The effects of fluid loss on physical performance: A critical review

Andrew Carlton, Bond University
Rob Orr, Bond University

Available at: https://works.bepress.com/rob_orr/62/
The effects of fluid loss on physical performance: A critical review

Andrew Carlton, Robin Marc Orr*

Faculty of Health Sciences and Medicine, Bond Institute of Health and Sport, Gold Coast, Queensland 4226, Australia

Received 21 March 2014; revised 27 May 2014; accepted 17 September 2014

Abstract

Purpose: The purpose of this review was to critically analyse the current evidence investigating the effect of an athlete’s hydration status on physical performance.

Methods: A literature search of multiple databases was used to identify studies that met the inclusion criteria for this review. The included studies were then critically appraised using the Downs and Black protocol.

Results: Nine articles were found to meet the inclusion criteria, with an average score of 79% for methodological quality representative of a ‘high’ standard of research.

Discussion: The evidence suggests that dehydration has a negative impact on physical performance for activities lasting more than 30 s in duration. However dehydration was found to have no significant impact on physical performance for activities lasting less than 15 s in duration.

Keywords: Athlete; Dehydration; Euhydration; Hydration; Performance

1. Introduction

The idea that bodily fluid loss, in the form of dehydration, impairs an athlete’s physical performance is not new. In 1955, Buskirk et al. discussed the negative impact dehydration had on VO2max. Since this research, evidence supporting dehydration related impairments in aerobic performance, anaerobic performance, and cognitive performance, have been published, as have incidents whereby athlete dehydration has led to the risk of fatality.

A state of dehydration can be induced though physical activity (PA). However, the level of dehydration induced can be dependent upon a number of variables including the type, intensity, and duration of the PA and the temperature and humidity of the environment. Hence studies have undertaken to investigate the impact that PA has on dehydration, and conversely the impact that different levels of dehydration have on physical performance. The intent of these studies being to better understand the need for an athlete to maintain a state of euhydration (absence of dehydration). As an athlete’s performance essentially requires a degree of PA and PA is known to potentially induce a state dehydration and reduce an athlete’s performance, an understanding of the relationship between PA and hydration status is important if a coach wishes to optimize their athlete’s performance and prevent a potentially life threatening incidence. On this basis, the purpose of this review was to critically analyse the current literature investigating the effect of dehydration on physical performance.

2. Methods

A two-layered search strategy was utilized for the review. Firstly, a comprehensive search of online databases including PubMed, CINHAL, Web of Science, SPORTSDiscus, and EBSCO Academic Search was completed. The search terms and filters used for the searches of these databases are detailed in Table 1. All articles noted from the original database search were checked for duplicates, and these were subsequently removed. Secondly, the reference lists of articles from the...
database search that were retrieved in full text were cross-checked against the list of initial database articles and all new articles were noted and sourced.

All articles were then subjected to key inclusion criteria, these being: (1) the article specifically investigated the effect of dehydration on physical task performance; (2) the article was published within the last 10 years; (3) the research involved human participants; (4) the article was published in English; and (5) the article was an original research article. For the purpose of this review, dehydration was defined as an increase in osmolality or similarly a decrease in body mass from a single exercise session/heat exposure. Physical tasks were defined as tasks that require physical exertion or activities that challenge the participant in a physical capacity.

The methodological quality of selected articles were assessed using the Downs and Black protocol.9 The Downs and Black protocol employs a 27-question checklist to assess five key areas of methodological quality: statistical power, internal validity (bias and confounding), external validity, and reporting quality. The checklist comprised closed answer questions, where a “yes” is awarded 1 point and a “no” or “unable to determine” is awarded 0 points. There are two questions that have more points assigned to them. Question 5, reporting of confounding factors associated with the participants, is scored out of two (0 = No list, 1 = partial list, 2 = complete list of principle confounders). Question 27, a statistical power question, has scores derived from the number of participants involved in the clinical trial and is scored out of five. Scores were converted to a percentage of the total score by dividing each article’s score by 32 (total possible score) and multiplying by 100. All studies were independently rated by the authors with the level of agreement measured using a Cohen’s Kappa (κ) analysis of all raw scores (27 scores per paper). For final scores, any disagreements in points awarded were settled by consensus.

