy) = -f_y f_x dx \wedge dy - f_x f_y dy \wedge dx = 2\rho^2 \nu dx \wedge dy.
\]

The remaining terms involve the decomposition of the shape operator \( A \) into trace-free and trace parts, \( B = A - C \) and \( C = HI = I \), respectively. In fact, note that \( A = B + C \) is an orthogonal decomposition in the space of symmetric linear maps, so that, by the Pythagorean theorem,

\[
\]

**Lemma 10**

\[
    d(df \circ J_1) = -2[df(B \nabla u) + |B|^2 \nu |da.
\]

**Proof:** We compute, using Lemmas 4 and 3

\[
    d(df \circ J_1) = d(u \kappa f_y dx + u \kappa f_x dy) = [u_x \kappa f_x + u \kappa f_z + u \kappa f_x] dx \wedge dy + [u_y \kappa f_y - u \kappa f_y - u \kappa f_y] dy \wedge dx = [\kappa(u_x f_x - u_y f_y) + u(\kappa f_x - \kappa f_y) + u(\kappa f_z - f_y)] dx \wedge dy = [\kappa(u_x f_x - u_y f_y) + u(\kappa f_x - \kappa f_y) + u(2\rho^{-1} \rho \kappa f_x - 2\rho^{-1} \rho \kappa f_y - \kappa^{2} \rho^{2} \nu)] dx \wedge dy = [\kappa(u_x f_x - u_y f_y) + u(2\rho^{-2} \partial_x (\kappa \rho^2) f_x - 2\rho^{-2} \partial_y (\kappa \rho^2) f_y - \kappa^{2} \rho^{2} \nu)] dx \wedge dy = [\kappa(u_x f_x - u_y f_y) - \kappa^2 \rho^2 \nu] dx \wedge dy = -2[df(B \nabla u) + |B|^2 \nu |da.
\]

The next term we have is:
**Lemma 11**

\[ d(d(uν) ∘ J₀) = 2[df(A∇u) + |A|^2 uν]da. \]

**Proof:** We compute, using the Jacobi equation:

\[
\begin{align*}
d(d(uν) ∘ J₀) &= d((uν)_ydx - (uν)_x dy) = -Δ₀(uν)dx ∧ dy \\
&= -[uΔ₀u + (Δ₀u)ν + 2(∇u, ∇ν)]dx ∧ dy \\
&= -[uμ²|A|^2 ν - ρ²|A|^2 uν + 2u_x ν_x + 2u_y ν_y]dx ∧ dy \\
&= (2κ₁ u_x f_x + 2κ₂ u_y f_y + 2ρ²|A|^2 uν)dx ∧ dy = 2[df(A∇u) + |A|^2 uν]da.
\end{align*}
\]

The final two terms actually coincide: \( \Box \)

**Lemma 12**

\[ d(uν) ∘ J₀ ∗ df ∘ J₀ = -[df(C∇u) + |C|^2 uν]da = df ∘ J₀ ∧ d(uν) ∘ J₀. \]

**Proof:** Using the conformality relations \( νf_x = f_y \) and \( νf_y = -f_x \), we have

\[
\begin{align*}
d(uν) ∘ J₀ ∧ df ∘ J₀ &= ((uν + wν)dx - (u_x ν + w_x)dy) ∧ (f_y dx - f_x dy) \\
&= ((uν - κ₂ u f_y)dx - (u_x ν - κ₁ f_x)dy) ∧ (f_y dx - f_x dy) \\
&= (-u_y ν f_x + κ₂ u f_x f_y)dy ∧ dy + (u_x ν f_y)dy ∧ dx \\
&= (-u_y f_y - κ₂ ρ² uν)dx ∧ dy + (u_x f_x + κ₁ ρ² uν)dy ∧ dx \\
&= (-u_x f_x - u_y f_y - (κ₁ + κ₂) ρ² uν)dx ∧ dy \\
&= (-u_x f_x - u_y f_y - 2ρ² uν)dx ∧ dy = -[df(C∇u) + |C|^2 uν]da,
\end{align*}
\]

since CMC implies the trace-part \( C = I \) and thus \( |C|^2 = 2 \). The other computation is similar. \( \Box \)

Summing the results of the previous lemmas:

\[ d(\partial) = 2\tilde{f}[df((A - B - C)∇u) + (|A|^2 - |B|^2 - |C|^2) uν]da = 2\tilde{f}[0 + 0] = 0. \]

This completes the proof of the proposition. \( \Box \)

## 4 Homogeneous solutions, spinning spheres, and the classifying map via pole solutions

We continue to consider a simply connected CMC surface \( f : Ω → \mathbb{R}^3 \) and its conjugate cousin surface \( \tilde{f} : Ω → S^3 \). At this point, it is useful to pull the variation field \( \partial \) back to \( \mathbb{R}^3 = T_1S^3 \). Thus we define

\[ ε := \tilde{f}^{-1}\partial. \]

By the product rule and equation \( \Box \), we have

\[ d\partial = d(\tilde{f}ε) = \tilde{f}(df ∘ J₀)ε + \tilde{f}dε; \]

however, by equation \( \Box \),

\[ d\partial = \tilde{f}df ∘ J₁ + \tilde{f}d(uν) ∘ J₀ + \tilde{f}df ∘ J₀ = \tilde{f}(df ∘ J₁ + d(uν) ∘ J₀ + df ∘ J₀). \]

Equating these two expressions, solving for \( dε \), and applying equation \( \Box \), one obtains

\[ dε = ε(df ∘ J₀) - (df ∘ J₀)ε + df ∘ J₁ + d(uν) ∘ J₀ = 2ε × df ∘ J₀ + df ∘ J₁ + d(uν) ∘ J₀. \]
4.1 Homogeneous solutions and spinning spheres

Equation (10) is an inhomogeneous first order differential system for $\epsilon$, where the inhomogeneity $df \circ J_1 + d(u) \circ J_0 = (-2df \circ Bu + d(\nu)) \circ J_0$ depends linearly on the Jacobi field $u$. When $u \in L^2$, the asymptotic behavior of a solution to equation (10) is given by solutions to the associated homogeneous ($u \equiv 0$) equation:

$$de = \epsilon(df \circ J_0) - (df \circ J_0)\epsilon = 2\epsilon \times df \circ J_0.$$  \hspace{1cm} (10)

We first study the geometry of solutions to equation (10). Notice that equation (10) implies $\epsilon$ is perpendicular to $de$, so

$$d(|\epsilon|^2) = 2\langle de, \epsilon \rangle = 0,$$

and the solutions $\epsilon$ to the linear system (10) have globally constant length. It follows that one can use them to define a path-independent parallel transport along $f(\Omega)$, mapping $T_{f(p)}\mathbb{R}^3 \to T_{f(q)}\mathbb{R}^3$ isometrically. To see this, let $\gamma$ be path from $p$ to $q$ on the simply connected domain $\Omega$. One recovers $\epsilon(f(q))$ by integrating the solution to the initial value problem for equation (10), with initial value $\epsilon_0 = \epsilon(f(p))$. Since this parallel transport is path independent, it defines a flat connection on a principal $SO(3)$-bundle over $\Omega$.

There is an interesting physical interpretation of this flat connection. Notice that if one integrates equation (10) along any curve $\gamma$ then a solution $\epsilon$ with unit length rotates with constant angular speed 2, with evolving axis of rotation given by the curve conormal, $df \circ J_0(\gamma'(s)) = \eta(s)$. This means that the $SO(3)$-frame evolves as if it were attached to a sphere spinning around the conormal $\eta$ at speed 2. In particular, if the spinning sphere follows a (contractible) loop on the surface, it will return with its initial orientation. This even gives a surprising property on a round sphere.

In fact, the flatness of this connection is equivalent to $f$ having mean curvature 1.

