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INTERNAL RELAXATION IN SHORT CHAINS BEARING TERMINAL POLAR GROUPS 

R. L. Jernigan 

Physical Sciences Laboratory, Division of Computer Re-

search and Technology, National Institutes of Health, 

* Bethesda, Maryland, and Department of Chemistry, Univer-

sity of California at San Diego, La Jolla, California 

ABSTRACT 

Dielectric relaxation can be described in terms of correlations 
between an initial dipole vector, ~(O), and its value at later times, 
~(t). Here, this dipolar correlation function is averaged over all 
short chain configurations with a rotational isomeric state model. 
The time dependent behavior of molecular configurations is developed 
from rates for passing over internal rotational energy barriers. 
Configurational perturbations caused by electric fields are treated; 
such effects are determined to be usually small. The theory de­
veloped is applied to calculate the high frequency dielectric dis­
persion for members of the family of a,w-dibromo-n-alkanes, 
Br-(CHz)n_1-Br for n = 4 to 6. Distributions of internal relaxa­
tion times are reported. For the longer chains these distributions 
lead to depressed and slightly skewed Cole-Cole dielectric constant 
diagrams. 

INTRODUCTION 

Molecular details have been ignored in previous treatments of 
relaxation processes in chain molecules. In the highly successful 
Rouse-Zinnn (1,2) model, the polymer molecule is divided into an 
unspecified number of free jointed Gaussian subunits. The relaxa­
tion of each subunit is assumed to behave as if it were a Hookean 
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100 R. L. JERNIGAN 

spring. The molecule is represented by a chain of beads connected 
with ideal springs. Frictional interactions with solvent occur only 
at beads. This representation succeeds in predicting observed low 
frequency relaxation behavior. Here a model is proposed to account 
for high frequency relaxation which is characterized by short range 
motions. 

Resort to the devices of equivalent freely jointed chains and 
Gaussian distributions results in a considerable loss (3,4) of 
molecular information. In this paper a method for treating relaxa­
tion properties is set forth in which these artifices are avoided 
by using structural features previously employed to calculate 
equilibrium properties. These structural characteristics include 
fixed bond lengths, rigid bond angles and rotational isomers (3,4). 
Applications of these equilibrium theories have resulted in a fun­
damental understanding of a variety of electrical, geometric and 
optical properties (4) of polymers. 

In the present model, transitions between molecular configura­
tions occur by rotations about backbone bonds. High energy barriers 
to rotation permit a development of time dependent probabilities 
for rotational isomeric states. The rates of transitions about a 
given bond are assumed to be independent of states of neighboring 
bonds. However, extension to an interdependent model is straight­
forward within the present framework. The important neighbor inter­
dependence of the equilibrium chain statistics (4) has been retained. 
Because frictional and hydrodynamic interactions are ignored, the 
treatment is appropriate only for isolated molecules. Applications 
are limited to small chain molecules or short polymer segments. 

This equilibrium and non-equilibrium rotational isomeric state 
model has been applied to treat dielectric properties in several 
short chains of the homologous series of a,w-dibromo-n-alkanes. 
These molecules were chosen because a previous treatment of their 
equilibrium mean square dipole moments <µ2> was available. After a 
short review of the theory of this property, the effect on the di­
pole moments, at equilibrium, of an external electric field is con­
sidered. Also discussed is the approximate perturbation of proba­
bilities of individual molecular configurations resulting from the 
electric field. The development of time dependent configurational 
probabilities makes possible a direct calculation of the internal 
part of the dipolar auto-correlation function. It is also necessary 
to include an external contribution which corresponds to rotational 
diffusion of individual configurations. These external motions have 
been assumed to be independent of all internal motions. The com­
plex dielectric constant is obtained directly from the dipolar auto­
correlation function. Frequency and temperature dependences of the 
calculated dielectric dispersions are presented. 
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SHORT CHAIN RELAXATIONS 101 

EQUILIBRIUM MEAN-SQUARE DIPOLE MOMENT (5) 

Dipole moments of the class of molecules with polar groups at 
each terminus may be expressed as the sum of the two group moments, 
~l• and gn. For a fixed configuration, the molecular dipole moment 
is 

µ ~l + ~n (1) 

The values chosen for µ1 and µn may be either the bond dipole 
moments or group moments so chosen as to also include induced 
effects in bonds adjacent to the polar bonds. 

A right handed Cartesian coordinate system is assigned to 
every backbone bond. In the coordinate system based upon bond j, 
the X · axis points along bond j. The Y· coordinate is chosen in 
the plane of bonds j-1 and j in a direciion to form an acute angle 
with bond j-1. For such coordinate systems, the orthogonal trans­
formation from the system j+l to j is effected by 

['o'e sine. 