3. Results

From the initial search, 124 possible articles were identified from the database searches (Fig. 1). Of these articles, 108 were removed following review of the titles and abstracts against the five inclusion criteria. An additional seven articles were removed due to duplication. Six articles were added from the search of reference lists which identified previously unidentified articles. The remaining 15 articles were then reviewed in detail and considered against the inclusion criteria with nine papers retained for critical review.

The participants, methods, main findings and critical appraisal of the articles are shown in Table 2. The kappa statistic for inter-tester agreement of the methodological quality of the studies indicated a “substantial” agreement (κ = 0.744).10 The critical appraisal measures of power, quality of reporting, internal validity and external validity of the selected research articles were found to have reasonably high methodological scores (mean = 79% ± 4%) ranging from 72% to 81% using the Downs and Black checklist.8 These scores are considered to represent a high standard of research.11 Both the inability to blind the participants and the researchers, and poorly represented populations were identified as the main limitations of the studies identified for review.

Please cite this article in press as: Carlton A, Orr RM. The effects of fluid loss on physical performance: A critical review, Journal of Sport and Health Science (2015), http://dx.doi.org/10.1016/j.js hs.2014.09.004
Fluid loss and physical performance

The populations of the studies were all males, who were classified as healthy and active. Some of the participants were involved in specific sports including cycling, rugby, golf, soccer, and triathlon, with the remaining participants from the general population. The average population size for the studies was nine participants ranging from seven to 12 participants. Seven of the nine studies utilized a randomized crossover trial to allow for the capture of results from all participants across conditions whilst removing confounding effects in both learning and fatigue. The remaining two studies used a one-day trial where the participants started in an euhydration state with exercise or heat exposure prescribed to achieve the dehydration condition for post-testing. There were a number of different approaches employed by the studies to achieve a dehydrated state including heat exposure, fluid restriction, and exercise. There was one study that directly considered the effect of dehydration on aerobic performance, whilst most looked at its effect on anaerobic performance. Two of these anaerobic studies did however consider the effect dehydration had on the aerobic exercise that was undertaken to induce a dehydrated state.

Two studies used sport specific skills to assess performance, two the Wingate test, and another two a graded exercise test to exhaustion. One study looked at distance travelled in 30 min while another used a 5-km time trial to determine performance impacts. In the remaining study, knee strength and standing vertical jump were used to determine the effect of dehydration on performance. Given these outcomes measure, the majority of the studies came to the conclusion that dehydration decreases performance although one study found no difference between the euhydration and hyphydration trials.

Four studies found that with dehydration there was an associated decrease in power output. In addition, the captured studies noted increases in relative VO2 and heart rate with dehydration, decreased gross efficiency, decreased speed, decreased time to exhaustion, and decreased sport-specific skills. Two studies identified an increase in “Ratings of Perceived Exertion” levels with dehydration with a third study noting a 70% increase in the severity of fatigue with dehydration. In contrast, one study did find only a slight, non-significant increase in fatigue severity with dehydration.

4. Discussion

Fluid loss due to PA is a daily occurrence for humans. Without replacement this fluid loss can lead to a state of dehydration. With the methodological scores of the evidence considered in this review found to be of good standard, the majority of research suggests that dehydration has a detrimental effect on physical performance, with the potential exception of activities lasting less than 15 s. This is unsurprising given evidence suggesting that a decrease in hydration of 3% has been shown to have an effect on the performance of further physical activities.