**Proposition 13** Let $f : \Omega \to \mathbb{R}^3$ be an immersion and consider the $SO(3)$-connection defined by spinning a sphere at speed 2 as described above. Then $f(\Omega)$ has mean curvature 1 if and only if this connection is flat.

We prove this proposition and further explore the spinning sphere connection in Appendix A.

4.2 Pole solutions and the classifying map

The $\epsilon$-fields which solve the homogeneous system (10) yield a new perspective on the classifying map $[GKS1, GKS2]$ for coplanar $k$-unduloids.

Let $f : \Sigma \to \mathbb{R}^3$ be a CMC surface with $k$ ends and genus zero, which lies in a half-space (necessarily so when $k \leq 3$). By [KKS] so a coplanar $k$-unduloid is Alexandrov symmetric: it has a reflection plane of symmetry, which we normalize to be the $xy$ plane; furthermore, the closures of each half of $f(\Sigma)$, $f(\Sigma^+) = f(\Sigma) \cap \{z > 0\}$ and $f(\Sigma^-) = f(\Sigma) \cap \{z < 0\}$, are graphs over a (possibly immersed) planar domain. Because $\Sigma$ has genus zero, $\Sigma^\pm$ are topological discs. The common boundary $\partial f(\Sigma^\pm)$ is the union of $k$ oriented, planar, principal curves $\gamma_1, \ldots, \gamma_k$, where $\gamma_j$ connects the end $E_{j-1}$ to $E_j$, using the natural cyclic ordering of the ends (see [GKS2]). The configuration for a trimunduloid ($k = 3$) is indicated in Figure 4.

The evolution of solutions to equation (10) is easy to track along curves of constant conormal $\eta(s) = df \circ J_0(\gamma'(s))$, since the conormal is the rotation axis. With our convention that the inner normal $\nu = \gamma'(s)\eta(s) = \gamma'(s) \times \eta(s)$, and our choice of curve orientation in Figure 11, we see that the rotation axis along each $\gamma_j$ is the vertical vector $\eta = -e_3$, so that the rotation appears counterclockwise from above, as indicated in the figure.

**Definition 2** The pole solutions $P_1, \ldots, P_k$ to equation (10) are solutions to the ODE system on $f(\Sigma^+)$, with the initial value $P_j = e_3$ at some point (and hence all points) of $\gamma_j$. 

10
Observe that each $P_j$ is a globally defined unit vector field on $f(\Sigma^+)$. Moreover, equation (10) shows that the angles between any two pole solutions $P_i$ and $P_j$ remains constant. Thus, along any curve $\gamma$, all pole solutions evolve by the same rotation, and so $P_1, \ldots, P_k$ can be viewed as the vertices of a geodesic polygon in $S^2$ which is well-defined up to rotation. We begin with a lemma about the pole solutions in the case $k = 2$, which we will also need in Section 5.2.

**Lemma 14** Let $f(\Sigma)$ be an unduloid with profile curves $\gamma_1, \gamma_2$ as in Figure 2.

- If $f(\Sigma)$ is not a cylinder then $\gamma_1$ and $\gamma_2$ each have period $\pi$ when parameterized by arclength (see also Section 1 of [GKS1]).

- If $f(\Sigma)$ is non-cylindrical then the only solution on $f(\Sigma^+)$ to equation (10) which satisfies $\langle \epsilon, \nu \rangle = 0$ along both $\gamma_1, \gamma_2$ is the zero solution. If $f(\Sigma)$ is cylindrical, then on $f(\Sigma^+)$ the pole solutions $P_1, P_2$ are opposites, and are tangential to $f(\Sigma^+)$, that is $\langle P_j, \nu \rangle \equiv 0$. Each solution $\epsilon$ of equation (10) satisfying $\langle \epsilon, \nu \rangle = 0$ along both $\gamma_1, \gamma_2$ is a multiple of $P_1 = -P_2$.

**Proof:** Starting at the initial point of $c_1$ in Figure 2, follow the pole solutions around the contour in this figure, which depicts one period of an unduloid. We see that the pole $P_1$ must return to the vertical position after traversing the second neck $c_2$. This is only possible if $P_1$ has rotated through a total angle of $2\pi k$ for some positive integer $k$ as it travels from $c_1$ to $c_2$ along $\gamma_2$. However, $P_1$ rotates with speed $2$ along $\gamma_2$, so the length of the $\gamma_2$-arc must be $k\pi$. In the zero necksize limit, this arc is half a great circle on a unit sphere, so it has length $\pi$. Thus, by the continuity of the family of Delaunay unduloids, the period of each unduloid is $\pi$.

For the second part of this proposition, suppose $\epsilon \neq 0$ solves equation (10) and $\langle \epsilon, \nu \rangle = 0$ along $\gamma_1, \gamma_2$. If $\epsilon$ has a nonzero horizontal component along the boundary curve $\gamma_1$, then as one traverses $\gamma_1$ this component rotates with angular speed $2$. Thus the horizontal component of $\epsilon$ will be perpendicular to the axis of the unduloid at points distributed with period $\pi/2$. At such points $\langle \epsilon, \nu \rangle \neq 0$. Therefore $\epsilon$ is vertical along $\gamma_1$, and $\epsilon = cP_1$ for some constant $c$. However, we have just seen that the pole solution $P_1$ has a nonzero horizontal component after traversing the neck $c_1$. Thus the same argument shows $c = 0$. 

Figure 1: Triunduloid configuration from above
If $f(\Sigma)$ is a cylinder then $P_1 = -P_2$ and the solution $\epsilon = cP_1$ persists. Furthermore, $\epsilon$ remains exactly parallel to the tangent vector as it traverses the radius $1/2$ circular cross-sections of the cylinder, so it is tangent to $f(\Sigma^+)$. \hfill \Box

We now consider a general coplanar $k$–unduloid with pole solutions $P_1, \ldots, P_k$.

**Proposition 15** The pole solutions $P_1, \ldots, P_k$ are the vertices of the polygonal disc used in [GKS2] to classify coplanar $k$-unduloids.

**Remark 2** Within this proof, and for the remainder of the paper, we say a function $u \simeq 0$ on an end $E_j$ if $u$ and its derivatives decay exponentially on the end $E_j$. Similarly, a vector field $\epsilon \simeq 0$ on an end $E_j$ if each of its components and their derivatives decay exponentially.

**Proof:** Here, and later in Section 5.2, we truncate the symmetry curves $\gamma_j$ at approximate necks of the ends $E_j$ and $E_{j+1}$. By Lemma 14 the length of $\gamma_j$ between successive necks is $\pi$, so each pole solution rotates through an angle of $2\pi$ from neck to neck. Thus the value of the pole solutions is independent of which truncation of the symmetry curves $\gamma_j$ we choose. We can compute the distance in $S^2$ between $P_j$ and $P_{j+1}$ by traversing a neck curve $c_j$ of $E_j$, connecting $\gamma_j$ and $\gamma_{j+1}$. Exact unduloid necks with the orientation indicated in Figure 1 have conormal pointing in the axis $a_j$ direction, so along $c_j$ every solution $\epsilon$ to equation (10) satisfies

$$d\epsilon(c_j') = 2\epsilon \times df(J_0(c_j')) \simeq 2\epsilon \times a_j.$$ 

This implies that (up to exponentially decaying terms, which are negligible) each unit $\epsilon$ rotates with angular speed $2$ about the $a_j$ axis as it traverses $c_j$. The total length of $c_j$ is $n_j/2$, so the total rotation angle along $c_j$ is $n_j$. Choose positively oriented frames $\{a_j, b_j, e_3\}$ for each end $E_j$, as indicated in Figure 1. Then as we traverse $c_j$ the pole solution $P_j$ rotates in a great circle of $S^2$, clockwise in the plane spanned by $b_j$ and $e_3$, and we deduce that the distance from $P_j$ to
$P_{j+1}$ is $n_j$. Thus the edge lengths of the polygonal loop are exactly the necks $n_1, \ldots, n_k$ of $f(\Sigma)$. The polygonal disc used in [GKS2] to classify coplanar $k$–unduloids also satisfies that the distance between successive vertices is $n_1, \ldots, n_k$, so (after normalizing to fix $P_1$ and a frame at $P_1$ using a rotation) the two sets of vertices coincide.