:in•j J = sin/cos</>. 

J 

T. -cos8.cos¢. (2) 
-J J J J J 

sin8.sin¢. -cos8jsin<J>j -cos¢. 
J J J 

ej and ¢j are the bond angle supplement and rotational angle indi­
cated for the alkane derivative shown in Figure 1. The angle <l>j is 
taken to be zero for the planar zigzag chain configuration. 

The terminal bond dipole vectors of the hydrocarbon derivative 
shown in Figure 1 are given by 

~l and ~n (3) 
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Figure 1. a,w-dihalo-n-alkane chain in the planar form. An 
example of a rotational angle and bond angle supplement 
are shown. For the applications in this paper, X = 
bromine. 

For a given configuration, the dipole moment is expressed here in 
the coordinate system of the first chain bond. Combination of 
Equations 1, 2 and 3 leads to 

µ -
- 1 ~l (4) 

The required mean-square dipole moment is obtained by squaring and 
averaging the last equation to give 

2 
<µ > 

n-1 

2µi - 2~~ <" !j) ~l 
j=l 

(S) 

Angle brackets denote averages over all configurations accessible 
to the molecule and T indicates the transpose of the matrix to 
which it is attached. 
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Further structural details are required in order to perform 
the average indicated in Equation 5. Near equilibrium, bond lengths 
and bond angles may be assumed to be fixed. The distribution of 
configurations arises solely because of variations in the set of 
rotational angles {¢}. Enumeration of the n-2 backbone rotational 
angles serves to specify a molecular configuration. 

For the n-alkanes and numerous other molecules (4), the con­
figurational energy has been found to exhibit three minima which 
lie near¢= 0°, 120° and 240°. The positions of these minima are 
designated trans(tr), gauche+(g+) and gauche-(g-). For the 
n-alkane chains, the minima are deep and nearly synnnetric; hence, 
it is valid to assume that all molecular configurations may be 
generated by permitting each of the rotational angles to inde­
pendently assume each of the three rotational positions. This 
yields a total of 3n-2 configurations for a chain of n bonds. In 
n-alkane chains (6) the g+ and g- states possess an energy approxi­
mately 0.5 kcal mole-1 above the trans energy. In addition, high 
energy configurations are encountered when pairs of bonds assume 
rotational states of g+g or g-g+. This effect may be accounted 
for by choosing the conf igurational weights to be neighbor depen­
dent. It is convenient to account for this dependence in a matrix 
of statistical weights, 

u. 
-J l: : : J 2 < j < n-1 

(6) 

where a= exp(-0.5/RT). The rows of y1 index rotational states for 
bonds j-1 and the column index states ror bond j in the order tr, 
g+ and g-. 

Rotational energies about carbon-carbon bonds 2 and n-1 are 
different because the bond lengths C-X and C-C are different and 
because of different van der Waals radii for methylene and for X. 
For a,w-dibromo-n-alkane chains treated here, the form of these 
matrices is 

!:12 u -n-1 

(7) 
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The equilibrium partition function for these molecules is 
given by 

n-2 

z ~*~2 ( T\ ~j) ~n-1 J 
j=3 

(8) 

which is the sum of weights for all configurations. The row and 
column matrices in Equation 8 are defined as 

J* [l 0 0) and 

This' partition function is utilized in a straightforward manner to 
average the product of matrices ! in the r.h.s. of Equation 5 

n-1 
r--

< I \ 
j=l 

T.) 
-J 

n-1 

/I [(~je:3 )11:j111 
j=2 

(9) 

!
3 

is the unit matrix or order 3; e represents the direct matrix 
product. We define the pseudo-diagonal matrix II T II by 

II~ II [ 

T(¢=0°) J 
- T(¢=120°) 

- T(¢=240°) 

Substitution of this result into Equation 5 yields an expression 
for the mean-square equilibrium dipole moment 
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n-1 

I \ (10) 

j=2 

Generally <µ 2> will depend on the applied electric field or its 
residual influence after it has been removed. Here, t measures 
time after an initially applied field has been switched off; thus 
t = 00 represents equilibrium. 

Numerical calculations were carried out by Leonard, et al., 
(5) with this equation for the series of a,w-dibromo-alkanes of 
different chain lengths at 25°. Effects of dipole-dipole inter­
actions were also included. For chains longer than Br-(CH2)5-Br, 
agreement within about 5% of the experimental values was achieved 
by a choice of J.ll = l.90D. A small dependence of <µ2> on tempera~ 
ture was computed which agrees with experiment. Inclusion of 
usually accepted small values for ug+g- = 0.02 instead of the 
zeros in the 2,3 and 3,2 elements of ~j raised calculated moments 
by less than 1%. All following results were calculated using 
Equation~ 8 and 10 with ej = 68°, µ1 = l.90D, and cr = exp(0.5/RT). 
In addition, dipole-dipole interactions have been ignored; previous 
calculations indicated their effect to always be less than about 
5%. Also g+g- and g-g+ pairs have been excluded throughout. 