Upon investigating the impact of dehydration on aerobic performance most studies were found to only consider an aerobic exercise section as a segue between pre- and post-testing. Aerobic exercise was used to help achieve the level of dehydration that the researchers had set as their criteria. However, some studies did utilize aerobic exercise as an outcome measure and not merely an intervention. During these latter investigations the researchers found a decrease in aerobic performance with the participants that were in a hypo-hydrated or dehydrated state compared to baseline or euhydration state. Hillman et al. discovered that with the reduced hydration in a warm climate (33.9 ± 0.9 vs. 23.0 ± 1.0 °C) the distance covered in their 90 min of cycling on a stationary ergometer significantly decreased (p < 0.03) when compared to an euhydrated state in the same participant.

Ebert et al. found similar results. In their study, riders were allocated a low hydration restriction protocol of 50mLper 15 min or a high hydration protocol of 300mLper 15 min. The investigators note that during and following 120 min of sub-maximal riding there was a significant increase in the heart rates (low hydration 187 ± 146 bpm; high hydration 183 ± 146 bpm; p = 0.02) and core body temperatures (low hydration: 39.5 ± 0.3 °C; high hydration: 39.1 ± 0.3 °C; p < 0.001) of the low hydration riders. Both the increased heart rate and increased body temperature are considered to be detrimental to performance. There was one study that investigated just the aerobic performance on participants. Aldridge et al. explored the impact of dehydration on heart rate, perceived rating of exertion, and mean VO2. They found significant differences in all three variables when comparing euhydration condition to the dehydration condition (p ≤ 0.01, p ≤ 0.05, p ≤ 0.001, respectively).