There is an interesting consequence and generalization of the fact that the period of any unduloid is $\pi$. Consider a coplanar $k$–unduloid and let $L_j$ be the length of the curve $\gamma_j$ obtained by truncating at the (asymptotically exact) necks $c_{j-1}$ and $c_j$. By Lemma 14, the length mod $\pi$ of these curves has a well-defined limit as the truncations approach infinity. We call this limit $L_j^\infty$.

**Proposition 16** Let $\alpha_j$ be the interior angle at the vertex $P_j$ of the spherical polygon associated to $f(\Sigma)$, and let $\beta_j$ be the angle between the asymptotic axes $a_{j-1}$ and $a_j$ (see Figure 7). Then

$$2L_j^\infty = \pi + \alpha_j + \beta_j \mod 2\pi.$$

**Remark 3** This result is equivalent to the relation found (Proposition 7 of [GKS0]) for the twist angle of the conjugate cousin minimal surface around each of its boundary Hopf circles.

**Proof:** One can see from equation (10) that after traversing $\gamma_j$, the horizontal components of the arc from $P_{j-1}$ to $P_j$ have rotated through an angle $2L_j$. As indicated by the angle relations illustrated in Figure 3 (for $j = 2$ on a triunduloid), this must be asymptotically equal (up to multiples of $2\pi$) to $\pi + \alpha_j + \beta_j$. \hfill $\square$

![Figure 3: The top view of the pole solutions just before traversing the second neck](image)

5 The proof of the main theorem

We prove Theorem 4 in this section. The proof uses two features of the Alexandrov symmetry satisfied by a coplanar $k$–unduloid $f : \Sigma \to \mathbb{R}^3$. First, the reflection symmetry lets us decompose any Jacobi field $u$ into the sum of an even part $u_+$ and an odd part $u_-$. We call an even field Neumann because its restriction to $\Sigma^+$ satisfies

$$L_f(u_+) = 0, \quad \frac{\partial u_+}{\partial \eta} \bigg|_{\partial \Sigma^+} = 0,$$

where $\eta$ is the (outer) conormal to $\partial \Sigma^+$. Similarly, we call an odd field Dirichlet since it vanishes on $\partial \Sigma^+$. Second, the graphical nature of $f(\Sigma^+)$ implies that $v := -\langle \nu, e_3 \rangle$ is a positive Dirichlet
Jacobi field on \( f(\Sigma^+) \). Using \( v \) as a comparison, we show in Section 5.1 that 0 is the only \( L^2 \) Dirichlet Jacobi field. This analysis so far carries through for coplanar CMC surfaces of any genus.

In order to analyze the Neumann Jacobi fields in Section 5.2, we use the conjugate variation field \( \tilde{\epsilon} \) constructed in Section 3. This requires \( \Sigma^+ \) to be simply connected, that is, \( \Sigma \) must have genus zero.

### 5.1 Dirichlet Jacobi fields

The proof we give of Proposition 18 immediately below uses the maximum principle and is analogous to the standard proof that the first eigenvalue of \( \Delta \) on a bounded domain \( \Omega \) is simple. In Appendix B we prove a stronger version of Proposition 18 using an integral version of the same maximum principle argument. Both proofs compare \( u \) to the vertical translation field \( v := -\langle \nu, e_3 \rangle = -\nu_3 \). Notice that \( v > 0 \) on \( \Sigma^+ \) and \( v = 0 \) on \( \partial \Sigma^+ \).

To apply our maximum principle arguments comparing \( u \) to \( v \), we need to know

\[
\nu_\eta := \frac{\partial v}{\partial \eta} \leq -\delta < 0
\]

on \( \partial \Sigma^+ \). (We continue our convention that \( \eta \) is the outer conormal, which in this case is \(-e_3\) along \( \partial \Sigma^+ \).) One can quickly deduce this inequality for some positive \( \delta \), because it is true near the ends (with \( \delta = 1 \)) and since on any compact subset of \( \partial \Sigma^+ \) the Hopf boundary point lemma gives a (noncomputable) value for \( \delta \). The following lemma shows that we may take \( \delta = 1 \) along all of \( \partial \Sigma^+ \). We include this lemma, which is a reinterpretation of height and gradient estimates carried out in [KKS, KK], for its geometric consequences.

**Lemma 17** Let \( f(\Sigma) \) be an Alexandrov symmetric (see Section 4.2) CMC surface with finite topology which is not a sphere. The boundary \( \partial f(\Sigma^+) \) is a union of principal curves on \( f(\Sigma) \) with principal curvature \( \kappa_1 < 1 \). In particular, the symmetry curves do not contain umbilics, and \( \kappa_2 = \langle \nu, e_3 \rangle_\eta = -\nu_\eta > 1 \).

**Proof:** Because \( \partial f(\Sigma^+) \) is the fixed point set of a reflection symmetry for \( f(\Sigma) \), it is a union of principal curves.

By the CMC equation, we have

\[
\Delta_f(z) = 2\nu_3,
\]

where \( z \) is the restriction of the vertical coordinate to the surface \( f(\Sigma^+) \). Also, because the components of the normal \( \nu \) satisfy the Jacobi equation, we have

\[
\Delta_f(\nu_3) = -|A|^2 \nu_3 \geq -2\nu_3,
\]

Here we have used that \( |A|^2 \geq 2 \) and \( \nu_3 < 0 \). Thus we have

\[
\Delta_f(z + \nu_3) = (2 - |A|^2) \nu_3 \geq 0,
\]

and so \( z + \nu_3 \) is a subharmonic function on \( \Sigma^+ \). On \( \partial \Sigma^+ \), each function vanishes, so \( z + \nu_3 = 0 \). By explicit computation, \( z + \nu_3 \leq 0 \) on the unduloid ends of \( \Sigma^+ \). Thus in (the interior of) \( \Sigma^+ \),

\[
z + \nu_3 < 0
\]

by the strong maximum principle. (Equality can only hold when \( f \) parameterizes a unit hemisphere.)

By the Hopf boundary point lemma,

\[
0 < \frac{\partial}{\partial \eta}(z + \nu_3) = -1 + \frac{\partial \nu_3}{\partial \eta} = -1 + \frac{\partial}{\partial \eta}(\nu, e_3).
\]
We can rearrange this to obtain the curvature perpendicular to the boundary
\[ \kappa_2 = \frac{\partial}{\partial \eta} (\nu, e_3) = -v_\eta > 1, \quad (11) \]
and so the principal curvature along the boundary is
\[ \kappa_1 = 2 - \kappa_2 < 1. \]

Proposition 18 Let \( f(\Sigma) \) be a noncompact Alexandrov symmetric CMC surface of finite genus and with a finite number of ends. Then the only \( L^2 \) Dirichlet Jacobi field is the zero function.

Proof: After possibly replacing \( u \) with \(-u\), we can assume \( u > 0 \) somewhere. Now let \( \mu > 0 \) be a positive parameter. That \( u \in L^2 \) implies (see [KMP]) that \( u \) and its derivatives decay exponentially. Combining this exponential decay with inequality (11), we see that for \( \mu \) sufficiently large
\[ \mu v > u \]
everywhere in the interior of \( \Sigma^+ \), with equality on \( \partial \Sigma^+ \). We define \( \mu^* = \inf \{ \mu > 0 \mid \mu v(p) > u(p), p \in \Sigma^+ \} \).