EQUILIBRIUM MEAN-SQUARE DIPOLE MOMENT IN 
PRESENCE OF ELECTRIC FIELD 

The molecular energy in an electric field which acts along the 
x axis is given by 

E - µ F - (a /2)F
2 

x xx 
(11) 

where E is the internal energy in the absence of the field; F is the 
magnitude of the electric field. J.Jx and axx represent the compo­
nents of the dipole moment and the polarizability tensor in the 
direction of the field. This last term will be ignored because 
only polar molecules are treated here. 

The partition function in the presence of an electric field 
is given by 
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ZF m (Bn 2)-l f ... f exp (-EF/kT) sinx dx d~ dp d{~} (12) 

where x, ~ and p are the Euler angles and k is the Boltzmann con­
stant. Substitution for EF from Equation 11 and expansion of the 
exponential function exp (µxF/kT) yields 

Z = (Bn2)-l f ... f exp (-E/kT) (1 + µ F/kT F x 

(13) 

The first term is identical to the field free partition function. 
Terms in odd powers of µx vanish. The result is 

ZF = Z (1 + (1/2) <µ~> (F/kT)
2 

4 4 + (1/4!) <µ > (F/kT) + ... ] 
x 

2 2 4 
Symmetr4 permits substitution of <µx> = (1/3)<µ > and <µx> = 
(1/9)<µ >. Thus Equation 14 becomes 

Z = Z (1 + (1/6) <µ 2> (F/kT) 2 
F 

+ (1/216) 4 <µ > 
4 (F/kT) + ... ] 

(14) 

(15) 

This equation expresses the field dependent partition function in 
terms of the field free partition function and a series in even 
powers of (F/kT). Coefficients in the series are proportional to 
the even field free moments of the dipole vector. 
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Approximate expressions for any desired property in the pre­
sence of the electric field may be obtained by averaging with the 
partition function in Equation 15. Only the mean-square dipole 
moment is treated here. Direct application of Equation 13 to 
obtain the requisite average yields 

2 4 4 
+ (1/4!) <µ µ x> (F/kT) + .•• ] (16) 

Introduction of the symmetry of components of the even dipole 
moments into Equation 16 gives 

+ (1/216) 6 <µ > 
4 (F/kT) + •.• ] (17) 

2 
Exact calculation of terms in this series beyond <µ > is difficult 
but can be accomplished by methods presented in References 4 and 7 . 
For short chains, these moments are obtained by explicit enumeration 
of all configurations, their associated dipole vectors and statis­
tical weights. 

Maximum values of the even dipole moments are obtained for a 
Gaussian distribution which corresponds to infinite chain length. 
In this case, the higher even moments may be replaced by powers of 
<µ2> with appropriate numerical coefficients. 

Maximum(<µ 2j>) = [(2j+l)l/j!] (<µ 2>/6)j (18) 

Substitution of these expressions into Equations 15 and 17 results 
in the limiting expressions, 
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and 

2 2 2 2 
(Z/ZF) [<µ > + (5/18) <µ > (F/kT) 

2 3 4 + (35/1944) <µ > (F/kT) + ... ] 

z [l + (1/6) 2 <µ > (F/kT) 2 

2 2 4 + (5/648) <µ > (F/kT) + ... ] 

Substitution of Equation 20 into Equation 19 yields 

2 2 2 2 <µ > + (1/9) <µ > (F/kT) 

2 3 4 - (2/243) <µ > (F/kT) + ... 

R. L. JERNIGAN 

(19) 

(20) 

(21) 

This Gaussian expression for <µ
2

>F represents the maximum value 
obtainable for the normal range of values of F, T and <µ 2>. Values 
of <µ 2>F calculated for 1,4-dibromo-butane at 25° are presented in 
Table I. Results of calculations of the maximum value in Equation 
21 are included as well as those calculated by the more exact series 
in Equations 15 and 17. Normally µF<<kT; therefore, we conclude 
that only large fields will have significant effects on <µ2>F· 
Within the range of small effects, deviations of <µ2>F from <µ2> 
may adequately be described by means of Equation 21. 