As opposed to aerobic exercise, the majority of studies investigated the effect of dehydration on anaerobic exercise. Unlike the aerobic exercise studies, which had consistent findings, the studies investigating anaerobic
Table 2
Summary of the critical appraisal of included articles in this review.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Participants</th>
<th>Variables</th>
<th>Intervention</th>
<th>Main findings</th>
<th>Critical appraisal score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldridge et al.</td>
<td>Eight regularly active male athletes — university rugby</td>
<td>Independent: hydration status (EUH/HYPO)</td>
<td>Randomised Crossover</td>
<td>UOsm values for EUH and HYPO conditions were 385 ± 184 mOsM/kg and 815 ± 110 mOsM/kg respectively. There was significant increases between EUH and HYPO conditions in mean VO₂, HR (p ≤ 0.001), RPE (p ≤ 0.05) at the 30 min point of the test</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>players</td>
<td>Dependent: aerobic exercise performance</td>
<td>1. 1 × 30 min cycle ergometer at 75 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheuvront et al.</td>
<td>Eight healthy and physically active male subjects</td>
<td>Independent: hydration status (EUH/HYPO)</td>
<td>Randomised crossover</td>
<td>HYPO condition had a significantly decreased body mass compared to EUH (p < 0.001) No significant differences seen in relative peak power output between EUH and HYPO conditions (11.4 ± 1.0 and 11.7 ± 1.3 W/kg)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependent: anaerobic exercise performance</td>
<td>1. 1 × 15 s Wingate (WAnT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 3 h passive heat exposure</td>
<td>2. 3 × WAnT’s at 0, 30 and 60 min’s post heat exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebert et al.</td>
<td>Eight well-trained male cyclists</td>
<td>Independent: hydration status (HIGH CHO/LOW CHO)</td>
<td>Randomised crossover</td>
<td>Significant difference between LOW CHO and HIGH CHO conditions in body mass loss (3.6 ± 0.6 and 1.3 ± 0.5% body mass respectively, p < 0.05) Significant difference in time to exhaustion on hill climb test between LOW CHO and HIGH CHO conditions (p = 0.002), with a 28.6% ± 13.8% decrease in times in the LOW group</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependent: cycling hill climbing performance</td>
<td>1 × maximal graded cycling test on a stationary ergometer to determine MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Hill climb time-to-exhaustion at 88% MAP, own their own bike on an 8%</td>
<td>Randomised crossover</td>
<td>U̇O₂CM significantly increased (p < 0.05) post-match compared to pre-match in the NF test, however no significant change in the FI and MR tests A significant decrease in both NF and MR (13% and 15% respectively) in distance covered in the post-match performance test when compared to the FI test</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inclined treadmill</td>
<td>1. 45 min pre-match cycle ergometer (90% VT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Completion of a 45 min soccer match</td>
<td>2. Completion of a 45 min soccer match</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Immediate post-match sport-specific and mental concentration tests</td>
<td>3. Immediate post-match sport-specific and mental concentration tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwards et al.</td>
<td>Eleven moderately active male soccer players (2 players</td>
<td>Independent: (FI, NF, and MR)</td>
<td>Randomised crossover</td>
<td>A significant decrease in both NF and MR (13% and 15% respectively) in distance covered in the post-match performance test when compared to the FI test</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>did not complete MR conditions)</td>
<td>Dependent: Soccer match play and fitness variables</td>
<td>1 × maximal graded cycling test on a stationary ergometer to determine MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Hill climb time-to-exhaustion at 88% MAP, own their own bike on an 8%</td>
<td>2. Hill climb time-to-exhaustion at 88% MAP, own their own bike on an 8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>inclined treadmill</td>
<td>inclined treadmill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Immediate post-match sport-specific and mental concentration tests</td>
<td>3. Immediate post-match sport-specific and mental concentration tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes et al.</td>
<td>Twelve male university students</td>
<td>Independent: hydration status</td>
<td>Six resistance exercise bouts Heat exposure between each bout</td>
<td>Subjects had a significant decrease in body mass, maximal isometric and isokinetic strength during the study (p < 0.001, p < 0.05, p < 0.05 respectively) However no significant change was seen in jump height, EMG, or maximal isokinetic strength at 120°/s</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>increasing levels of HYPO</td>
<td>Heat exposure of 20 min jogging in a warm environment chamber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependent: strength, jump capacity, and neuromuscular function</td>
<td>Resistance exercise bouts consisted of a unilateral knee extension in isometric and isokinetic concentric conditions and a standing vertical jump</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Participants</th>
<th>Variables</th>
<th>Intervention</th>
<th>Main findings</th>
<th>Critical appraisal score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillman et al.8</td>
<td>Seven competitive male cyclists</td>
<td>Independent: hydration status (EUH and DE in W and T conditions) Dependent: 5 km cycling TT</td>
<td>Randomised crossover 1. 90 min cycling at 95% lactate threshold 2. 5 km TT</td>
<td>% DE significantly increased in the DE–W condition compared to pre-exercise ($p < 0.01$) DE–W also had significant decreases in power output compared to all other conditions in both the 90 min cycle and 5 km TT ($p < 0.03$, $p < 0.02$)</td>
<td>81</td>
</tr>
<tr>
<td>Jones et al.9</td>
<td>Seven healthy males</td>
<td>Independent: hydration status (EUHYPO) Dependent: UL, and LLPO</td>
<td>1. 2 × UL and LL – 30 swingate tests 2. Heat exposure until dehydration of 3.0% body mass loss was achieved 3. 2 × UL and LL – 30 s Wingate tests</td>
<td>UL and LL mean PO were significantly decreased between EUH and HYPO (7.17%, $p = 0.016$; 19.20%, $p = 0.002$) UL and LL peak PO were significantly decreased between EUH and HYPO (14.48%, $p = 0.013$; 18.36%, $p = 0.013$)</td>
<td>81</td>
</tr>
<tr>
<td>Smith et al.13</td>
<td>Seven athletic low-handicap experienced male golfers</td>
<td>Independent: hydration status (EUH/DE) Dependent: sport-specific and cognitive motor performance</td>
<td>Randomised crossover 1. Sport-specific performance test: hitting 30 golf balls in a laboratory-based netted, enclosed swing area 2. Cognitive ability test: distance judgment</td>
<td>Body mass in the DE condition was significantly reduced when compared to base line ($p < 0.01$) Shot distance and off target accuracy were both significantly different between the EUH and DE conditions. ($-14.1%$, $p < 0.001$; $+3.8%$, $p = 0.001$) There was also a significant decrease between EU and DE conditions in the cognitive tests ($p < 0.001$)</td>
<td>81</td>
</tr>
<tr>
<td>Van Schuylenbergh et al.4</td>
<td>Nine national level male triathletes</td>
<td>Independent: hydration status (EUH/DE) Dependent: HR, PO, RER</td>
<td>Randomised crossover 1. Graded cycling test to exhaustion (including fluid replacement for the EH condition) 3. Graded cycling test to exhaustion</td>
<td>DE post-exercise test was significantly shorter and had reduced PO than the other tests ($p < 0.05$, $p < 0.05$) Oxygen uptake was not significantly different and RER was significantly decreased in all post-exercise test conditions ($p < 0.05$)</td>
<td>81</td>
</tr>
</tbody>
</table>