There is some finite \( q \) which is a critical point of \( \mu^* v - u \) with critical value 0. The point \( q \) lies in either the interior or the boundary of \( \Sigma^+ \). In both cases
\[ u(q) = \mu^* v(q), \quad \nabla u(q) = \mu^* \nabla v(q), \]
and \( u \leq \mu^* v \) on \( \Sigma^+ \). In either case, the strong maximum principle (the Hopf boundary point lemma if \( q \in \partial \Sigma^+ \)) implies \( u \equiv \mu^* v \). Because \( u \in L^2 \), this implies \( \mu^* = 0 \) and thus \( u \equiv 0 \). □

5.2 Neumann Jacobi fields

Given a Jacobi field \( u \) on the coplanar \( k \)-unduloid \( f(\Sigma) \), the conjugate field \( \tilde{\epsilon} \) defined by equation (7) yields a conjugate Jacobi field \( \tilde{u} := \langle \tilde{\epsilon}, \tilde{\nu} \rangle \) on the surfaces \( \tilde{f}(\Sigma^+) \) and \( f(\Sigma^+) \). By the correspondence \( \tilde{\epsilon} = \tilde{f} \epsilon \) relating solutions of equations (7) and (9), we see
\[ \tilde{u} = \langle \tilde{\epsilon}, \tilde{\nu} \rangle = \langle f \epsilon, \tilde{f} \nu \rangle = \langle \epsilon, \nu \rangle. \]

By definition, \( \tilde{u} \) is a Jacobi field on the conjugate cousin \( \tilde{f}(\Sigma^+) \) to the top half of \( f(\Sigma) \). By Lemma 10 it is also a Jacobi field on \( f(\Sigma^+) \).

Let \( V \) denote the space of \( L^2 \) Jacobi fields on \( f(\Sigma) \). Our plan is to convert even (Neumann) Jacobi fields \( u \) into \( L^2 \) Dirichlet Jacobi fields \( \tilde{u} \), use Proposition 18 to deduce \( \tilde{u} \equiv 0 \), and use this to show \( u \equiv 0 \). In order to carry out this procedure, \( u \) must satisfy a finite number of linear conditions, which is why Theorem 1 only bounds the dimension of \( V \), rather than asserting \( V = \{ 0 \} \).

The solution \( \epsilon \) to equation (9) is uniquely determined on \( \tilde{f}(\Sigma^+) \) once we choose an initial value \( \epsilon(p) \) at some point \( p \). We will choose \( \epsilon = 0 \) at an endpoint of the truncated symmetry curve \( \gamma_j \) discussed in the proof of Proposition 11. Because \( u \simeq 0 \) on all ends, solutions to equation (9) approach solutions to equation (10) on the unduloid asymptote of each end \( E_j \). Thus, provided \( \gamma_j \) is sufficiently long, choosing \( \epsilon = 0 \) at an endpoint of the \( \gamma_j \) on \( E_j \) forces \( u \simeq 0 \) on \( E_j \). We refer to this choice of initial value for \( \epsilon \) as setting \( \epsilon = 0 \) on \( E_j \).

By [GKS2], \( f(\Sigma) \) has at least two non-cylindrical ends, one of which we label \( E_k \) (see Figure 1). From Lemma 14 in Section 1.2 a necessary condition for attaining zero Dirichlet data on the end \( E_k \) is that \( \epsilon \) must converge to 0, and so we specify a unique conjugate field \( \epsilon \) associated to \( u \).
by setting $\epsilon = 0$ on this non-cylindrical end $E_k$. Starting at $E_k$, we compute how $\epsilon$ changes along the contours $\gamma_j$, and along the ends $E_j$.

By Lemma 17 the $\gamma_j$ are principal curves, with curvature $\kappa_1 < 1$ and constant conormal $-e_3$. We have seen by Proposition 18 that $u \in \mathcal{V}$ is even. Thus we have

\[
d\epsilon(\gamma_j') = 2\epsilon \times df \circ J_0(\gamma_j') + df \circ J_1(\gamma_j') + d(u\nu) \circ J_0(\gamma_j')
\]

\[
= -2\epsilon \times e_3 + u(\kappa_2 - \kappa_1)\eta_0 + u\nu + \nu \gamma
\]

\[
= -2\epsilon \times e_3 + u(\kappa_1 - \kappa_2 + \kappa_2)e_3 + u\nu
\]

\[
= -2\epsilon \times e_3 + u\kappa_1 e_3
\]

along $\gamma_j$. The geometric interpretation of this equation is that the horizontal part of $\epsilon$ rotates about $e_3$, counterclockwise with speed 2, and the vertical part of $\epsilon$ changes at a rate of $u\kappa_1$. Now set

\[
h_j(u) := \int_{\gamma_j} d\langle \epsilon, e_3 \rangle = \int_{\gamma_j} u\kappa_1 ds,
\]

where $s$ is the arc-length parameter along $\gamma_j$. These heights $h_j(u)$ measure the change in the vertical components of $\epsilon$ as one traverses $\gamma_j$. They play a key role in our analysis.

The integration defining the heights $h_j(u)$ associates a real number to each symmetry curve $\gamma_j$. We encode this by defining the linear transformation $T : \mathcal{V} \rightarrow \mathbb{R}^k$ by

\[
T(u) = (h_1(u), \ldots, h_k(u)).
\]

**Proposition 19** Let $f(\Sigma)$ be a coplanar $k$-unduloid, and let $\mathcal{V}$ be the space of $L^2$ Jacobi fields on $f(\Sigma)$. Then the linear transformation $T : \mathcal{V} \rightarrow \mathbb{R}^k$ defined by expression 16 is injective. In particular, the dimension of $\mathcal{V}$ is at most $k$.

**Proof:** We prove this proposition in two steps. First, show that $T(u) = 0$ implies the conjugate Jacobi field $\tilde{u}$, which is uniquely defined by our choice that $\epsilon = 0$ on the non-cylindrical end $E_k$, must be identically zero. The second step is to show that whenever $\tilde{u} \equiv 0$ then $u \equiv 0$.

As we traverse $\gamma_1$ from the end $E_k$ to the end $E_1$ only the vertical part of $\epsilon$ changes, and the total change in this component is $h_1(u) = 0$. Thus $\epsilon(p)$ converges exponentially to 0 on $\gamma_1$ as $p$ approaches infinity on the end $E_1$. Since $\epsilon$ also converges to a homogeneous solution on $E_1$, we see that $\epsilon$ converges to 0 on the entire end $E_1$. Repeat this argument successively, traversing $\gamma_j$ from $E_{j-1}$ to $E_j$, using the hypothesis that each $h_j(u) = 0$. We deduce that $\epsilon$ converges to 0 exponentially along each end and that it remains vertical along each $\gamma_j$. Thus $\tilde{u} = (\epsilon, \nu)$ decays exponentially to zero along each end and is a Dirichlet field, because $\epsilon$ is vertical and $\nu$ is horizontal along each $\gamma_j$. Therefore, after extending $\tilde{u}$ to all of $f(\Sigma)$ by odd reflection, Proposition 18 implies $\tilde{u} \equiv 0$.

We proceed to the second step, which we set aside as a lemma.

**Lemma 20** If the conjugate Jacobi field $\tilde{u}$ is identically zero, then so is $u$.

**Proof:** We assume $\tilde{u} = (\tilde{\epsilon}, \tilde{\nu}) \equiv 0$, that is, the vector field $\tilde{\epsilon}$ is tangent to $\tilde{f}(\Sigma^+)$. We pull $\tilde{\epsilon}$ back to $\Sigma^+$ and denote its flow by $X_{\tilde{\epsilon}}(t)$. For small values of $t$, this is a diffeomorphism $X_{\tilde{\epsilon}}(t) : \Sigma^+ \rightarrow \Sigma^+$, because $\tilde{\epsilon}$ is parallel to the conormal, and so $\tilde{\epsilon}$ is tangent along $\partial \tilde{f}(\Sigma^+)$. Now define the one-parameter family of immersions

\[
\tilde{f}(t) = \tilde{f} \circ X_{\tilde{\epsilon}}(t) : \Sigma^+ \rightarrow S^3.
\]

This provides a family of reparameterizations of the minimal surface $\tilde{f}(\Sigma^+) \subset S^3$.