<µ 2>F differs from <µ2> because an external electric field 
changes the probabilities of individual rotational states. The 
interaction between the electric field and the dipole moment de­
creases the total energy; therefore, the probabilities of configura­
tions with large dipole moments are favored. The treatment below 
of probabilities of bond rotational states in the presence of an 
electric field closely follows the derivation presented by Abe and 
Flory (8) for bond state probabilities with chain stretching. 
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TABLE I 

Effect of Electric Field on Dipole Moment of 
1,4-dibromo-n-butane (25°) 

(<µ
2

> = 5. 7800) 

2 
(Units of Debye

2
) <µ >F 

F/kT Eq. 17 Eq. 17 Gaussian 
(Units of with terms with terms Limit 
Debye-1) through <µ4 > through <µ6> Eg. 21 

0.03 5.784 5.784 5.784 

0.06 5.793 5.793 5.794 

0.09 5.809 5.810 5.812 
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Application of Equation 8 leads to an expression for the 
probability that bond i is in rotational state n, 

[ 

i=l 

P . = Z /Z = Z-l J* ,...--./ ' 
n;i n;i -

j=2 

u.l -JJ ~ ~ ; i [ ft ~kJ J 
k=i+l 

(22) 

where Yn·i is the matrix with two columns of zeros and the third 
column identical to the nth column of Ui. By analogy with Equa­
tion 15, the statistical weight for bond i in rotational state n 
in the presence of the electric field is given by 

Z . F • Z . [l + (1/6) <µ
2 

i > (F/kT)
2 

n;i; n;i n; 

+ (1/216) 4 <µ .> 
n;i 

4 
(F /kT) + ... ] (23) 

The moments in this equation bearing subscripts n;i are calculated 
subject to the constraint that bond i remains in rotational state 
n. 
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Likewise, the probability that bond i is in rotational state 
n in the presence of an electric field is defined by 

pn·i·F ' , 
(24) 

Substitution of Equations 23 and 15 into Equation 24, followed 
by division of the two series, yields 

pn·i·F 
' ' 

(Zn;i/Z) (1 + (1/6) (<µ~;i> - <l>) (F/kT)
2 

+ ••• ] 

= P i (1 + (1/6) (<µ
2 

> - <µ
2
>) (F/kT)

2 
+ .•• ] 

n; n;i 

(25) 

the correction term demonstrates the 
2 

dipole moment <µn;i> 

2 2 The factor (<µ .> - <µ >) in n;1 
effect of n. If n produces a mean-square 

which is larger than the total field free moment, then pn·i·F will 
2 ' ' be larger than p i" 

. n; 
If, however, <µ > is greater than 

<µ~;i>' then state n is less probable in the presence of the 

electric field than in its absence. 

It is convenient to define a coefficient of the average effect 
of the electric field on the probabilities of bond i. For a chain 
of length n this coefficient is defined to be 

C ( i, n) (1/3) l 
n=tr,g+,g-

I 2 2 I 2 <µ > - <µ > /m 
n ;i 1 

In Figure 2 the dependence of C(i,n) on n is shown for i=2 and i=3. 
Except for the very shortest a,w-dibromoalkanes, C(i,n) is smallest 
for values of i nearest the middle of the chain. The zigzag charac­
ter of the curves is a consequence of the bond geometry. The re­
sults depicted in Figure 2 indicate that the effect of the electric 
field upon bond rotational probabilities is usually largest for 
bonds nearest the bond dipoles. 
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n 

Figure 2. Relative average influence of an electric field on the 
rotational probabilities for the ith bond in n bond 
a,w-dibromo-n-alkane chains. Results are for 25°. 

DIPOLAR TIME CORRELATION FUNCTION 

The frequency dependence of the dielectric constant is 
directly related (9-13) to the dipolar time correlation function, 

~(T+t) - <µ(T) 2 µ(T+t)>/<µ (T)> (27) 

For a stationary process the origin in time is arbitrary so that 

~(T+t) ~(t) - <µ(O) µ(t)>/<µ 2 (0)> (28) 

This function is properly normalized so that ~(t = O) = 1 and 
~(t = 00 ) = 0. Decay of ~(t) is assumed to occur by two independent 
processes, external rotational diffusion of the whole molecule and 
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internal relaxation by transitions between rotational isomeric 
configurations. Thus the total dipolar time correlation function 
is expressed as 

<I> (t) <I>i t(t) exp (-t/T ) n rot 
(29) 

where 'rot is the rotational relaxation time of a rigid body with 
dimensions equivalent to the average molecular dimensions. 

Hoffman (14) proposed a mechanism of rotational barriers to 
explain dielectric relaxation in solid polymers. In his model 
barriers arise because of intermolecular interactions. In the 
treatment for isolated molecules which follows, intramolecular 
interactions are the source of rotational barriers. 

Calculation of <I>int requires a complete description of the 
time dependent probabilities of rotational states. A formulation 
of these statistics is developed below in which rotation rates 
about individual bonds are assumed to be independent. 