Abbreviations: EUH = euhydration; HYPODE = hypohydration/dehydration; HIGH CHO = high carbohydrate; LOW CHO = low carbohydrate; HR = heart rate; sRPE = rating of perceived exertion; MAP = maximal aerobic power; VT = ventilatory threshold; W = warm; T = thermoneutral; TT = time trial; PO = power output; UL = upper limb; LL = lower limb; RER = respiratory gas exchange ratio; MR = mouth rinse; FI = fluid intake; NF = no fluid.
exercise produced varying results. In the performance tests that lasted for longer periods of time (≥30 s) the investigators found that dehydration had a negative effect on performance.\(^\text{[1,4,7,8,12–14]}\) However, for tests that lasted shorter than 15 s, including the standing vertical jump and 15 s Wingate anaerobic test there were no observed changes in performance.\(^\text{[15]}\) A reason for these differences may relate to the energy system predominately used for each test. There are two main energy components that contribute to anaerobic performance, the alactic and anaerobic glycolytic (lactic) components.\(^\text{[16]}\) These components work in conjunction with the aerobic energy system to meet the energy demand during exercise. Each energy system is active throughout exercise however one is usually more dominant than the others with the duration and intensity of the exercise influencing this.\(^\text{[16]}\) For high intensity exercise that lasts up to 15–20 s the body predominately utilizes the alactic component;\(^\text{[16]}\) this system does not require water.\(^\text{[17]}\) For high intensity activity that lasts up to 2–3 min the body predominately uses the anaerobic glycolytic component;\(^\text{[16]}\) a system that utilizes water to help in energy synthesis.\(^\text{[17]}\) Water is used in the anaerobic glycolytic energy system to resynthesize pyruvate into glucose so that it can be recycled through the energy systems to create more energy, likewise the hydrogen ions stripped from the water produces energy when shuttled through the electron transport chain.\(^\text{[17,18]}\) Water is utilized by the aerobic energy system to perform the same roles.\(^\text{[17]}\) As such, a dehydrated state, where bodily water is limited, may reduce the ability of the anaerobic glycolytic and aerobic energy pathways to produce energy, and as such, have a negative impact on performance of tasks lasting 30 s or longer in duration.

The general findings from the reviewed research follow earlier studies prior to the review period. In regards to aerobic performance, previous research has typically found dehydration to negatively impact performance.\(^\text{[19–22]}\) One study, by Dengel et al.\(^\text{[23]}\) did however fail to find changes in aerobic performance with hyponhydration. It should be noted that participants in this study cycled at sub maximal intensities (50% VO\(_{2\text{max}}\)) for the duration. Similarly, findings investigating anaerobic performance were mixed.\(^\text{[24]}\) Where one study by Greiwe et al.\(^\text{[24]}\) found no change in isometric strength or muscle endurance following a sauna induced state of hypo-hydration, a study by Torranin et al.\(^\text{[25]}\) did find a decrease in muscle strength-endurance likewise following a sauna induced hypohydration state.