We produce a family of CMC surfaces $f(t)$ in $\mathbb{R}^3$ by taking the conjugate cousin of this family of reparameterization of $\tilde{f}(\Sigma^+)$. Rearrange the conjugate family equation 16 to read

\[
df(t) = -\tilde{f}(t)^{-1} d\tilde{f}(t) \circ J(t).
\]
Using the inhomogeneous equation \( \text{Eq} \) for \( \epsilon \) and \( \tilde{f}(t) = \tilde{f} + \epsilon t + O(t^2) = \tilde{f}(1 + \epsilon t + O(t^2)) \), expand equation \( \text{Eq} \) in powers of \( t \). One recovers \( d(uv) \) as the \( O(t) \) term in the expansion of \( df(t) \):

\[
\begin{align*}
    df(t) &= -(\tilde{f}(1 + \epsilon t))^{-1}[(df)(1 + \epsilon t) + \epsilon df] \circ (J_0 + tJ_1) + O(t^2) \\
    &= -(1 - \epsilon t)\tilde{f}^{-1}[df \circ J_0 + t(df \circ J_0)\epsilon + df \circ J_1 + df \circ J_0] + O(t^2) \\
    &= -\tilde{f}^{-1}df \circ J_0 + t[\epsilon\tilde{f}^{-1}df \circ J_0 - \tilde{f}^{-1}(df \circ J_0)\epsilon - \tilde{f}^{-1}df \circ J_1 - df \circ J_0] + O(t^2) \\
    &= df + t[-df + df \circ J_0 \circ J_1 - (\epsilon df + df \circ \epsilon) + df \circ J_1 \circ J_0] + O(t^2) \\
    &= df + td(\epsilon uv) + O(t^2).
\end{align*}
\]

We used the facts that \( J_0^2 = -I \) and \( J_0 \circ J_1 = -J_1 \circ J_0 \) in the last steps.

Integrate the one-form \( df(t) = df + td(\epsilon uv) + O(t^2) \) to recover the immersion \( f(t) \). In this integration we are free to choose the value of \( f(t) \) at a basepoint \( p \in \Sigma^+ \), and choose \( f(t)(p) = f(p) + t\epsilon uv \). Then for any compact set \( K \subset \Sigma^+ \) and \( q \in K \), we have

\[
\begin{align*}
    f(t)(q) &= f(p) + t\epsilon uv(p) + \int_p^q df(t) \\
    &= f(p) + t\epsilon uv(p) + \int_p^q (df + t\epsilon uv) + O(t^2) = f(q) + t\epsilon uv(q) + O(t^2).
\end{align*}
\]

However, this one-parameter family \( f(t) \) is a conjugate cousin family for the fixed surface \( \tilde{f}(\Sigma^+) \), so by Theorem 1.1 of \([GKS1]\), the surfaces \( f(t) \) can only vary by a family of translations. Taking the derivative at \( t = 0 \), this implies \( u \) is the normal part of an \( R^3 \) translation, which implies \( u \not\in L^2 \). Thus \( \tilde{u} \equiv 0 \) implies \( u \equiv 0 \), completing the proof that \( T \) is injective. \( \square \)

**Proposition 21** Suppose \( f(\Sigma) \) is a coplanar \( k \)-unduloid. Let \( u \in V \), and let \( P_1, \ldots, P_k \) be the pole solutions to the homogeneous equation \( \text{Eq} \) associated to the symmetry curves \( \gamma_1, \ldots, \gamma_k \). Then for the constants \( h_j := h_j(u) \), we have the linear relation

\[
\sum_{j=1}^k h_j P_j \equiv 0 \quad \qed


6 Extensions and open questions

One can sharpen the proofs of Theorem 11 and Corollary 12 to show that triunduloids with a cylindrical end are also nondegenerate. The theorem below includes these triunduloids as a special case, and applies to a more general class of \( k \)-unduloids. By Theorem 1.5 of [GKS2], a coplanar \( k \)-unduloid has at least two non-cylindrical ends.

**Theorem 22** Let \( f(\Sigma) \) be a coplanar \( k \)-unduloid. If \( f(\Sigma) \) has \( d \) non-cylindrical ends and the vertices of the classifying polygon span an \( l \)-dimensional subspace of \( \mathbb{R}^3 \), then the space \( \mathcal{V} \) of \( L^2 \) Jacobi fields has dimension at most \( d - 1 \). In particular, if \( f(\Sigma) \) has exactly two non-cylindrical ends, or three non-cylindrical ends and classifying polygon with vertices spanning \( \mathbb{R}^3 \), then it is nondegenerate.

**Proof:** By Proposition 18 any \( u \in \mathcal{V} \) is even, so we proceed as in Section 52. The key idea in the proof is the observation (see Lemma 14) that if \( E_j \) is a cylindrical end, then the pole solutions \( P_j \) and \( P_{j+1} \) are opposites, and are asymptotically tangent along \( E_j \). In other words, given \( u \in \mathcal{V} \) and a corresponding conjugate variation field \( \epsilon \), if \( \epsilon \) is vertical along \( \gamma_j \) then it is asymptotically tangent on \( E_j \) and continues to be vertical on \( \gamma_{j+1} \). Therefore, the conjugate Jacobi field \( \hat{u} = (\epsilon, \nu) \) vanishes on \( \gamma_j \cup \gamma_{j+1} \) and decays along \( E_j \). More generally, if \( (E_r, \ldots, E_s) \) is a string of adjacent cylindrical ends and \( \epsilon \) is vertical on \( \gamma_r \), then it is vertical on all the symmetry curves \( \gamma_r \cup \cdots \cup \gamma_s \), implying \( \hat{u} \) vanishes on these symmetry curves and decays on the ends \( E_r, \ldots, E_s \).

We now develop the combinatorial tools needed to complete the proof. The distribution of non-cylindrical ends on \( f(\Sigma) \) leads to a partitioning of the cyclically ordered set of symmetry curves \( (\gamma_1, \ldots, \gamma_k) \) and their corresponding pole solutions \( (P_1, \ldots, P_k) \) into substrings. Our substrings have the form \( C := (\gamma_{r}, \ldots, \gamma_{s}) \), where the ends \( E_r, E_{r+1}, \ldots, E_{s-1} \) are cylindrical while \( E_{r-1} \) and \( E_s \) are not. In other words, \( \gamma_r \cup \cdots \cup \gamma_s \) connects the non-cylindrical end \( E_{r-1} \) to the next non-cylindrical end \( E_s \), through adjacent cylindrical ends. Notice that the singleton \( C = (\gamma_j) \) is a substring if neither \( E_{j-1} \) nor \( E_j \) are cylindrical ends. Because each substring corresponds to a path joining one non-cylindrical end to the next non-cylindrical end in the cyclic ordering, the total number of elements of the partition equals the number of non-cylindrical ends \( d \) on \( f(\Sigma) \).