Consider rotation about a single carbon-carbon bond located 
within a sequence of identical bonds. The rotational energy about 
this bond possesses a lowest minimum at ~ = 0° for the planar form 
(tr). Two additional somewhat higher minima appear near 120° (g+) 
and 240° (g-). They lie at an energy approximately 0.5 kcal mole-1 
above the trans minimum. Two equal maxima appear near 60° and 
300°. The magnitude of these barriers is 3 to 4 kcal mole-1 above 
the trans zero energy position. Additionally, there is a high 
barrier near 180°. The height of this barrier, 9 to 10 kcal mole-1, 
is so great as to be experimentally inaccessible. Such a barrier 
is sufficiently high to preclude the direct transition g+~g-. 
Transitions between rotational states therefore occur by passage 
over the two smaller barriers between trans and the two gauche 
states. Permitted transitions and their associated rates are 
described by 

g+ 

The rates of transitions are assumed to be proportional to Boltz­
mann factors of the barrier heights. Values used here for calcu­
lations are r1 = (kT/h) exp(-3/RT) and r2 = (kT/h) exp (-2.5/RT), 
where h is Planck's constant. 
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If p .(t) is the probability of rotational state trans for 
tr;J 

the jth bond at time t, then a vector formed from such probabili­
ties is defined by 

[

ptr;j (t)l 

p.(t)= P+ .. (t) 
-] g ,] 

p . (t) 
g-;J 

(30) 

The first order differential equation to describe the rates of 
transitions for this vector is 

dp. (t)/dt 
-] 

A.p.(t) 
] -] 

(31) 

The matrix~. expressed in terms of the transition rates r
1 

and r 2 , 
is 

2 < j < n-1 (32) 

The -2r1 in the first element represents the rate and two directions 
in which the bond is permitted to turn away from trans. The gauche 
rotational states are only permitted to turn in the one direction 
toward trans; hence, the other diagonal terms are -r2 . 

The solution to differential Equation 31 is 

p. (t) 
-J 

exp(A.t) p.(t=O) 
-J -] 

(33) 
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Matrix ~j can be diagonalized by a similarity transformation; 
hence 

-1 
Bj AjB. 
- - -J 

A. 
-J 

(34) 

B is a matrix formed from eigenvectors of A and A is the diagonal 
array of eigenvalues of A. Substitution or Equation 34 into 
Equation 33 yields 

p. (t) 
-J 

(35) 

For the vector and matrix in Equations 30 and 32, the solution in 
Equation 35 is given by the matrix depicted on page 115. 



Pj Ct) 

ptr;j(oo) + [Pg+;j(oo) 
+ p ,(oo)J 5l 

g-;J 

Pg+;j (oo) (1 - 5l J 

p . (oo) (1 - 5 J 
g-;J 1 

ptr ;j (oo) [l - 51 J 

pg+;j(oo) + (1/2) 5l 

+ [ptr;j(oo)/2] 51 

pg-;j(oo) - (1/2) 52 
+ [ptr;j(oo)/2] 51 

ptr;j (oo) (1 - 51] 

pg+;j(oo) - (1/2) 52 
+ [ptr··(oo)/2] 51 ,J 

p ,(00 ) + (1/2) 52 g-;J 
+ [ptr··(oo)/2] 51 ,J 

. ~/O) (36) 

~ 
0 

~ 

~ 
~ 
~ 

~ 
H 
g 
en 

...... 

...... 
V1 
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The eigenrates are defined as s 1 = exp(-2r1t-r2t) and s 2 
exp(-r2t). 

If bond rotations are assumed to be independent of one another 
then this method may be extended to treat longer chains. The appro­
priate probability vector for a general n-bond chain will contain 
3n-Z elements, 

p(n)(t) (37) 

The time derivative of Equation 37 is 

d'!?(n) /dt (dp2/dt)ep
3
e ... ep.e ... ep _2ep _

1 - - - J _n _n 

+ p
2
ep

3
e ... e(dp./dt)e .•. ep _

2
ep _

1 - - - J - n - n 

+ p
2
ep

3
e •.. ep.e •.. e(dp _

2
/dt)ep _

1 _ _ - J _n _n 

+ p
2
ep

3
e ..• ep.e • .. ep _2e(dp _

1
/dt) _ _ - J _n _n (38) 

The explicit functional time dependence of the probabilities has 
been removed from Equation 38 and later equations. Unless other­
wise stated, all probabilities to follow are for time t. Time 
derivatives on the right side of Equation 38 can be removed by 
substitution of Equation 31. 
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dp(n) /dt A2p29p39 .•• 9p,9 •.• 9p -2Qp -1 _ _ _ -J _n _n 