Given the findings of this review and consideration of earlier research, research suggests that athletes participating in exercise of greater than 30 s in duration would benefit from pre-hydrating to a state of euhydration prior to their event, and to continually ingest fluids to match those lost during exercise to maintain a state of euhydration. While coaches often broadly consider hydration status (potentially more often during games as opposed to training), they many not fully appreciate the impact a dehydrated state could have on performance or the potentially life threatening incidence that may arise from this physiological state. As such, through maintaining a state of euhydration, the athlete’s level of fatigue may be decreased, as may their relative VO\(_2\), heart rate, and rating of perceived exertion, the consequences of which will see an increased level of performance.

Urine specific gravity (USG) presents one means monitoring an athlete’s level of hydration. Typically a quick and easy method, USG can be captured though various means including hydrometry, reagent strips, and refractometry with refractometry considered the more accurate.\(^\text{[26]}\) USG scores from these measures can then be compared to ratings tables (like those provided by Casa et al.\(^\text{[27]}\)) to measure an athlete’s level of hydration. Apart from USG, there are some other methods for measuring hydration status including urine osmolality (laboratory measure) and pre- and post-body weight mass (field measure). Urine osmolality measures may be more timely and delayed\(^\text{[28,29]}\) and are considered interchangeable with USG measures.\(^\text{[29]}\) In the field, body mass measures can provide a guide as to fluid loss through sweat loss. As a general guide, a loss of more than 1%–2% of body mass indicates that the athlete did not ingest sufficient fluid during the event.\(^\text{[30]}\) Conversely, if body mass loss was lower than this amount fluid intake may have been more than was required for the event or activity.\(^\text{[30]}\) It should be noted, however, that changes in body weight do not account for athletes that are dehydrated on their initial their pre activity measure. As such, the latter statement regarding limited body mass changes and sufficient hydration may be misleading.\(^\text{[30]}\)

When considering the research presented and choice of hydration measures, the coach should consider the potential differences in athlete sweat rates. Research does suggest that sweat rates differ from person to person, through factors like fitness and percentage of body fat.\(^\text{[31,32]}\) Furthermore, higher intensity exercise or higher ambient temperature and humidity may likewise influence sweat rates,\(^\text{[30]}\) as may the nature of the activity being undertaken.\(^\text{[32]}\)

When discussing the real world implications of these finding both the nature of the PA being conducted (duration and intensity) and the environments in which it is undertaken must be considered. In the majority of the studies reviewed the PA was cycling on either an ergometer or a personal bicycle on an incline treadmill. Considering this, only three studies had participants from a trained cyclist population. In one study,\(^\text{[22]}\) the researchers used cycling as the outcome measure on a population trained to play rugby. As such the outcome measure lacked sport specificity and could not be considered a true representation of the general population. Furthermore, in all but one study,\(^\text{[14]}\) the research was completed in a laboratory setting and hence a controlled environment which may limit the true impacts of the PA on levels of hydration as they exclude environmental conditions (like breeze, surface temperature, etc.) which may further influence the hydration of the athlete.

Three key limitations identified for this review were 1) the small number of “current”research studies that met the inclusion criteria, 2) the differences between protocols for the studies, and 3) the differences in subjects and their training histories. With only nine studies meeting the inclusion criteria for critical review, drawing firm conclusions from their results
was difficult especially given the variability in protocols and outcome measures. Secondly, the variance in outcome measures across the studies limited the drawing of dedicated recommendations. Thirdly, the subjects from each study varied completing different activities, factors known to influence sweat rates and hence potential hydration status.

5. Conclusion

In conclusion, dehydration appears to have a negative impact on physical performances that are longer than 30 s in duration. Even though there is no significant negative impact on tasks lasting less than 15 s in duration, a state of euhydration is suggested to be maintained during all PA. It is also a suggestion of this review that further research be conducted into the impacts of dehydration on physical performance within the specific task environment while employing performance outcome measures that closely mimic the athlete’s key physical tasks.

References