If \( C = (\gamma_r, \ldots, \gamma_s) \) is a substring then, by the previous discussion, the corresponding pole solutions \( (P_r, \ldots, P_s) \) are all parallel; in fact, for \( r \leq j \leq s \), we have \( P_j = (-1)^{j-r}P_r = (-1)^{s-j}P_s \). Moreover, if \( \hat{u} \) decays on \( E_{r-1} \) and if

\[
\sum_{j=r}^{s} h_j(u)P_j = \sum_{j=r}^{s} (-1)^{s-j}h_j(u)P_s = 0,
\]

then \( \hat{u} \) vanishes on \( \gamma_r \cup \gamma_{r+1} \cup \cdots \cup \gamma_s \) and \( \hat{u} \) also decays on the ends \( E_r, \ldots, E_s \). We now define the linear transformation \( \hat{T} : \mathcal{V} \to \mathbb{R}^d \) by

\[
\hat{T}(u) := (\hat{h}_1(u), \ldots, \hat{h}_d(u)) := (\sum_{j=r}^{s} (-1)^{s-j}h_j(u), \ldots, \sum_{j=s}^{d} (-1)^{s-j}h_j(u)),
\]

where the \( m \)th string of the cyclic partition is \( (\gamma_{r_m}, \ldots, \gamma_{s_m}) \). If \( \hat{T}(u) = 0 \), then each alternating sum \( \hat{h}_m(u) \) is zero, and so \( \hat{u} \) is an \( L^2 \) Dirichlet Jacobi field. Lemma 20 then implies \( u \equiv 0 \). Therefore, \( \hat{T} \) is injective.

The linear relation (10) now reads

\[
0 \equiv \sum_{m=1}^{k} h_mP_m = \sum_{m=1}^{d} (-1)^{s_m-j}h_jP_{s_m} = \sum_{m=1}^{d} \hat{h}_mP_{s_m}.
\]

As in the proof of Lemma 20 this linear system has rank \( l = \dim\{\text{span}\{P_1, \ldots, P_s\} \leq 3 \), so the solution space is \( (d-l) \)-dimensional. Since \( \hat{T} : \mathcal{V} \to \mathbb{R}^d \) is injective, we deduce that \( \dim \mathcal{V} \leq d - l \).
One can realize the space of triunduloids as a three-ball very explicitly in the following way (see also [GKS1]). Evaluating the ordered triple of pole solutions $P_1, P_2, P_3$ at a base point yields a unique spherical triangle associated to the triunduloid. If the necksizes satisfy the strict triangle inequalities, this triangle is either strictly contained in an open hemisphere (which we normalize to be the upper hemisphere), or it strictly contains a closed hemisphere (which we normalize to be the lower hemisphere). The vertices of this triangle are the pole solutions evaluated at our base point. In the first case, one can parameterize the vertices of all such triangles, and their associated triunduloids, by the upper half of an open three-ball. Similarly, in the second case one can parameterize the vertices of all such triangles and the associated triunduloids by the lower half of an open three-ball. Under this pair of parameterizations, the equatorial disc which joins these two half-balls corresponds to the triunduloids which satisfy the weak spherical triangle inequalities. By Corollary 2, each triunduloid corresponding to a point in the upper and lower half-ball under this parameterization is nondegenerate.

**Corollary 23** The nondegenerate triunduloids form a connected open subset in the space of all triunduloids.

**Proof:** Observe that by the Implicit Function Theorem, the set of nondegenerate triunduloids is open. To show connectedness, it suffices to find a nondegenerate triunduloid satisfying the weak spherical triangle inequalities, which lies in the closure of the two open half-balls described above. Any triunduloid with a cylindrical end is such a surface.

We conclude by mentioning several naturally related open problems concerning Jacobi fields on CMC surfaces and the moduli space theory of CMC surfaces. Theorems 1 and 22 give upper bounds for the dimension of the space $\mathcal{V}$ of $L^2$ Jacobi fields on coplanar $k$-unduloids. Is this bound sharp? In particular, up to scaling, there is at most one nonzero $L^2$ Jacobi field on any triunduloid satisfying $n_1 + n_2 + n_3 = 2\pi$ or $n_i + n_j = n_k$. Does this Jacobi field ever exist?

Is it possible to extend our technique to a wider class of CMC surfaces? For instance, there are many CMC surfaces which are not Alexandrov symmetric but do have some symmetry (e.g. tetrahedral symmetry). Can one use our methods to bound either the necksizes or the dimension of $\mathcal{V}$ on such surfaces? Might the analysis of Section 5.2 also bound the dimension of $\mathcal{V}$ on Alexandrov-symmetric CMC surfaces with positive genus?

It would be very interesting to produce an example of a degenerate CMC surface. The question of integrability of a Jacobi field is also open. According to [KMP], any tempered (sub-exponential growth) Jacobi field on a nondegenerate CMC surface is integrable, in the sense that it is the velocity vector field of a one-parameter family of CMC surfaces. It would be useful to decide whether tempered Jacobi fields are always integrable in this sense.

**Appendices**

**A The spinning sphere connection**

Some of the material in this section is well known, but we include it for the convenience of the reader. We begin with a proof of Proposition 13.

Let $f : \Omega \to \mathbb{R}^3$ be an immersion and consider the $SO(3)$-connection defined by spinning a sphere at speed 2, as described in Section 4.1. The $f(\Omega)$ has mean curvature 1 if and only if this connection is flat.

**Proof:** We have already shown that the CMC condition implies the flatness; it remains to prove the reverse implication. The assumption that the spinning sphere connection is flat is
exactly the hypothesis that equation (10) is integrable for $\epsilon$ on any simply connected domain $\Omega$, for any choice of initial vector $\epsilon(f(p))$. Using equation (10), integrability implies

$$0 = d(de) = 2[2(\epsilon \times df \circ J_0) \times df \circ J_0 + 2\epsilon \times (df \circ J_0)).$$

The second term is $2\epsilon \times (-\Delta_0 f)dx \wedge dy$. Expand the first term and then use the Jacobi identity:

$$4(\epsilon \times df \circ J_0) \times df \circ J_0 = 4(\epsilon \times (f_y dx - f_x dy)) \times (f_y dx - f_x dy) = 4(-\epsilon \times f_y) \times f_x + (\epsilon \times f_x) \times f_y)dx \wedge dy = 4\epsilon \times (f_x \times f_y)dx \wedge dy.$$

Now combine these two terms to obtain

$$0 = d(de) = 2\epsilon \times (2f_x \times f_y - \Delta_0 f)dx \wedge dy.$$

Because $\epsilon$ can be chosen to have any value at a point, we deduce that $f$ solves equation (11). \(\square\)

The solutions $\epsilon$ to the homogeneous system (11) can also be expressed naturally in terms of the quaternion geometry of $S^3$ and the conjugate surface equation for $\tilde{f} : \Omega \rightarrow S^3$. Following the ideas in the abstract sketch of the proof of Proposition 7, let

$$q(t) = 1 + t\alpha + O(t^2)$$

be a smooth curve of unit quaternions, passing through 1 at time $t = 0$, with $\alpha \in T_1S^3 = \mathbb{R}^3$, a fixed imaginary quaternion. Consider the family of left translations $q(t)\tilde{f}$ of the mapping $\tilde{f}$, and note that since the translation isometry is on the left, each of these surfaces satisfies the conjugate cousin equation, $d(q(t)\tilde{f}) = (q(t)\tilde{f})df \circ J_0$. Therefore, the velocity $\tilde{\epsilon} = \alpha \tilde{f}$ of the family at $t = 0$ solves the homogeneous ($u \equiv 0$) version of equation (7), and

$$\epsilon := \tilde{f}^{-1}\tilde{\epsilon} = \tilde{f}^{-1}\alpha \tilde{f}$$

solves equation (16). (One can also check by direct computation that $\epsilon = \tilde{f}^{-1}\alpha \tilde{f}$ solves equation (11).) By varying $\alpha$ one obtains in this manner the unique solution to each initial value problem for equation (11).