+ p2QA3p39 ••. 9p.9 ..• Qp -2Qp -1 _ _ _ _J _n _n 

+ p2Qp39 .•. 9A.p,9 •.. Qp 2Qp 1 _ _ -J-J _n- _n-

+ p2Qp39 ... Qp.9 .•. QA -2P -2Qp -1 _ _ _J _n _n _n 

+ p29p39 ... 9p.9 .•• Qp _29A _
1

P -l _ _ _J _n _n _n (39) 

Matrices ~j are given by Equation 32 except for ~2 and ~n-l which 
are 

~2 = ~n-1 

0 

The direct product theorem for any arbitrary conformable matrices 
A, B, C and D permits the rearrangement (AB)Q(CD) = (MaC) (BQD). 
Successive applications of this theorem to-Equation 39 yielas-
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dp(n) /dt 

(40) 

Combination of terms on the right side of Equation 40 gives a 
result similar in form to Equation 31 

dp(n) /dt =~p(n) (41) 

Likewise, matrix CL may be diagonalized and the solution expressed 
in a form similar to Equation 35, 

p (n) = ~ exp(;;ft) d}-l ~ (n) (t=O) 

e p(n)(t=O) (42) 

([)is the matrix formed from eigenvectors of a and :d. is the diago­
nal array of eigenvalues of ~· Inspection of Equat1on 41 reveals 
that the matrix Cl. has dimensions 3n-2 x 3n-2. Practical computa­
tions with this ~ethod are therefore limited ton~ 7. Another 
method (15) is more appropriate for treating longer chains. 

Results of calculations above indicate that the effect of 
normal electric fields on rotational state probabilities is usually 
negligible. Hence, p(n)(t=O) in Equation 42 may be replaced with 
p(n)(t=00), the equilibrium value. In order to obtain the same 
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initial time values of µ2(0) from both the partition function in 
Equation 8 and the stattstics in Equation 42, the probability 
vector in Equation 37 is replaced for computational purposes with 

p tr, tr, ••. , tr, tr 

p tr,tr, ••• ,tr,g+ 

ptr,tr, ••• ,tr,g-

p tr, tr, ••• ,g+, tr 
(43) 

Pg-,g-, ••• ,g-,g+ 

p g-,g-, ••• ,g-,g-

Each element of this vector represents the total equilibrium 
probability for an individual configuration. These probabilities 
may be calculated with the partition function in Equation 8. 
Neighbor dependence of the equilibrium statistics is thus reintro­
duced into Equation 42. 

In order to reduce the sizes of matrices~, the rows and 
colunms corresponding to occurrence of g+g- and g-g+ pairs of states 
have been eliminated. Diagonal terms of Qare adjusted appropriately 
to retain zero sums of each colunm. By this method, the dimensions 
of matrix Cl for n=6 are reduced from 81 x 81 to 41 x 41. 

Matrixe in Equation 42 is composed of time conditional proba­
bilities. The row indexes the configuration at time t and the 
colunm indexes the initial configuration. The total time dependent 
joint probability array is therefore given by 

l?diag[p(n)(t=O)] (44) 

This matrix contains a complete description of the time dependence 
of the rotational state probabilities. The internal portion of the 
dipolar time correlation function is obtained by direct application 
of this matrix. 
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<Ii. 
int 
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(45) 

Vector M is formed from the dipole moment vectors for each chain 
configuration, calculated by Equation 4. 

µ 
tr,tr, ••• ,tr,tr 

µ 
tr, tr, ••• , tr, g+ 

M (46) 

µ g-,g-, .•• ,g-,g-

Inspection of Equations 42 and 44 indicates that the internal 
dipolar time correlation function in Equation 45 may be expressed 
in the form 

<Ii 
int l k. exp(A.t) 

j J J 
(47) 

where Aj is the jth eigenrate from the diagonal array~. The 
relative importance of eigenrates is shown in Figures 3 to 5 for 
chains of 4, 5 and 6 backbone bonds. The eigenrate is the inverse 
of the relaxation time; therefore, these diagrams are directly 
related to the distributions of relaxation times. With increasing 
chain length, additional relaxation times contribute to the corre­
lation function. The mean relaxation time is shifted to shorter 
times for the longer chains. This is a consequence of the mechanism 
of independent relaxation about all chain bonds. 

The total correlation function is expressed by 

(48) 
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where \! = \j - l/Trot· The effect of including this independent 
external rotation is to shift all internal rates by the same 
amount. Approximate values of Trot were chosen from the results 
of Rayleigh scattering experiments for the similar liquid alkyl 
bromides (16). Use of empirical equations given in Reference 16 
for the chain length and temperature dependences of the orienta­
tional relaxation times yields the values presented in Table II. 
These values for the monobromo compounds are substituted for the 
values required for the dibromo compounds with the same number of 
carbon atoms. It is assumed that introduction of the additional 
bromine atom does not significantly change the rotational diffu­
sion rate. The magnitude of the error introduced by assuming 
that the two experimental methods yield the same relaxation time 
depends upon the chain length. Estimates (16) of this error indi­
cate that it is probably less than 50%. 

