Skip to main content
Article
The Impact of Surficial Biochar Treatment on Acute H2S Emissions during Swine Manure Agitation before Pump-Out: Proof-of-the-Concept
Catalysts
  • Baitong Chen, Iowa State University
  • Jacek A. Koziel, Iowa State University
  • Andrzej Białowiec, Iowa State University and Wroclaw University of Environmental and Life Sciences
  • Myeongseong Lee, Iowa State University and Chungnam National University
  • Hantian Ma, Iowa State University
  • Peiyang Li, Iowa State University
  • Zhanibek Meiirkhanuly, Iowa State University
  • Robert C. Brown, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
8-16-2020
DOI
10.3390/catal10080940
Abstract

Acute releases of hydrogen sulfide (H2S) are of serious concern in agriculture, especially when farmers agitate manure to empty storage pits before land application. Agitation can cause the release of dangerously high H2S concentrations, resulting in human and animal fatalities. To date, there is no proven technology to mitigate these short-term releases of toxic gas from manure. In our previous research, we have shown that biochar, a highly porous carbonaceous material, can float on manure and mitigate gaseous emissions over extended periods (days–weeks). In this research, we aim to test the hypothesis that biochar can mitigate H2S emissions over short periods (minutes–hours) during and shortly after manure agitation. The objective was to conduct proof-of-the-concept experiments simulating the treatment of agitated manure. Two biochars, highly alkaline and porous (HAP, pH 9.2) made from corn stover and red oak (RO, pH 7.5), were tested. Three scenarios (setups): Control (no biochar), 6 mm, and 12 mm thick layers of biochar were surficially-applied to the manure. Each setup experienced 3 min of manure agitation. Real-time concentrations of H2S were measured immediately before, during, and after agitation until the concentration returned to the initial state. The results were compared with those of the Control using the following three metrics: (1) the maximum (peak) flux, (2) total emission from the start of agitation until the concentration stabilized, and (3) the total emission during the 3 min of agitation. The Gompertz’s model for determination of the cumulative H2S emission kinetics was developed. Here, 12 mm HAP biochar treatment reduced the peak (1) by 42.5% (p = 0.125), reduced overall total emission (2) by 17.9% (p = 0.290), and significantly reduced the total emission during 3 min agitation (3) by 70.4%. Further, 6 mm HAP treatment reduced the peak (1) by 60.6%, and significantly reduced overall (2) and 3 min agitation’s (3) total emission by 64.4% and 66.6%, respectively. Moreover, 12 mm RO biochar treatment reduced the peak (1) by 23.6%, and significantly reduced overall (2) and 3 min total (3) emission by 39.3% and 62.4%, respectively. Finally, 6 mm RO treatment significantly reduced the peak (1) by 63%, overall total emission (2) by 84.7%, and total emission during 3 min agitation (3) by 67.4%. Biochar treatments have the potential to reduce the risk of inhalation exposure to H2S. Both 6 and 12 mm biochar treatments reduced the peak H2S concentrations below the General Industrial Peak Limit (OSHA PEL, 50 ppm). The 6 mm biochar treatments reduced the H2S concentrations below the General Industry Ceiling Limit (OSHA PEL, 20 ppm). Research scaling up to larger manure volumes and longer agitation is warranted.

Comments

This article is published as Chen, B.; Koziel, J.A.; Białowiec, A.; Lee, M.; Ma, H.; Li, P.; Meiirkhanuly, Z.; and Brown, R.C. "The Impact of Surficial Biochar Treatment on Acute H2S Emissions during Swine Manure Agitation before Pump-Out: Proof-of-the-Concept." 10 Catalysts (2020): 940. DOI: 10.3390/catal10080940. Posted with permission.

Access
Open
Creative Commons License
Creative Commons Attribution 4.0 International
Copyright Owner
The Author(s)
Language
en
File Format
application/pdf
Citation Information
Baitong Chen, Jacek A. Koziel, Andrzej Białowiec, Myeongseong Lee, et al.. "The Impact of Surficial Biochar Treatment on Acute H2S Emissions during Swine Manure Agitation before Pump-Out: Proof-of-the-Concept" Catalysts Vol. 10 Iss. 8 (2020) p. 940
Available at: http://works.bepress.com/robert_brown/153/