Continuing our interpretation of equation (11), we see that an equivalent way to understand the spinning-sphere flat connection on $f(\Omega)$ is as the pullback from $f(\Omega)$ to $f(\Omega)$ of a natural double covering $S^3 \rightarrow SO(3)$, arising from quaternion conjugation: for each imaginary quaternion $\alpha \in \mathbb{R}^3$ and each $q \in S^3$, write

$$R_q(\alpha) := q^{-1}\alpha q.$$

(17)

We have seen that for fixed $\alpha$ the $\mathbb{R}^3$-valued field on $S^3$ defined by equation (17) pulls back to a solution of equation (11) on $f(\Omega)$. More generally, for each $q \in S^3$ the linear map $R_q$ is actually a rotation (in $SO(3)$), and the flat connection on $f(\Omega)$ is the pullback of this rotation field from $S^3$.

We conclude from this discussion that the rotation of the spinning sphere

$$R := R_f : \Omega \rightarrow SO(3)$$

is nothing more than the conjugate cousin $\tilde{f}$ followed by the natural covering map $S^3 \rightarrow SO(3)$. Because $\tilde{f}$ is harmonic, so is the map $R$. (One can verify this directly using (11) to compute

$$R^{-1}\Delta_0 R = (R^{-1}R_x)^2 + (R^{-1}R_y)^2,$$

which is the equation for a harmonic map from $\Omega \subset \mathbb{R}^2$ to $SO(3)$, see (1).) Furthermore, the solution $\epsilon$ to equation (11) is $R(\alpha)$. 20
B Bounded Dirichlet Jacobi fields

Proposition 24 Let \(f(\Sigma)\) be an Alexandrov symmetric CMC surface (see Section 4.2) of finite genus and with a finite number of ends. Every bounded odd (Dirichlet) Jacobi field \(u\) on \(f(\Sigma)\) is a constant multiple of the vertical translation field \(v = -\langle \nu, e_3 \rangle = -\nu_3\). In particular, if \(u \in \mathcal{V}\) then \(u\) is an even (Neumann) Jacobi field (unless \(f(\Sigma)\) is a unit sphere).

**Proof:** We initially assume \(u \in \mathcal{V}\), rather than the more general hypothesis that \(u\) is a bounded Dirichlet Jacobi field. For this proof it is technically simpler to consider the entire surface \(f(\Sigma)\). Recall that both \(u\) and \(v\) are odd with respect to reflection through the Alexandrov plane of symmetry, and by inequality \((11)\) \(u/v\) is uniformly bounded on the complement of the symmetry curves, which is \(\{v \neq 0\}\). Also, both \(u\) and \(v\) are real analytic functions which vanish on the symmetry curves. These facts imply that \(u/v\) extends to an even, real analytic function on the entire surface \(f(\Sigma)\). To verify analyticity on \(\{v = 0\}\), use conformal curvature coordinates in which the \(x\)–axis is a symmetry curve; the fact that \(u\) and \(v\) both vanish on the \(x\)–axis means we can write

\[
u(x, y) = yU(x, y), \quad v(x, y) = yV(x, y), \quad \frac{u(x, y)}{v(x, y)} = \frac{yU(x, y)}{yV(x, y)} = \frac{U(x, y)}{V(x, y)},
\]

where \(U\) and \(V\) are also real analytic and \(V \neq 0\) near the \(x\)–axis by Lemma 17.

Continuing with the proof, assume that \(u/v > 0\) somewhere. Since \(u/v\) is nonconstant, we can pick a regular value \(\delta > 0\) for \(u/v\) with nonempty inverse image. The domain \(\Omega_\delta := \{u/v > \delta\}\) is bounded (because \(u \in L^2\)) and has smooth boundary in \(\Sigma\). Since \((u/v)_\eta < 0\) pointwise along \(\partial \Omega_\delta\),

\[
\int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta} < 0. \tag{18}
\]

However, we also have

\[
0 = \int_{\Omega_\delta} v \mathcal{L}_f u - u \mathcal{L}_f v = \int_{\Omega_\delta} v \Delta_f u - u \Delta_f v = \int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta}. \tag{19}
\]

This last equation \((19)\) contradicts the previous inequality \((18)\), proving \(u \equiv 0\).

We now explain how to extend this argument to prove that any bounded Dirichlet Jacobi field \(u\) is a constant multiple of \(v\). We assume \(u/v\) is nonconstant and positive somewhere, pick a regular value \(\delta > 0\), and define the nonempty set \(\Omega_\delta\) as before. In this case the inequality \((18)\) still holds, but we cannot immediately deduce equation \((19)\) because \(\Omega_\delta\) may be unbounded. We overcome this difficulty by appealing to the linear decomposition lemma of [KMP], which implies that on each end \(E_j\), we have exponential convergence

\[
u(x, y) = yU(x, y), \quad v(x, y) = yV(x, y), \quad \frac{u(x, y)}{v(x, y)} = \frac{yU(x, y)}{yV(x, y)} = \frac{U(x, y)}{V(x, y)},
\]

where \(U\) and \(V\) are also real analytic and \(V \neq 0\) near the \(x\)–axis by Lemma 17.

Continuing with the proof, assume that \(u/v > 0\) somewhere. Since \(u/v\) is nonconstant, we can pick a regular value \(\delta > 0\) for \(u/v\) with nonempty inverse image. The domain \(\Omega_\delta := \{u/v > \delta\}\) is bounded (because \(u \in L^2\)) and has smooth boundary in \(\Sigma\). Since \((u/v)_\eta < 0\) pointwise along \(\partial \Omega_\delta\),

\[
\int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta} < 0. \tag{18}
\]

However, we also have

\[
0 = \int_{\Omega_\delta} v \mathcal{L}_f u - u \mathcal{L}_f v = \int_{\Omega_\delta} v \Delta_f u - u \Delta_f v = \int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta}. \tag{19}
\]

This last equation \((19)\) contradicts the previous inequality \((18)\), proving \(u \equiv 0\).

We now explain how to extend this argument to prove that any bounded Dirichlet Jacobi field \(u\) is a constant multiple of \(v\). We assume \(u/v\) is nonconstant and positive somewhere, pick a regular value \(\delta > 0\), and define the nonempty set \(\Omega_\delta\) as before. In this case the inequality \((18)\) still holds, but we cannot immediately deduce equation \((19)\) because \(\Omega_\delta\) may be unbounded. We overcome this difficulty by appealing to the linear decomposition lemma of [KMP], which implies that on each end \(E_j\), we have exponential convergence

\[
u(x, y) = yU(x, y), \quad v(x, y) = yV(x, y), \quad \frac{u(x, y)}{v(x, y)} = \frac{yU(x, y)}{yV(x, y)} = \frac{U(x, y)}{V(x, y)},
\]

where \(U\) and \(V\) are also real analytic and \(V \neq 0\) near the \(x\)–axis by Lemma 17.

Continuing with the proof, assume that \(u/v > 0\) somewhere. Since \(u/v\) is nonconstant, we can pick a regular value \(\delta > 0\) for \(u/v\) with nonempty inverse image. The domain \(\Omega_\delta := \{u/v > \delta\}\) is bounded (because \(u \in L^2\)) and has smooth boundary in \(\Sigma\). Since \((u/v)_\eta < 0\) pointwise along \(\partial \Omega_\delta\),

\[
\int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta} < 0. \tag{18}
\]

However, we also have

\[
0 = \int_{\Omega_\delta} v \mathcal{L}_f u - u \mathcal{L}_f v = \int_{\Omega_\delta} v \Delta_f u - u \Delta_f v = \int_{\partial \Omega_\delta} v \frac{\partial u}{\partial \eta} - u \frac{\partial v}{\partial \eta} = \int_{\partial \Omega_\delta} v^2 \frac{\partial (u/v)}{\partial \eta}. \tag{19}
\]

This last equation \((19)\) contradicts the previous inequality \((18)\), proving \(u \equiv 0\).