03 

02 

0 .1 

0 0 ..__ _ _._ _____ __.._ _ _ ,._ __ __,_ ______ ~.__,_I_ 

0 .1 0.2 

->.. 
Figure 3. Contributions k of eigenrates \ to ~int' the normalized 

internal dipolar correlation function, for 1,3-dibromo-n­
propane at 25°. Units of\ are 1012 sec-1. 
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Figure 4. Contributions k of eigenrates A to ~int• the normalized 
internal dipolar correlation function, for 1,4-dibromo-n­
butane at 25°. Units of A are 1012 sec-1 • 
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Figure 5. Contributions k of eigenrates A to ~int• the normalized 
internal dipolar correlation function, fof 1,5-dibromo-n­
pentane at 25°. Units of A are 1012 sec- . 
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TABLE II 

Orientational Relaxation Times from 
Rayleigh Scattering Experiments (16) 

T rot 
Liquid Tem:Eerature x 1012 (sec) 

1-propyl bromide 25° 3.4 

1-butyl bromide oo 8.0 

1-butyl bromide 25° 5.8 

1-butyl bromide 50° 4.7 

1-pentyl bromide 25° 9.9 
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A correlation time for the normalized total correlation func­
tion in Equation 48 is defined by 

T t <l> dt 
c 0 

(49) 

Integration of this equation yields 

Values of 'c calculated at 25° for the a,w-dibromo-n-alkanes 
are 2.84 x lo-12 sec for n = 4, 4.22 x lo-12 sec for n = 5 and 
6.41 x lo-12 sec for n = 6. 

Figure 6 displays the decay of the total correlation function 
at 25° for n = 4 to 6. The smallest molecule relaxes fastest only 
because the smallest values of 'rot were used. If the same value 
of external relaxation time had been used for all chain lengths, 
then the curves would appear in the opposite order. The reason for 
this behavior is that longer chains in this model rnanif est shorter 
mean internal relaxation times. 
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Figure 6. Time decay of total normalized dipolar time correlation 
function at 25°. Upper curve represents behavior for a 
chain length n=6. Middle curve is for n=5 and lowest 
curve is for n=4. 

DIELECTRIC CONSTANT 

The complex dielectric constant e* is directly proportional to 
the Laplace transform L of the time derivative of the total dipolar 
correlation function. 

(£*-£ )/(£ -£ ) 
00 0 00 

L(-d<f>/dt) (51) 

£0 and £ 00 are respectively the static and infinite frequency 
dielectric constants. Substitution for the argument of the Laplace 
transform from Equation 48 yields 

(e*-e )/(£ -£ ) 
00 0 00 

- l Aj'k.L[exp(A'.t)] 
j J J 

(52) 
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Evaluation of the Laplace transform gives 

(E*-s )/(E -s ) = - l A'.k./(iw-Aj') 
00 000 JJ 

j 
(53) 

where w is identified with frequency. If -Aj is expressed as the 
inverse of relaxation time Tj, then the real part of the dielectric 
constant is given by 

(s'-s )/(E -s ) 
00 0 00 

(54) 

The imaginary part of the dielectric constant is 

€
11 /(E -E ) 

0 00 
(55) 

Each term of the series in Equations 54 and 55 is identical to the 
result for the Debye one relaxation time model. The dielectric 
constant for the present model is given by a sum of these Debye­
like terms. If the real part for the Debye model is plotted on one 
axis and the imaginary part on the other axis, the familiar Cole­
Cole semicircle is obtained. The results of such plots are dis­
played in Figure 7 for the chains with n = 4, 5 and 6. The upper­
most curve for 1,3-dibromo-n-propane is indistinguishable from the 
one relaxation semicircle. Curves for longer chains are depressed 
and slightly skewed from this limit. Such depressions and high 
frequency broadening is commonly observed for systems with multiple 
relaxation times. These deviations in Figure 7 are direct results 
of the distributions of relaxation rates depicted in Figures 3 - 5. 

The temperature dependence of the real and imaginary dielectric 
constant for Br-(CHz)4-Br is presented in Figures 8 and 9. Tempera­
ture affects the value of Trot chosen from Table II as well as the 
Boltzmann factors for rates of passage over barriers and for equili­
brium statistical weights of rotational isomers. At higher tempera­
tures the dispersion region is shifted to higher frequencies. 