We now explain how to extend this argument to prove that any bounded Dirichlet Jacobi field \(u\) is a constant multiple of \(v\). We assume \(u/v\) is nonconstant and positive somewhere, pick a regular value \(\delta > 0\), and define the nonempty set \(\Omega_\delta\) as before. In this case the inequality \((18)\) still holds, but we cannot immediately deduce equation \((19)\) because \(\Omega_\delta\) may be unbounded. We overcome this difficulty by appealing to the linear decomposition lemma of [KMP], which implies that on each end \(E_j\), we have exponential convergence

\[
u(x, y) = yU(x, y), \quad v(x, y) = yV(x, y), \quad \frac{u(x, y)}{v(x, y)} = \frac{yU(x, y)}{yV(x, y)} = \frac{U(x, y)}{V(x, y)},
\]

where \(U\) and \(V\) are also real analytic and \(V \neq 0\) near the \(x\)–axis by Lemma 17.
Now we truncate the domain \( \Omega_\delta \) by intersecting \( f(\Sigma) \) with a sequence of balls, defining
\[
\Omega_{\delta,N} := \{ p \in \Omega_\delta : |f(p)| \leq N \} = \Omega_\delta \cap \bar{B}_N(0),
\]
where \( N = 1, 2, 3, \ldots \). Then equation (19) becomes
\[
0 = \int_{\Omega_{\delta,N}} u L_f v - v L_f u = \int_{\partial \Omega_{\delta} \cap B_N} uv_\eta - vu_\eta + \int_{\Omega_{\delta} \cap \partial B_N} uv_\eta - vu_\eta.
\]
But as soon as \( N \) is large enough so that \( \partial \Omega_\delta \cap B_N \) has positive length, inequality (18) implies the first term is negative, and in fact it is decreasing in \( N \); also, the second terms converge uniformly to zero by our previous discussion of the asymptotics. This contradiction shows \( u \) is a constant multiple of \( v \). \( \square \)

### C More about gluing

In this section we outline another gluing construction which produces CMC surfaces with no small necks.

The end-to-end gluing construction (Theorem 1 of \[R\]) proceeds as follows. Suppose \( f_1(\Sigma_1) \) and \( f_2(\Sigma_2) \) are two nondegenerate CMC surfaces with ends \( E_j \subset f_j(\Sigma_j) \), such that \( E_1 \) and \( E_2 \) are asymptotic to congruent Delaunay unduloids which are not cylinders. We must also assume that \( f_1 \) belongs to a one-parameter family of CMC surfaces which changes the necksize of \( E_1 \) to first order. Under these assumptions, one can truncate \( f_1(\Sigma_1) \) and \( f_2(\Sigma_2) \) at necks of \( E_1 \) and \( E_2 \) and, after perturbation, glue together the resulting surfaces with boundary to obtain a new CMC surface. The resulting CMC surface is nondegenerate and has asymptotics which are close to the asymptotics of the remaining ends of \( f_1 \) and \( f_2 \). One particular instance of the end-to-end gluing construction, doubling along an end, occurs when one glues \( f(\Sigma) \) to a copy of itself after truncating a particular end.

By Corollary 4, one can use most triunduloids in end-to-end gluing, and in many other gluing constructions. In particular, let \( f(\Sigma) \) be a triunduloid which is a regular point of the classifying map and has necksizes \( n_1, n_2, n_3 \) satisfying the strict spherical triangle inequalities. By Sard’s theorem, except for a set of measure zero, all triunduloids with necksizes satisfying the strict triangle inequalities are regular points of the classifying map. Any end of any such \( f(\Sigma) \) satisfies all the hypotheses for end-to-end gluing, and so one can double such a triunduloid along any of its ends. This gluing construction yields examples of nondegenerate \( k \)-unduloids with \( k > 3 \) and no small necks (that is, no short closed geodesics). In addition, one can use end-to-end gluing to create nondegenerate CMC surfaces with any finite topology and no small necks.

### D Comparison of the CMC and minimal cases

We now compare our proof and Cosín and Ros’ \[CR\] proof of the analogous result for genus zero, coplanar, minimal \( k \)-noids. Because of the special properties of finite total curvature minimal surfaces, they are able to prove that all bounded Jacobi fields on \( f \) are linear combinations of the components of the unit normal vector \( \nu \).

A sketch of their proof proceeds as follows. Let \( \mathcal{W} \) be the space of bounded Jacobi fields on a genus zero, coplanar, minimal \( k \)-noid \( f : \Sigma \rightarrow \mathbb{R}^3 \). As in the CMC case, \( f \) is Alexandrov symmetric, so one can decompose \( \mathcal{W} \) into its even (Neumann) and odd (Dirichlet) parts. First pull back the round metric on \( S^2 \) to \( \Sigma^+ \) using the Gauss map. Because \( f(\Sigma) \) is minimal, this yields a metric conformal to the induced metric on \( \Sigma^+ \), accomplishing two things: it compactifies \( \Sigma^+ \), identifying the ends to points, and it transforms the Jacobi operator into \( \Delta_1 + 2 \), where \( \Delta_1 \) is the Laplacian in the round metric. The uniqueness of Dirichlet fields (up to scaling) now follows from the fact that \( v = -\langle \nu, e_3 \rangle \) is positive on \( \Sigma^+ \). Next, given any bounded Jacobi field \( u \) on a finite
total curvature minimal surface, one can construct an associated branched minimal surface \( X(\Sigma) \) with planar ends which has the same Gauss map as \( f(\Sigma) \), and has \( u \) as its support function (inner product of the position vector and unit normal vector, that is, the Jacobi field corresponding to the invariance of the minimal surface equation under homothety). The conjugate surface \( \tilde{X}(\Sigma) \) is again a minimal surface with planar ends, and its support function \( \tilde{u} \) again is a bounded Jacobi field. Since this conjugation from \( u \) to \( \tilde{u} \) interchanges Neumann and Dirichlet fields, Cosín and Ros conclude that the Neumann fields on \( f(\Sigma) \) are (multiples of) the horizontal components of the unit normal.

One can also prove their result using our methods. To prove the uniqueness of Dirichlet Jacobi fields, up to scaling, one can slightly modify our proof in Appendix \( \text{B} \). The salient feature one must recall is that any bounded Jacobi field \( u \) has a decomposition on each end \( E \) as
\[
    u = a_0u_0 + a_1u_1 + a_{-1}u_{-1} + O(r^{-2}),
\]
where \( r \) is the Euclidean distance from the axis of the catenoid asymptote of \( E \), \( u_0 = O(1) \) arises from translation along the asymptotic axis, and \( u_{\pm 1} = O(r^{-1}) \) arise from translations perpendicular to the asymptotic axis. We will make the normalization that \( u_1 \) corresponds to vertical translations. In particular, if \( u \in W \) is Dirichlet, then \( u = a_1 \langle \nu, e_3 \rangle + O(r^{-2}) \), and so the boundary terms in equation \( (20) \) caused by spherical truncation approach zero. Thus every bounded Dirichlet Jacobi field is a constant multiple of \( \langle \nu, e_3 \rangle \). One can then transform Neumann Jacobi fields to Dirichlet Jacobi fields using a construction analogous to our conjugate Jacobi field construction of Section \( \text{3} \). In this case, the conjugate variation field \( \epsilon \) satisfies
\[
    d\epsilon = df \circ J_1 + d(u\nu) \circ J_0.
\]
Now argue as in Section \( \text{5.2} \) using the heights \( h_j(u) \) defined by equation \( (12) \), which still measure the vertical change in \( \epsilon \) evolving by equation \( (21) \) along \( \gamma_j \). Because equation \( (21) \) contains no rotation term and \( d\epsilon = O(r^{-2}) \) on the ends, \( \epsilon \) remains vertical along all the symmetry curves and at infinity. Thus \( \tilde{u} = \langle \epsilon, \nu \rangle \) is a bounded Dirichlet Jacobi field, and we apply the proof of Proposition \( \text{19} \) to conclude \( u = \langle \nu, b \rangle \) for some \( b \in \mathbb{R}^3 \).

References