:1 
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Figure 7. Cole-Cole diagram of dielectric behavior. Ordinate re­
presents the imaginary part of the dielectric constant, 
and the abscissa is the real part. Upper curve is the 
Debye one relaxation time semicircle. The depressed 
curve of short dashes is for 1,4-dibromo-n-butane. 
Curve of long dashes represents behavior of 1,5-dibromo­
pentane. All calculated curves are for 25°. 

':' 't' 0 5 818 
- 0 
~~ 

Figure 8. Frequency dependence of real part of dielectric constant 
for 1,4-dibromo-n-butane at three temperatures. Curve of 
small dashes is for 50°; solid curve is for 25°; long dash 
curve is for 0°. 
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Figure 9. Frequency dependence of imaginary part of dielectric 
constant for 1,4-dibromo-n-butane at three temperatures. 
Curves are designated as in Figure 8. 

The present theory has been developed for isolated molecules. 
Any comparison of these calculated results with experiment would 
require consideration of interactions with the surrounding medium. 
Numerous approximate theories (9-13) for this purpose exist. How­
ever, unavailability of experiments in the very high frequency 
range of simple configurational transitions does not encourage 
further pursuit. A preliminary estimate of the effect of inter­
molecular interactions in the pure liquids was performed by the 
method of References 12 and 13. The deviations from the Debye 
model manifested in Figure 7 were considerably reduced. 

The present method for short chains admits of extension to more 
complex configurational transition schemes. Simultaneous transitions 
about several bonds may be accommodated by modifying matrix~ in 
Equation 41 to include additional non-zero terms. In this manner 
any desired motions, such as the so-called crankshaft motion, may 
be included. The range of bonds encompassed by such motions is 
limited only because this method is limited to short chains. Also, 
it is possible to treat relaxation properties of other molecules 
(4,17) using this model, if their structural features are known. 
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The model presented is a first attempt to account for the 
effect of detailed structural features on non-equilibrium proper­
ties. It may be appropriately applied only in the case of small 
deviations from equilibrium. Account has not been taken of large 
non-equilibrium effects such as bond length distortions and signi­
ficant distortions of bond angles. However, such effects are not 
expected to be important for the application of small external 
fields. In its present application, transitions about all bonds 
have been assumed to occur independently and at the same rate. 
Frictional resistance to motions will modify transition rates. 
These modifications will show dependence on both chain length and 
configuration. For example, in a viscous medium it is more diffi­
cult to rotate about a bond in the middle of a long chain than 
about a terminal bond. The present isolated molecule theory ac­
counts for neither hydrodynamic nor electrical intermolecular · inter­
actions. 

ACKNOWLEDGMENT 

The author wishes to thank B. H. Zimm and G. H. Weiss for 
helpful discussions 

REFERENCES 

1. P. E. Rouse, Jr., J. Chem. Phys. 21, 1272 (1953). 
2. B. H. Zimm, J. Chem. Phys.~' 26-g--(1956). 
3. M. V. Volkenstein, CONFIGURATIONAL STATISTICS OF POLYMERIC 

CHAINS, Interscience, New York, 1963. 
4. P. J. Flory, STATISTICAL MECHANICS OF CHAIN MOLECULES, Inter­

science, New York, 1969. 
5. W. J. Leonard, Jr., R. L. Jernigan and P. J. Flory, J. Chem. 

Phys. 43, 2256 (1965). 
6. A. Abe, R. L. Jernigan and P. J. Flory, J. Am. Chem. Soc. ~. 

631 (1966). 
7. P. J. Flory and R. L. Jernigan, J. Chem. Phys. 42, 3509 (1965). 
8. Y. Abe and P. J. Flory, J. Chem. Phys. 52, 2814~(1970). 
9. R. H. Cole, J. Chem. Phys. 42, 637 (1965). 

10. S. H. Glarum, J. Chem. Phys-.-33, 1371 (1960). 
11. E. Fatuzzo and P. R. Mason, Pr;c. Phys. Soc. 90, 741 (1967). 
12. D. D. Klug, D. E. Kranbuehl and W. E. Vaughan-,-J. Chem. Phys. 

50, 3904 (1969). 
13. 'f:""-L. Rivail, J. Chim. Phys. 66, 981 (1969). 
14. See, for example, J. D. Hoffman and H. G. Pfeiffer, J. Chem. 

Phys. 22, 132 (1954). 
15. R. L. Jernigan, to be published. 
16. D. A. Pinnow, S. J. Candau and T. A. Litovitz, J. Chem. Phys. 

49, 347 (1968). 
17. T: W. Bates and W. H. Stockmayer, Macromolecules.!_, 12 (1968). 


	Iowa State University
	From the SelectedWorks of Robert Jernigan
	1972

	Internal Relaxation in Short Chains Bearing Terminal Polar Groups
	tmpNTb6JU.pdf

